Skip to main content

Epstein-Barr Virus Nuclear Protein 2-Induced Activation of the EBV-Replicative Cycle in Akata Cells: Analysis by Tetracycline-Regulated Expression

  • Chapter
Epstein-Barr Virus and Human Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 258))

  • 194 Accesses

Abstract

Epstein-Barr virus has a unique ability to transform human B cells into activated lymphoblasts and establish lymphoblastoid cell lines (LCLs) with infinite proliferative potential in vitro (for review, see Kieff 1996). This process, termed growth transformation or immortalization, is supposed to be a prerequisite for the virus’ ability to establish life-long persistent infection in humans. Since similar signal pathways are activated and similar genes are induced in both EBV-mediated immortalization and antigen-induced activation, it is generally considered that EBV utilizes the normal mechanism of antigen-induced activation to immortalize B lymphocytes. In EBV-immortalized lymphoblastoid cells, viral DNA persists as circular episomes, and 11 viral genes are expressed. This program of EBV gene expression is called latency III (for review, see Rickinson and Kieff 1996). Six of the eleven genes code for EBV nuclear proteins (EBNAs 1, 2, 3A, 3B, 3C, and LP) and three for latent membrane proteins (LMPs 1, 2A, and 2B). The remaining two genes code for the EBV-encoded small RNAs (EBERs 1 and 2), that are not translated into proteins. In addition, a family of extensively spliced messenger (m)RNAs containing the BARF0 open reading frame are transcribed from a region including the BamHl A fragment, but their protein products have not been definitely identified. Genetic analyses using recombinant EBVs so far showed that EBNA2, EBNA3A, EBNA3C, and LMP1 are essential for lymphocyte immortalization Kieff 1996). EBNA1 is required for intracellular persistence of EBV DNA in a plasmid form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot SD, Rowe M, Cadwallader K, Rickinson A, Gordon J, Wang F, Rymo L, Rickinson AB (1990) Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64:2126–2134

    PubMed  CAS  Google Scholar 

  • Alfieri C, Birkenbach M, Kieff E (1991) Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595–608

    Article  PubMed  CAS  Google Scholar 

  • Allday MJ, Crawford DH, Griffin BE (1989) Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70:1755–1764

    Article  PubMed  CAS  Google Scholar 

  • Aman P, Rowe M, Kai C, Finke J, Rymo L, Klein E, Klein G (1990) Effect of the EBNA2 gene on the surface antigen phenotype of transfected EBV-negative B-lymphoma lines. Int J Cancer 45:77–82

    Article  PubMed  CAS  Google Scholar 

  • Artvanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232

    Article  Google Scholar 

  • Cohen J, Wang F, Mannick J, Kieff E (1989) Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA 86:9558–9562

    Article  PubMed  CAS  Google Scholar 

  • Cordier M, Calender A, Billaud M, Zimber U, Rousselet G, Pavlish O, Banchereau J, Tursz T, Bornkamm G, Lenoir GM (1990) Stable transfection of Epstein-Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR-1 genome induces expression of B-cell activation molecules CD21 and CD23. J Virol 64:1002–1013

    PubMed  CAS  Google Scholar 

  • Daibata M, Humphreys RE, Takada K, Sairenji T (1990) Activation of latent Epstein-Barr virus via anti-IgG-triggered, second messenger pathways in the Burkitt’s lymphoma cell line Akata. J Immunol 144:4788–4793

    PubMed  CAS  Google Scholar 

  • Dambaugh T, Wang F, Hennessy K, Woodland E, Rickinson A, Kieff E (1986) Expression of the Epstein-Barr virus nuclear protein 2 in rodent cells. J Virol 59:453–462

    PubMed  CAS  Google Scholar 

  • Fähraeus R, Jansson A, Ricksten A, Sjöblom A, Rymo L (1990) Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proc Natl Acad Sci USA 87:7390–7394

    Article  PubMed  Google Scholar 

  • Fujiwara S, Nitadori Y, Nakamura H, Nagaishi T, Ono Y (1999) Epstein-Barr virus (EBV) nuclear protein 2-induced disruption of EBV latency in the Burkitt’s lymphoma cell line Akata: analysis by tetracycline-regulated expression. J Virol 73:5214–5219

    PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E (1994). The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the Jk recombination signal binding protein. Proc Natl Acad Sci USA 91:7568–7572

    Article  PubMed  CAS  Google Scholar 

  • Grundhoff AT, Kremmer E, TĂĽreci Ă–, Glieden A, Gindorf C, Atz J, Mueller-Lantzsch N, Schubach WH, Grässer FA (1999) Characterization of DP 103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem 274:19136–19144

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B (1989) Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340:393–397

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Iwabuchi K, Ato M, Iwabuchi C, Kajino K, Takami K, Katoh M, Ogasawara K, Good RA, Onoe K (1996) Fgr expression restricted to subpopulation of monocyte/macrophage lineage in resting conditions is induced in various hematopoietic cells after activation or transformation. Microbiol Immunol 40:223–231

    PubMed  CAS  Google Scholar 

  • Henkel T, Ling PD, Hayward SD, Petersen MG (1994). Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein Jk.. Science 265:92–95

    Article  PubMed  CAS  Google Scholar 

  • Hennessy K, Kieff E (1985) A second nuclear protein is encoded by Epstein-Barr virus in latent infection. Science 227:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Höfelmayr H, Strobl LJ, Stein C, Laux G, Marschall G, Bornkamm GW, Zimber-Strobl U (1999) Activated mouse Notch1 transactivates Epstein-Barr virus nuclear antigen 2-regulated viral promoters. J Virol 73:2770–2780

    PubMed  Google Scholar 

  • Hsieh JJ-D, Hayward SD (1995) Masking of the CBF1/RBPJk. transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268:560–563

    Article  PubMed  CAS  Google Scholar 

  • Jayachandra S, Low KG, Thlick A-E, Yu J, Ling PD, Chang Y, Moore PS (1999) Three unrelated viral transforming proteins (vIRF, EBNA2, and El A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors. Proc Natl Acad Sci USA 96:11566–11571

    Article  PubMed  CAS  Google Scholar 

  • Jin XW, Speck SH (1992) Identification of critical cis elements involved in mediating Epstein-Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral Bam HI C promoter. J Virol 66:2846–2852

    PubMed  CAS  Google Scholar 

  • Jochner N, Eick D, Zimber-Strobl U, Pawlita M, Bornkamm GW, Kempkes B (1996) Epstein-Barr virus nuclear antigen 2 is a transcriptional suppressor of the immunoglobulin ÎĽ gene: implications for the expression of the translocated c-myc gene in Burkitt’s lymphoma cells. EMBO J 15:375–382

    PubMed  CAS  Google Scholar 

  • Johannsen E, Koh E, Mosialos G, Tong X, Kieff E, Grossman SR (1995) Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol 69:253–262

    PubMed  CAS  Google Scholar 

  • Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B (1999) The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 73:4481–4484

    PubMed  CAS  Google Scholar 

  • Kempkes B, Spitkovsky D, Jansen-DĂĽrr P, Ellwart JW, Kremmer E, Delecluse H-J, Rottenberger C, Bornkamm GW, Hammerschmidt W (1995) B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J 14:88–96

    PubMed  CAS  Google Scholar 

  • Kempkes B, Zimber-Strobl U, Eissner G, Pawlita M, Falk M, Hammerschmidt W, Bornkamm GW (1996) Epstein-Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein-Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol 77:227–237

    Article  PubMed  CAS  Google Scholar 

  • Kieff E (1996) Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE (eds) Virology, 2nd edn. Lipppincott-Raven, Philadelphia, pp 2343–2396

    Google Scholar 

  • Knutson JC (1990) The level of c-fgr RNA is increased by EBNA2, an Epstein-Barr virus gene required for B-cell immortalization. J Virol 64:2530–2536

    PubMed  CAS  Google Scholar 

  • Lear AL, Rowe M, Kurilla MG, Lee S, Henderson S, Kieff E, Rickinson AB (1992) The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J Virol 66:7461–7468

    PubMed  CAS  Google Scholar 

  • Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E (1991) The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 65:6826–6837

    PubMed  CAS  Google Scholar 

  • Matsunami N, Hamaguchi Y, Yamamoto Y, Kuze K, Kangawa K, Matsuo H, Kawaichi M, Honjo T (1989) A protein binding to the Jk. recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature 342:934–937

    Article  PubMed  CAS  Google Scholar 

  • Miller CL, Longnecker R, Kieff E (1993) Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J Virol 67:3087–3094

    PubMed  CAS  Google Scholar 

  • Mueller-Lantzsch N, Lenoir GM, Sauter M, Takaki K, Bechet J-M, Kuklik-Roos C, Wunderlich D, Bornkamm GW (1985) Identification of the coding region for a second Epstein-Barr virus nuclear antigen (EBNA2) by transfection of cloned DNA fragments. EMBO J 4:1805–1811

    PubMed  CAS  Google Scholar 

  • Peng M, Lundgren E (1992) Transient expression of the Epstein-Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 7:1775–1782

    PubMed  CAS  Google Scholar 

  • Polack A, Hortnagel K, Pajic A, Christoph B, Baier B, Falk M, Mautner J, Geltinger C, Bornkamm GW, Kempkes B (1996) c-myc activation renders proliferation of Epstein-Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci USA 93:10411–10416

    Article  PubMed  CAS  Google Scholar 

  • Rickinson AB, Kieff E (1996) Epstein-Barr virus. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE (eds) Virology, 2nd edn. Lipppincott-Raven, Philadelphia, pp 2397–2446

    Google Scholar 

  • Rowe D, Heston L, Metlay J, Miller G (1985) Identification and expression of a nuclear antigen from the genomic region of the Jijoe strain of Epstein-Barr virus that is missing in its nonimmortalizing deletion mutant, P3HR-1. Proc Natl Acad Sci USA 82:7429–7433

    Article  PubMed  CAS  Google Scholar 

  • Rymo L, Klein G, Ricksten A (1985) Expression of a second Epstein-Barr virus determined nuclear antigen in mouse cells after gene transfer with a cloned fragment of the viral genome. Proc Natl Acad Sci USA 82:3435–3439

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Taniguchi Y, Tamura K, Minoguchi S, Fukuhara T, Strobl LJ, Zimber-Strobl U, Bornkamm GW, Honjo T (1998) Functional replacement of the intracellular region of the Notch 1 receptor by Epstein-Barr virus nuclear antigen 2. J Virol 72:6034–6039

    PubMed  CAS  Google Scholar 

  • Schaefer BC, Strominger JL, Speck SH (1997) Host-cell-determined methylation of specific Epstein-Barr virus promoters regulates the choice between distinct viral latency programs. Mol Cell Biol 17: 364–377

    PubMed  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Tanabe-Tochikura A, Kuroiwa Y, Takada K (1994) Isolation of Epstein-Barr virus-negative cell clones from the EBV-positive Burkitt’s lymphoma line Akata: malignant phenotypes of BL cells are dependent on EBV. J Virol 68:6069–6073

    PubMed  CAS  Google Scholar 

  • Shokett P, Difilippantonio M, Hellman N, Schatz DG (1995) A modified tetracycline-regulated system provides autoregulatory, inducible expression in cultured cells and transgenic mice. Proc Natl Acad Sci USA 92:6522–6526

    Article  Google Scholar 

  • Sinclair AJ, Palmero I, Peters G, Farrell PJ (1994) EBNA2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J 13:3321–3328

    PubMed  CAS  Google Scholar 

  • Sjöblom A, Jansson A, Yang W, LaĂ­n S, Nilsson T, Rymo L (1985) PU box-binding transcription factors and a POU domain protein cooperate in the Epstein-Barr virus (EBV) nuclear antigen 2-induced transactivation of the EBV latent membrane protein 1 promoter. J Gen Virol 76:2679–2692

    Article  Google Scholar 

  • Sjöblom A, Yang W, Palmqvist L, Jannson A, Rymo L (1998) An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein-Barr virus LMP1 gene promoter. J Virol 72:1365–1376

    PubMed  Google Scholar 

  • Struhl G, Adachi A (1998) Nuclear access and action of notch in vivo. Cell 93:649–660

    Article  PubMed  CAS  Google Scholar 

  • Sung NS, Kenney S, Gutsch D, Pagano YS (1991) EBNA2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. J Virol 65:2164–2169

    PubMed  CAS  Google Scholar 

  • Takada K, Horinouchi K, Ono Y, Aya T, Osato T, Takahashi M, Hayasaka S (1991) An Epstein-Barr virus producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes 5:147–156

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Ono Y (1989) Synchronous and sequential activation of the latently infected Epstein-Barr virus genomes. J Virol 63:445–449

    PubMed  CAS  Google Scholar 

  • Thompson EB (1998) The many roles of c-Myc in apoptosis. Annu Rev Physiol 60:575–500

    Article  PubMed  CAS  Google Scholar 

  • Tong X, Wang F, Thut CJ, Kieff E (1995) The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70, but not with TBP. J Virol 69:585–588

    PubMed  CAS  Google Scholar 

  • Törnell J, Farzad S, Espander-Jansson A, Matejka G, Isaksson O, Rymo L (1996) Expression of Epstein-Barr nuclear antigen 2 in kidney tubule cells induces tumors in transgenic mice. Oncogene 12:1521–1528

    PubMed  Google Scholar 

  • Walls D, Perricaudet M (1991) Novel downstream elements upregulate transcription initiated from an Epstein-Barr virus latent promoter. EMBO J 10:143–151

    PubMed  CAS  Google Scholar 

  • Wang F, Gregory CD, Rowe M, Rickinson AB, Wang D, Birkenbach M, Kikutani H, Kishimoto T, Kieff E (1987) Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci USA 84:3452–3456

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Gregory C, Sample C, Row M, Liebowitz D, Murray R, Rickinson A, Kieff E (1990a) Epstein-Barr virus latent membrane protein (LMP1) and Nuclear proteins 2 and 3 C are effectors of phenotypic changes in B lymphocytes: EBNA2 and LMP1 cooperatively induce CD23. J Virol 64: 2309–2318

    PubMed  CAS  Google Scholar 

  • Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E (1990b) Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64:3407–3416

    PubMed  CAS  Google Scholar 

  • Wechsler RJ, Monroe JG (1995) src-family tyrosine kinase p55frg is expressed in murine splenic B cells and is activated in response to antigen receptor cross-linking. J Immunol 154:3234–3244

    PubMed  CAS  Google Scholar 

  • Wu DY, Kalpana GV, Goff SP, Schubach WH (1996) Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol 70:6020–6028

    PubMed  CAS  Google Scholar 

  • Zimber-Strobl U, Suentzenich KO, Laux G, Eick D, Cordier M, Calender A, Billaud M, Lenoir GM, Bornkamm GW (1991) Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J Virol 65:415–423

    PubMed  CAS  Google Scholar 

  • Zimber-Strobl U, Strobl LJ, Meitinger C, Hinrichs R, Sakai T, Furukawa T, Honjo T, Bornkamm GW (1994) Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-Jk., the homologue of Drosophila suppressor of Hairless. EMBO J 13:4973–4982

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujiwara, S. (2001). Epstein-Barr Virus Nuclear Protein 2-Induced Activation of the EBV-Replicative Cycle in Akata Cells: Analysis by Tetracycline-Regulated Expression. In: Takada, K. (eds) Epstein-Barr Virus and Human Cancer. Current Topics in Microbiology and Immunology, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56515-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56515-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62568-8

  • Online ISBN: 978-3-642-56515-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics