Skip to main content

Pore-Forming Bacterial Protein Toxins: An Overview

  • Chapter
Pore-Forming Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 257))

Abstract

Among the ca. 325 protein toxins produced by gram-positive and gram-negative bacteria so far identified (Alouf 2000), at least 115 (35%) belong to the group of the so-called membrane-damaging toxins (MDTs). The most characteristic feature of these effectors is to damage or disrupt the cytoplasmic phospholipid bilayer membrane (7–9nm) of appropriate human and (or) animal cells. The impairment of membrane integrity causes osmotic imbalance, reflected by cell swelling due to water influx and dissipation of electrochemical gradients, which may lead to cell lysis and death (Bernheimer 1970; Alouf 1977; Arbuthnott 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrami L, Fivaz M, Glauser P-E, Parton RG, van der Goot FG (1998) A pore-forming toxin interact with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J Cell Biol 140:525–540

    PubMed  CAS  Google Scholar 

  • Alouf JE (1977) Cell membranes and cytolytic toxins. In: Cuatrecasas P (ed) The specificity and action of animal, bacterial and plant toxins. Chapman and Hall, London, pp 210–270

    Google Scholar 

  • Alouf JE (1980) Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmacol Ther 11:661–717

    PubMed  CAS  Google Scholar 

  • Alouf JE (1999) Introduction to the family of the structurally related cholesterol-binding cytolysins (sulfhydryl-activated toxines. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial proteins toxins. Academic, London, pp 443–56

    Google Scholar 

  • Alouf JE (2000) Bacterial protein toxins: an overview. In: Hoist O (ed) Bacterial toxins. Methods and protocols. Humana, Totowa, NJ, pp 1–26

    Google Scholar 

  • Alouf JE, Freer JH (1999) The comprehensive sourcebook of bacterial protein toxines. Academic, London

    Google Scholar 

  • Alouf JE, Palmer M (1999) Streptolysin O. In: Alouf JE, Freer JH (eds) The comprehensive source book of bacterial protein toxins Academic, London, pp 459–473

    Google Scholar 

  • Alouf JE, Georffroy C, Pattus F, Verger R (1984) Surface properties of bacterial sulfhydryl-activated cytolytic toxins. Interaction with monomolecular films of phosphatidylcholine and various sterols. Eur J Biochem 141:205–210

    PubMed  CAS  Google Scholar 

  • Alouf JE, Dufourcq J, Siffert O, Thiaudiere E, Georffroy C (1989) Interaction of staphylococcal deltatoxin and synthetic analogues with erythrocytes and phospholipid vesicles. Biological and physical properties of the amphipathic peptides. Eur J Biochem 183:381–390

    PubMed  CAS  Google Scholar 

  • Arbuthnott JP (1982) Bacterial cytolysins (membranes damaging toxins) In: Cohen L, van Heynigen S (eds) Molecular action of toxins and viruses. Elsevier, New York, pp 107–109

    Google Scholar 

  • Arvand M, Bhakdi S, Dahlback B, Preissner KT (1990) Staphylococcus aureus alphα-toxin attack on human platelets promotes assembly of the prothrombinase complex. J Biol Chem 265:14377–14381

    PubMed  CAS  Google Scholar 

  • Balfanz J, Rautenberg P, Ullmann U (1996) Molecular mechanisms of action of bacterial exotoxins. Zbl Bakt 284:170–206

    CAS  Google Scholar 

  • Bayley H (1997) Toxin structure: part of a hole? Curr Biol 7:R763–R767

    PubMed  CAS  Google Scholar 

  • Bernheimer AW (1970) Cytolytic toxins of bacteria, vol 1. In: Ajl S, Kadis S, Montie TC (eds) Microbial toxins. Academic, New York, pp 183–212

    Google Scholar 

  • Bernheimer AW, Rudy B (1986) Interactions between membranes and cytolytic peptides. Biochim Biophys Acta 864:123–141

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1984) Mechanism of complement cytolysis and the concept of channelforming proteins. Philos Trans R Soc London Ser B 306:311–324

    CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1988) Damage to cell membranes by pore-forming bacterial cytolysins. Prog Allergy 40:1–43

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1991) Alphα-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Muhly M, Korom S, Hugo F (1989) Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alphα-toxin on human monocytes. Infect Immun 57:3512–3519

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Muhly M, Korom S, Schmidt G (1990) Effects of Escherichia coli hemolysin on human monocytes. Cytocidal action and stimulation of interleukin 1 release. J Clin Invest 85:1746–1753

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M, Palmer M (1996) Staphylococcal alphatoxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73–79

    PubMed  CAS  Google Scholar 

  • Billington SJ, Jost BH, Songer JG (2000) Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol Lett 182:197–205

    PubMed  CAS  Google Scholar 

  • Braun V, Focareta T (1991) Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18:115–158

    PubMed  CAS  Google Scholar 

  • Braun V, Hertle R (1999) The family of serration and proteins cytolysins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 349–361

    Google Scholar 

  • Braun JS, Novak R, Gao G, Murray PJ, Shenep JL (1999) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 67:3750–3756

    PubMed  CAS  Google Scholar 

  • Bryant AE, Stevens DL (1996) Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect Immun 64:358–362

    PubMed  CAS  Google Scholar 

  • Buckley AT (1999) The channel-forming toxin aerolysin. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 362–372

    Google Scholar 

  • Coote J (1996) The RTX toxins of gram-negative bacterial pathogens modulators of the host immune response. Rev Med Microbiol 7:53–62

    Google Scholar 

  • Czajkowsky DM, Sheng S, Shao Z (1998) Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. J Mol Biol 276:325–330

    PubMed  CAS  Google Scholar 

  • Derewenda ZS, Martin TW (1998) Structure of the gangrene alphα-toxin: the beauty in the beast. Nat Struct Biol 5:659–662

    PubMed  CAS  Google Scholar 

  • Dobereiner A, Schmid A, Ludwig A, Goebel W, Benz R (1996) The effects of calcium and other polyvalent cations on channel formation by Escherichia coli alpha-hemolysin in red blood cells and lipid bilayer membranes. Eur J Biochem 240:454–460

    PubMed  CAS  Google Scholar 

  • Dobrindt U, Hacker J (1999) Plasmids, phages and pathologicity islands: lesson on the evolution of bacterial toxins. In: Alouf JE, Free JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 3–23

    Google Scholar 

  • Dourmashkin RR, Rosse WF (1966) Morphologic changes in the membranes of red blood cells undergoing hemolysis. Am J Med 41:699–710

    PubMed  CAS  Google Scholar 

  • Dufourcq J, Castano S, Talbot JC (1999) Deltα-toxin related haemolytic toxins and peptidic analogues. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 386–401

    Google Scholar 

  • Ellemor DM, Baird RN, Awad MM, Boyd RL, Rood JI, Emmins JJ (1999) Use of genetically manipulated strains of Clostridium perfringens reveals that both alphα-toxin and thetα-toxin are required for vascular leukocytosis to occur in experimental gas gangrene. Infect Immun 67:4902–4907

    PubMed  CAS  Google Scholar 

  • Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169

    PubMed  CAS  Google Scholar 

  • Freer JH, Birkbeck TH (1982) Possible conformation of delta-lysin, a membrane-damaging peptide of Staphylococcus aureus. J Theor Biol 94:535–540

    PubMed  CAS  Google Scholar 

  • Freer JH, Arbuthnott JP (1983) Toxins of Staphylococcus aureus. Pharmacol. Ther 19:55–106

    CAS  Google Scholar 

  • Frey J (1995) Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 3:257–261

    PubMed  CAS  Google Scholar 

  • Gaillard JL, Berche P, Sansdnetti P (1986) Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52:50–55

    PubMed  CAS  Google Scholar 

  • Gilbert RJ, Rossjohn J, Parker MW, Tweten RK, Morgan PJ, Mitchell TJ, Errington N, Rowe AJ, Andrew PW, Byron O (1998) Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae. J Mol Biol 284:1223–1237

    PubMed  CAS  Google Scholar 

  • Gilbert RJ, Jimenez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655

    PubMed  CAS  Google Scholar 

  • Gilmore MS, Callegan MC, Jett BD (1999) Enterococcus faecalis cytolysin and Bacillus cereus bi-and tricomponent haemolysins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 419–432

    Google Scholar 

  • Goebel W, Kreft J (1997) Cytolysins and the intracellular life of bacteria. Trends Microbiol 5:86–88

    PubMed  CAS  Google Scholar 

  • Gouaux E (1997) Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 7:566–573

    PubMed  CAS  Google Scholar 

  • Gouaux E (1998) Alpha-hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channelforming toxins. J Struct Biol 121:110–122

    PubMed  CAS  Google Scholar 

  • Gouaux E, Hobaugh M, Song L (1997) Alpha-hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Sci 6:2631–2635

    PubMed  CAS  Google Scholar 

  • Grimminger F, Sibelius U, Bhakdi S, Suttorp N, Seeger W (1991) Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils. J Clin Invest 88:1531–1539

    PubMed  CAS  Google Scholar 

  • Hackett SP, Stevens DL (1992) Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O. J Infect Dis 165:879–885

    PubMed  CAS  Google Scholar 

  • Harshman S, Boquet P, Duflot E, Alouf JE, Montecucco C, Papini E (1989) Staphylococcal alphα-toxin: a study of membrane penetration and pore formation. J Biol Chem 14978–14984

    Google Scholar 

  • Henderson B, Poole S, Wilson M (1996) Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev 60:316–341

    PubMed  CAS  Google Scholar 

  • Henderson B, Wilson M, Wren B (1997) Are bacterial exotoxins cytokine network regulators? Trends Microbiol 5:454–458

    PubMed  CAS  Google Scholar 

  • Houldsworth S, Andrew PW, Mitchell TJ (1994) Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1 beta by human mononuclear phagocytes. Infect Immun 62:1501–1503

    PubMed  CAS  Google Scholar 

  • Jacobs T, Darji A, Weiss S, Chakraborty T (1999) Listeriolysin the thiol-activated haemolysin of Listeria monocytogenes. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 511–521

    Google Scholar 

  • Jost BH, Songer JG, Billington SJ (1999) An Arcanobacterium (Actinomyces) pyogenes mutant deficient in production of the pore-forming cytolysin pyolysin has reduced virulence. Infect Immun 67:1723–1728

    PubMed  CAS  Google Scholar 

  • Kaper J, Hacker J (2000) Pathogenicity islands and other mobile virulence elements. ASM, Washington D.C.

    Google Scholar 

  • Kayal S, Lilienbaum A, Poyart C, Memet S, Israel A, Berche P (1999) Listeriolysin O-dependent activation of endothelial cells during infection with Listeria monocytogenes: activation of NF-kappa B and upregulation of adhesion molecules and chemokines. Mol Microbiol 31:1709–1722

    PubMed  CAS  Google Scholar 

  • Köller M, Hensler T, König B, Prévost G, Alouf J, König W (1993) Induction of heat-shock proteins by bacterial toxins, lipid mediators and cytokines in human leukocytes. Zentralbl Bakteriol 278:365–376

    PubMed  Google Scholar 

  • König B, König W (1994) Effect of growth factors on Escherichia coli alpha-hemolysin-induced mediator release from human inflammatory cells: involvement of the signal transduction pathway. Infect Immun 62:2085–2093

    PubMed  Google Scholar 

  • König B, Köller M, Prévost G, Piémont Y, Alouf JE, Schreiner A, König W (1994a) Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, and erythrogenic toxin A): generation of interleukin-8. Infect Immun 62:4831–837

    PubMed  Google Scholar 

  • König B, Ludwig A, Goebel W, König W (1994b) Pore formation by the Escherichia coli alphahemolysin: role for mediator release from human inflammatory cells. Infect Immun 62:4611–4617

    PubMed  Google Scholar 

  • König B, Vasil ML, König W (1997) Role of hemolytic and nonhemolytic phospholipase C from Pseudomonas aeruginosa for inflammatory mediator release from human granulocytes. Int Arch Allergy Immunol 112:115–124

    PubMed  Google Scholar 

  • König B, Drynda A, Ambrosch A, König W (1999) Toxin-induced modulation of inflammatory processes. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 637–656

    Google Scholar 

  • Krause KH, Fivaz M, Monod A, van der Goot FG (1998) Aerolysin induces G-protein activation and Ca2+ release from intracellular stores in human granulocytes. J Biol Chem 273:18122–18129

    PubMed  CAS  Google Scholar 

  • Ladant D, Ullmann A (1999) Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7:172–176

    PubMed  CAS  Google Scholar 

  • Lally ET, Hill RB, Kieba IR, Korostoff J (1999) The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361

    PubMed  CAS  Google Scholar 

  • Launay JM, Alouf JE (1979) Biochemical and ultrastructural study of the disruption of blood platelets by streptolysin O. Biochim Biophys Acta 556:278–291

    PubMed  CAS  Google Scholar 

  • Launay JM, Georffroy C, Costa JL, Alouf JE (1984) Purified-SH-activated toxins (streptolysin O, alveolysin): new tools for determination of platelet enzyme activities. Thromb Res 33:189–196

    PubMed  CAS  Google Scholar 

  • Launay JM, Geoffroy C, Mutel V, Buckle M, Cesura A, Alouf JE, Da Prada M (1992) One-step purification of the serotonin transporter located at the human platelet plasma membrane. J Biol Chem 267:11344–11351

    PubMed  CAS  Google Scholar 

  • Lesieur C, Vecsey-Semjn B, Abrami L, Fivaz M, van der Goot FG (1997) Membrane insertion: the strategy of toxins. Mol Membr Biol 14:45–64

    PubMed  CAS  Google Scholar 

  • Ludwig A, Goebel W (1999) The family of the multigenic encoded RTX toxins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 330–348

    Google Scholar 

  • Mac Farlane MG, Knight BCJG (1941) The biochemistry of bacterial toxins. I. Lecithinase activity of CI. welchii toxins. Biochem J 35:884–902

    Google Scholar 

  • May AK, Sawyer RG, Gleason T, Whitworth A, Pruett TL (1996) In vivo cytokine response to Escherichia coli alpha-hemolysin determined with genetically engineered hemolytic and nonhemolytic E. coli variants. Infect Immun 64:2167–2171

    PubMed  CAS  Google Scholar 

  • Mayer MM (1972) Mechanism of cytolysis by complement. Proc Natl Acad Sci USA 69:2954–2958

    PubMed  CAS  Google Scholar 

  • Menestrina G (2000) Use of Fourier-transformed infrared spectra copy for secondary structure determination of staphylococcal pore-forming toxins. In: Hoist O (ed) Bacterial toxins. Methods and protocols. Humana, Totowa, NJ, pp 115–132

    Google Scholar 

  • Menestrina G, Bashford CL, Pasternak CA (1990) Pore-forming toxins: experiments with S. aureus alphα-toxin, C. perfringens thetα-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28:477–491

    PubMed  CAS  Google Scholar 

  • Menestrina G, Vécsey-Semjén B (1999) Biophysical methods and model membranes for the study of bacterial pore-forming toxins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 287–309

    Google Scholar 

  • Mims C, Dimmock N, Nash A, Stephen J (2000) Mims’ pathogenesis of infectious diseases. Academic, London

    Google Scholar 

  • Mitchell TJ (1999) Pneurolysin: structure, function and role in disease. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial proteins toxins. Academic, London, pp 476–495

    Google Scholar 

  • Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269:25315–25320

    PubMed  CAS  Google Scholar 

  • Morgan PJ, Hyman SC, Rowe AJ, Mitchell TJ, Andrew PW, Saibil HR (1995) Subunit organization and symmetry of pore-forming oligomeric pneumolysin. FEBS Lett. 371:77–80

    PubMed  CAS  Google Scholar 

  • Morgan PJ, Andrew PW, Mitchell TJ (1996) Thiol-activated cytolysins. Rev Med Microbiol 7:221–229

    Google Scholar 

  • Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, Basak AK (1998) Structure of the key toxin in gas gangrene. Nat Struct Biol 5:738–746

    PubMed  CAS  Google Scholar 

  • Nelson KL, Brodsky RA, Buckley JT (1999) Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas. Cell Microbiol 1:69–74

    PubMed  CAS  Google Scholar 

  • Nishibori T, Xiong H, Kawamura I, Arakawa M, Mitsuyama M (1996) Induction of cytokine gene expression by listeriolysin O and roles of macrophages and NK cells. Infect Immun 64:3188–3195

    PubMed  CAS  Google Scholar 

  • Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140

    PubMed  CAS  Google Scholar 

  • Palmer M, Saweljew P, Vulicevic I, Valeva A, Kehoe M, Bhakdi S (1996) Membrane-penetrating domain of streptolysin O identified by cysteine scanning mutagenesis. J Biol Chem 271:26664–26667

    PubMed  CAS  Google Scholar 

  • Parker MW, Buckley JT, Postma JPM, Tucker AD, Leonard K, Pattus F, Tsernoglou D (1994) Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367:292–295

    PubMed  CAS  Google Scholar 

  • Parker MW, van der Goot FG, Buckley JT (1996) Aerolysin-the ins and outs of a channel forming toxin. Mol Microbiol 19:205–212

    PubMed  CAS  Google Scholar 

  • Paton JC (1996) The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae. Trends Microbiol 4:103–106

    PubMed  CAS  Google Scholar 

  • Pedelacq JD, Maveyraud L, Prévost G, Baba-Moussa L, Gonzalez A, Courcelle E, Shepard W, Monteil H, Samama JP, Mourey L (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7:277–287

    PubMed  CAS  Google Scholar 

  • Prévost G (1999) The bi-component staphylococcal leucodidins and gamma-haemolysins (toxins). In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 402–418

    Google Scholar 

  • Rossjohn J, Buckley JT, Hazes B, Murzin AG, Read RJ, Parker MW (1997a) Aerolysin and pertussis toxin share a common receptor-binding domain. EMBO J 16:3426–3434

    PubMed  CAS  Google Scholar 

  • Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997b) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    PubMed  CAS  Google Scholar 

  • Rossjohn J, Gilbert RJ, Crane D, Morgan PJ, Mitchell TJ, Rowe AJ, Andrew PW, Paton JC, Tweten RK, Parker MW (1998) The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J Mol Biol 284:449–461

    PubMed  CAS  Google Scholar 

  • Rossjohn J, Tweten RK, Rood JI, Parker MW (1999) Perfringolysin O. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 496–510

    Google Scholar 

  • Roth JA, Bolin CA, Brogden KA, Minion C, Wannemuehler MJ (1995) Virulence mechanisms in bacterial pathogens. ASM, Washington D.C.

    Google Scholar 

  • Rowe GE, Welch RA (1994) Assays of hemolytic toxins. Meth Enzymol 235:657–667

    PubMed  CAS  Google Scholar 

  • Rubins JB, Charboneau D, Fasching C, Berry AM, Paton JC, Alexander JE, Andrew PW, Mitchell TJ, Janoff EN (1996) Distinct roles for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am J Respir Crit Care Med 153:1339–1346

    PubMed  CAS  Google Scholar 

  • Ruiz N, Wang B, Pentland A, Caparon M (1998) Streptolysin O and adherence synergistically modulate proinflammatory responses of keratinocytes to group A streptococci. Mol Microbiol 27:337–346 Salyers AA, Whitt D (1994) Bacterial pathogenesis: a molecular approach. ASM, Washington D.C.

    PubMed  CAS  Google Scholar 

  • Sato N, Kurotaki H, Watanabe T, Mikami T, Matsumoto T (1998) Use of hemoglobin as an iron source by Bacillus cereus. Biol Pharm Bull 21:311–314

    PubMed  CAS  Google Scholar 

  • Schmiel DH, Miller VL (1999) Bacterial phospholipases and pathogenesis Microbes Infect 1:1103–1112

    CAS  Google Scholar 

  • Schmitt CK, Meysick KC, O’Brien AD (1999) Bacterial toxins: friends or foes? Emerg Infect Dis 5:224–234

    PubMed  CAS  Google Scholar 

  • Sekiya K, Satoh R, Danbara H, Futaesaku Y (1993) A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol 175:5953–5961

    PubMed  CAS  Google Scholar 

  • Sekiya K, Satoh R, Danbara H, Futaesaku Y (1996) Electron microscopic evaluation of a two-step theory of pore formation by streptolysin O. J Bacteriol 178:6998–7002

    PubMed  CAS  Google Scholar 

  • Sellman BR, Kagan BL, Tweten RK (1997) Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum alpha toxin. Mol Microbiol 23:551–558

    PubMed  CAS  Google Scholar 

  • Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for poreforming toxins. Cell 99:293–299

    PubMed  CAS  Google Scholar 

  • Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574

    PubMed  CAS  Google Scholar 

  • Shinoda S (1999) Haemolysins of Vibrio cholerae and other Vibrio species. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 373–385 Sibelius U, Schulz EC, Rose F, Hattar K, Jacobs T, Weiss S, Chakraborty T, Seeger W, Grimminger F (1999) Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect Immun 67:1125–1130

    Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866 Songer JG (1997) Bacterial phospholipases and their role in virulence. Trends Microbiol 5:156–161

    PubMed  CAS  Google Scholar 

  • Staali L, Monteil H, Colin DA (1998) The staphylococcal pore-forming leukotoxins open Ca2+ channels in the membrane of human polymorphonuclear neutrophils. J Membr Biol 162:209–216

    PubMed  CAS  Google Scholar 

  • Stevens DL, Bryant AE (1999) The pathogenesis of shock and tissue injury in clostridial gas gangrene. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 628–636

    Google Scholar 

  • Stevens DL, Tweten RK, Awad MM, Rood JI, Bryant AE (1997) Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J Infect Dis 176:189–195

    PubMed  CAS  Google Scholar 

  • Suttorp N, Fuhrmann M, Tannert-Otto S, Grimminger F, Bhadki S (1993) Pore-forming bacterial toxins potently induce release of nitric oxide in porcine endothelial cells. J Exp Med 178:337–341

    PubMed  CAS  Google Scholar 

  • Tanabe Y, Xiong H, Nomura T, Arakawa M, Mitsuyama M (1999) Induction of protective T cells against Listeria monocytogenes in mice by immunization with a listeriolysin O-negative avirulent strain of bacteria and liposome-encapsulated listeriolysin O. Infect Immun 67:568–575

    PubMed  CAS  Google Scholar 

  • Tang P, Rosenshine I, Cossart P, Finlay BB (1996) Listeriolysin O activates mitogen-activated protein kinase in eucaryotic cells. Infect Immun 64:2359–2361

    PubMed  CAS  Google Scholar 

  • Tatum FM, Briggs RE, Sreevatsan SS, Zehr ES, Ling Hsuan S, Whiteley LO, Ames TR, Maheswaran SK (1998) Construction of an isogenic leukotoxin deletion mutant of Pasteurella haemolytica serotype 1: characterization and virulence. Microb Pathog 24:37–46

    PubMed  CAS  Google Scholar 

  • Thelestam M, Mollby R (1979) Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects of human fibroblasts. Biochim Biophys Acta 557:156–169

    PubMed  CAS  Google Scholar 

  • Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608

    PubMed  CAS  Google Scholar 

  • Titball RW (1999) membrane-damaging and cytotoxic phospholipases. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 311–329

    Google Scholar 

  • Tweten RK (1995) Pore forming toxins in gram positive bacteria. In: Roth JA, Bolin CA, Brogden KA, Minion C, Wannemuehler MJ (eds) Virulence mechanisms of bacterial pathogens. ASM, Washington D.C, pp 207–229

    Google Scholar 

  • Tweten RK, Sellman B (1999) Clostridium septicum pore-forming and lethal x-toxin. In Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 435–442

    Google Scholar 

  • Valeva A, Palmer M, Bhakdi S (1997) Staphylococcal alphα-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochemistry 36:13298–13304

    PubMed  CAS  Google Scholar 

  • van der Goot FG (2000) Plasticity of the transmembrane P-barrel. Trends Microbiol 8:89–90

    PubMed  Google Scholar 

  • Vandana S, Raje M, Krishnasastry MV (1997) The role of the amino terminus in the kinetics and assembly of alpha-hemolysin of Staphylococcus aureus. J Biol Chem 272:24858–24863

    PubMed  CAS  Google Scholar 

  • Walker B, Bayley H (1995) Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal a-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification. J Biol Chem 270:23065–23071

    PubMed  CAS  Google Scholar 

  • Weiglein I, Goebel W, Troppmair J, Rapp UR, Demuth A, Kuhn M (1997) Listeria monocytogenes infection of HeLa cells results in listeriolysin O-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiol Lett 148:189–195

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alouf, J.E. (2001). Pore-Forming Bacterial Protein Toxins: An Overview. In: van der Goot, F.G. (eds) Pore-Forming Toxins. Current Topics in Microbiology and Immunology, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56508-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56508-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62545-9

  • Online ISBN: 978-3-642-56508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics