Skip to main content

Aerolysin from Aeromonas hydrophila and Related Toxins

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 257))

Abstract

Aeromonads are ubiquitous gram-negative bacteria found in aqueous environments. Some members of the genus are pathogenic for fish, reptiles and cows. In humans, Aeromonas infection is mainly associated with grastrointestinal diseases, but in immuno-compromised individuals infection can lead to septicemia and meningitis (Austin et al. 1996). Aeromonas secretes a variety of virulence factors amongst which aerolysin is the best characterized. Using marker exchange mutagenesis, aerolysin was demonstrated to be required not only for the establishment but also for the subsequent maintenance of systemic infections associated with the bacterium (Chakraborty et al. 1987). Furthermore, specific neutralizing antibodies to aerolysin have been detected in animals surviving Aeromonas infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrami L, van der Goot FG (1999) Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol 147:175–184

    Article  PubMed  CAS  Google Scholar 

  • Abrami L, Fivaz M, Decroly E, Seidah NG, Francois J, Thomas G, Leppla S, Buckley JT, van der Goot FG (1998a) The pore-forming toxin proaerolysin is processed by furin. J Biol Chem 273:32656–32661

    Article  PubMed  CAS  Google Scholar 

  • Abrami L, Fivaz M, Glauser P-E, Parton RG, van der Goot FG (1998b) A pore-forming toxin interact with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J Cell Biol 140:525–540

    Article  PubMed  CAS  Google Scholar 

  • Austin B, Altweg M, Gosling PJ, Joseph SW (1996) The genus Aeromonas. Wiley, Chichester

    Google Scholar 

  • Ballard J, Sokolov Y, Yuan W-L, Kagan BL, Tweten RK (1993) Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol 10:627–634

    Article  PubMed  CAS  Google Scholar 

  • Ballard J, Crabtree J, Roe BA, Tweten RK (1995) The primary structure of Clostridium septicum alphatoxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect Immun 63:340–344

    PubMed  CAS  Google Scholar 

  • Bernheimer AW, Avigad LS, Avigad G (1975) Interactions between aerolysin, erythrocytes, and erythrocyte membranes. Infect Immun 11:1312–1319

    PubMed  CAS  Google Scholar 

  • Brodsky RA, Mukhina GL, Nelson KL, Lawrence TS, Jones RJ, Buckley JT (1999) Resistance of paroxysmal nocturnal hemoglobinuria cells to the glycosylphosphatidylinositol-binding toxin aerolysin. Blood 93:1749–1756

    PubMed  CAS  Google Scholar 

  • Brown RE (1998) Sphingolipid organization: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  • Buckley JT, Halasa LN, Lund KD, Maclntyre S (1981) Purification and some properties of the hemolytic toxin aerolysin. Can J Biochem 59:430–435

    Article  PubMed  CAS  Google Scholar 

  • Buckley JT, Wilmsen HU, Lesieur C, Schultze A, Pattus F, Parker MW, van der Goot FG (1995) Protonation of His-132 promotes oligomerization of the channel-forming toxin aerolysin. Biochemistry 34:16450–16455

    Article  PubMed  CAS  Google Scholar 

  • Cabiaux VJTB, Wattiez R, Ruysschaert J-M, Parker MW, van der Goot FG (1997) Conformational changes in aerolysin during the transition from the water-soluble protoxin to the membrane channel. Biochemistry 36:15224–15232

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty T, Huhle B, Berghauer H, Goebel W (1987) Marker exchange mutagenesis of the aerolysin determinant in Aeromonas hydrophila demonstrates the role of aerolysin in A. hydrophila-associated infections. Infect Immun 55:2274–2280

    PubMed  CAS  Google Scholar 

  • Coelho A, Andrade JR, Vicente AC, Dirita VJ (2000) Cytotoxic cell vacuolating activity from Vibrio cholerae hemolysin. Infect Immun 68:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Cowell S, Aschauer W, Gruber HJ, Nelson KL, Buckley JT (1997) The erythrocyte receptor for the channel-forming toxin aerolysin is a novel glycosylphosphatidylinositol-anchored protein. Mol Microbiol 25:343–350

    Article  PubMed  CAS  Google Scholar 

  • Dalbey RE, Robinson C (1999) Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem Sci 24:17–22

    Article  PubMed  CAS  Google Scholar 

  • Diep DB, Lawrence TS, Ausio J, Howard P, Buckley JT (1998a) Secretion and properties of the large and small lobes of the channel-forming toxin aerolysin. Mol Microbiol 30:341–352

    Article  PubMed  CAS  Google Scholar 

  • Diep DB, Nelson KL, Raja SM, McMaster RW, Buckley JT (1998b) Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J Biol Chem 273:2355–2360

    Article  PubMed  CAS  Google Scholar 

  • Diep DB, Nelson KL, Lawrence TS, Sellman BR, Tweten RK, Buckley JT (1999) Expression and properties of an aerolysin-Clostridium septicum alpha toxin hybrid protein. Mol Microbiol 31:785–794

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MAJ (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112:2799–2809

    PubMed  CAS  Google Scholar 

  • Fivaz M, Vibois F, Pasquali C, van der Goot FG (2000) Analysis of GPI-anchored proteins by two-dimensional gel electrophoresis. Electrophoresis (in press)

    Google Scholar 

  • Fivaz M, Abrami L, van der Goot FG (1999a) Landing on lipid rafts. Trends Cell Biol 9:212–213

    Article  PubMed  CAS  Google Scholar 

  • Fivaz M, Abrami L, van der Goot FG (1999b) Pathogens, toxins and lipid rafts. Protoplasma 212:8–14

    Article  Google Scholar 

  • Fivaz M, Velluz MC, van der Goot FG (1999c) Dimer dissociation of the pore-forming toxin aerolysin precedes receptor binding. J Biol Chem 274:37705–37708

    Article  PubMed  CAS  Google Scholar 

  • Garland WJ, Buckley JT (1988) The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin. Infect Immun 56:1249–1253

    PubMed  CAS  Google Scholar 

  • Gordon VM, Nelson KL, Buckley JT, Stevens VL, Tweten RK, Elwood PC, Leppla SH (1999) Clostridium septicum alpha toxin uses glycosylphosphatidylinositol-anchored protein receptors. J Biol Chem 274:27274–27280

    Article  PubMed  CAS  Google Scholar 

  • Green MJ, Buckley JT (1990) Site-directed mutagenesis of the hole-forming toxin aerolysin — studies on the roles of histidines in receptor binding and oligomerization of the monomer. Biochemistry 29:2177–2180

    Article  PubMed  CAS  Google Scholar 

  • Guilvout I, Hardie KR, Sauvonnet N, Pugsley AP (1999) Genetic dissection of the outer membrane secretin PulD: are there distinct domains for multimerization and secretion specificity? J Bacteriol 181:7212–7220

    PubMed  CAS  Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542

    Article  PubMed  CAS  Google Scholar 

  • Hardie KR, Schulze A, Parker MW, Buckley JT (1995) Vibrio sp. secrete proaerolysin as a folded dimer without the need for disulfide bond formation. Mol Microbiol 17:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Hertle R, Hilger M, Weingardt-Kocher S, Walev I (1999) Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells. Infect Immun 67:817–825

    PubMed  CAS  Google Scholar 

  • Howard SP, Buckley JT (1982) Membrane glycoprotein receptor and hole forming properties of a cytolytic protein toxin. Biochemistry 21:1662–1667

    Article  PubMed  CAS  Google Scholar 

  • Howard SP, Garland WJ, Green MJ, Buckley JT (1987) Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila. J Bacteriol 169:2869–2871

    PubMed  CAS  Google Scholar 

  • Howard SP, Critch J, Bedi A (1993) Isolation and analysis of eight exe genes and their involvement in extracellular protein secretion and outer membrane assembly in Aeromonas hydrophila. J Bacteriol 175:6695–6703

    PubMed  CAS  Google Scholar 

  • Howard SP, Meiklejohn HG, Shivak D, Jahagirdar R (1996) A TonB-like protein and a novel membrane protein containing an ATP-binding cassette function together in exotoxin secretion. Mol Microbiol 22:595–604

    Article  PubMed  CAS  Google Scholar 

  • Jahagirdar R, Howard SP (1994) Isolation and characterization of a second exe operon required for extracellular protein secretion in Aeromonas hydrophila. J Bacteriol 176:6819–6826

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Ohishi K, Takeda J (1997) GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency. J Biochem (Tokyo) 122:251–257

    CAS  Google Scholar 

  • Krause KH, Fivaz M, Monod A, van der Goot FG (1998) Aerolysin induces G-protein activation and Ca2+ release from intracellular stores in human granulocytes. J Biol Chem 273:18122–18129

    Article  PubMed  CAS  Google Scholar 

  • Lesieur C, Frutiger S, Hughes G, Kellner R, Pattus F, van der Goot FG (1999) Increased stability upon heptamerization of the pore-forming toxin aerolysin [in process citation]. J Biol Chem 274:36722–36728

    Article  PubMed  CAS  Google Scholar 

  • Letellier L, Howard SP, Buckley JT (1997) Studies on the energetics of proaerolysin secretion across the outer membrane of Aeromonas species. Evidence for a requirement for both the protonmotive force and ATP. J Biol Chem 272:11109–11113

    Article  PubMed  CAS  Google Scholar 

  • Lu HM, Lory S (1996) A specific targeting domain in mature exotoxin A is required for its extracellular secretion from Pseudomonas aeruginosa. EMBO J 15:429–436

    PubMed  CAS  Google Scholar 

  • MacKenzie CR, Hirama T, Buckley JT (1999) Analysis of receptor binding by the channel-forming toxin aerolysin using surface plasmon resonance [in process citation]. J Biol Chem 274:22604–22609

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible proteinmembrane interactions. Trends Biochem Sci 20:272–276

    Article  PubMed  CAS  Google Scholar 

  • Mitra R, Figueroa P, Mukhopadhyay AK, Shimada T, Takeda Y, Berg DE, Nair GB (2000) Cell vacuolation, a manifestation of the El tor hemolysin of Vibrio cholerae [in process citation]. Infect Immun 68:1928–1933

    Article  PubMed  CAS  Google Scholar 

  • Moniatte M, van der Goot FG, Buckley JT, Pattus F, Van Dorsselaer A (1996) Characterization of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Letts 384:269–272

    Article  CAS  Google Scholar 

  • Nelson KL, Raja SM, Buckley JT (1997) The GPI-anchored surface glycoprotein Thy-1 is a receptor for the channel-forming toxin aerolysin. The J Biol Chem 272:12170–12174

    Article  CAS  Google Scholar 

  • Nelson KL, Brodsky RA, Buckley JT (1999) Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas. Cell Microbiol 1:69–74

    Article  PubMed  CAS  Google Scholar 

  • Parker MW, Buckley JT, Postma JPM, Tucker AD, Leonard K, Pattus F, Tsernoglou D (1994) Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367:292–295

    Article  PubMed  CAS  Google Scholar 

  • Pearson TW, Saya LE, Howard SP, Buckley JT (1982) The use of aerolysin toxin as an aid for visualization of low numbers of African trypanosomes in whole blood. Acta Trop 39:73–77

    PubMed  CAS  Google Scholar 

  • Pugsley AP, Francetic O, Possot OM, Sauvonnet N, Hardie KR (1997) Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in gram-negative bacteria — a review. Gene 192:13–19

    Article  PubMed  CAS  Google Scholar 

  • Quiocho FA (1986) Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem 55:287–315

    Article  PubMed  CAS  Google Scholar 

  • Rossjohn J, Buckley JT, Hazes B, Murzin AG, Read RJ, Parker MW (1997) Aerolysin and pertussis toxin share a common receptor-binding domain. EMBO J 16:3426–3434

    Article  PubMed  CAS  Google Scholar 

  • Rudd PM, Morgan BP, Wormald MR, Harvey DJ, van den Berg CW, Davis SJ, Ferguson MA, Dwek RA (1997) The glycosylation of the complement regulatory protein, human erythrocyte CD59. J Biol Chem 272:7229–7244

    Article  PubMed  CAS  Google Scholar 

  • Russel M (1998) Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 279:485–499

    Article  PubMed  CAS  Google Scholar 

  • Sellman BR, Tweten RK (1997) The propeptide of Clostridium septicum alpha toxin functions as an intramolecular chaperone and is a potent inhibitor of alpha toxin-dependent cytolysis. Mol Microbiol 25:429–440

    Article  PubMed  CAS  Google Scholar 

  • Sheets ED, Lee GM, Simson R, Jacobson K (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36:12449–12458

    Article  PubMed  CAS  Google Scholar 

  • Sousa MV, Richardson M, Fontes W, Morhy L (1994) Homology between the seed cytolysin enterolobin and bacterial aerolysins. J Protein Chem 13:659–667

    Article  PubMed  CAS  Google Scholar 

  • Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647

    PubMed  CAS  Google Scholar 

  • Tschodrich-Rotter M, Kubitscheck U, Ugochukwu G, Buckley J, Peters R (1996) Optical single-channel analysis of the aerolysin pore in erythrocyte membranes. Biophys J 70:723–732

    Article  PubMed  CAS  Google Scholar 

  • van der Goot FG, Lakey JH, Pattus F, Kay CM, Sorokine O, Van Dorsselaer A, Buckley T (1992) Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation. Biochemistry 31:8566–8570

    Article  PubMed  Google Scholar 

  • van der Goot FG, Ausio J, Wong KR, Pattus F, Buckley JT (1993a) Dimerization stabilizes the poreforming toxin aerolysin in solution. J Biol Chem 268:18272–18279

    PubMed  Google Scholar 

  • van der Goot FG, Wong KR, Pattus F, Buckley JT (1993b) Oligomerization of the channel-forming toxin aerolysin precedes its insertion into lipid bilayer. Biochemistry 32:2636–2642

    Article  PubMed  Google Scholar 

  • van der Goot FG, Hardie KR, Parker MW, Buckley JT (1994) The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation. J Biol Chem 269:30496–30501

    PubMed  Google Scholar 

  • Wilmsen HU, Pattus F, Buckley JT (1990) Aerolysin, a hemolysin from Aeromonas hydrophila, forms voltage-gated channels in planar bilayers. J Membr Biol 115:71–81

    Article  PubMed  CAS  Google Scholar 

  • Wilmsen HU, Buckley JT, Pattus F (1991) Site-directed mutagenesis at histidines of aerolysin from Aeromonas hydrophila: a lipid planar bilayer study. Mol Microbiol 5:2745–2751

    Article  PubMed  CAS  Google Scholar 

  • Wilmsen HU, Leonard KR, Tichelaar W, Buckley JT, Pattus F (1992) The aerolysin membrane channel is formed by heptamerization of the monomer. EMBO J 11:2457–2463

    PubMed  CAS  Google Scholar 

  • Wong K, Buckley J (1989) Proton motive force involved in protein transport across the outer membrane of Aeromonas hydrophila. Science 246:654–656

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Crise B, Su B, Hou Y, Rose JK, Bothwell A, Jacobson K (1991) Lateral diffusion of membranespanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J Cell Biol 115:75–84

    Article  PubMed  CAS  Google Scholar 

  • Zitzer A, Zitzer O, Bhakdi S, Palmer M (1999) Oligomerization of Vibrio cholerae cytolysin yields a pentameric pore and has a dual specificity for cholesterol and sphingolipids in the target membrane. J Biol Chem 274:1375–1380

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fivaz, M., Abrami, L., Tsitrin, Y., van der Goot, F.G. (2001). Aerolysin from Aeromonas hydrophila and Related Toxins. In: van der Goot, F.G. (eds) Pore-Forming Toxins. Current Topics in Microbiology and Immunology, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56508-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56508-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62545-9

  • Online ISBN: 978-3-642-56508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics