Skip to main content

Vegetatives Nervensystem bei Vertebraten und Invertebraten

  • Chapter
Neurowissenschaft

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1351 Accesses

Zusammenfassung

Alle Organismen agieren in der Umwelt mit ihrer Skelettmuskulatur, die vom somatosensorischen und motorischen System gesteuert wird. Programme und Strategien für diese Steuerung sind bei Wirbeltieren in Rückenmark, Hirnstamm, Hypothalamus und Großhirn repräsentiert. Meldungen aus der Umwelt erhält das ZNS über die verschiedenen sensorischen Systeme. Diese motorischen Aktivitäten sind nur möglich, wenn die inneren Bedingungen im Körper, das sog. innere Milieu, in engen Grenzen konstant bleiben und die Versorgung der Organe mit Sauerstoff und Nährstoffen in jedem Moment gewährleistet ist. Der Gleichgewichtszustand, der bei der Konstanthaltung des inneren Milieus eintritt, wird als Homöostase bezeichnet. Die Prozesse der Anpassung der Organe sind integrative Funktionen der vegetativen und neuroendokrinen Systeme und werden vom ZNS aktiv ausgelöst [2, 24]. Die peripheren Korrelate der präzisen vegetativen Regulationen sind bei Wirbeltieren die funktionell verschiedenen vegetativen motorischen Endstrecken des Sympathikus und Parasympathikus und das Darmnervensystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher (Vertebraten)

  1. Burnstock G, Hoyle CHV (Ed)(1992) Autonomic neuroeffector mechanisms. Harwood Academic, Chur

    Google Scholar 

  2. Cannon WB (1939) The wisdom of the body, 2nd edn. Norton, New York

    Google Scholar 

  3. Cervero F, Morrison JFB (eds)(1986) Visceral sensation. Prog Brain Res 67

    Google Scholar 

  4. Eckert R, Randall D, Augustine G (1993) Tierphysiologie. 2. Aufl. Thieme, Stuttgart

    Google Scholar 

  5. Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  6. Langley JN (1921) The autonomic nervous system. Part 1. Heffer, Cambridge

    Google Scholar 

  7. Loewy AD, Spyer KM (eds)(1990) Central regulation of autonomic functions. Oxford Univ Press, Oxford

    Google Scholar 

  8. Maggi CA (ed) (1993) Nervous control of the urogenital tract. Harwood Academic, Chur

    Google Scholar 

  9. McLachlan EM (ed)(1995) Autonomic ganglia. Harwood Academic, Chur

    Google Scholar 

  10. Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin (Zoolophysiology. vol. 3)

    Book  Google Scholar 

  11. Nilsson S, Holmgren S (eds)(1994) Comparative physiology and evolution of the autonomic nervous system. Harwood Academic, Chur

    Google Scholar 

  12. Persson PB, Kirchheim HR (eds)(1991) Baroreceptor reflexes. Springer, Berlin

    Google Scholar 

  13. Ritter S, Ritter RC, Barnes CD (eds) (1992) Neuroanatomy and physiology of abdominal vagal afferents. CRC Press, Boca Raton Ann Arbor

    Google Scholar 

  14. Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment. 3. Auflage, Cambridge Univ Press, Cambridge

    Google Scholar 

Einzel- und Übersichtsarbeiten (Vertebraten)

  1. Burnett AL, Lowenstein CJ, Bredt DS, Chang TS, Snyder SH (1992) Nitric oxide: a physiologic mediator of penile erection. Science 257: 401–403

    Article  PubMed  CAS  Google Scholar 

  2. Hirst GDS, Bramich NJ, Edwards FR, Klemm M (1992) Transmission of autonomic neuroeffector junctions. TINS 15: 40–46

    PubMed  CAS  Google Scholar 

  3. Hirst GDS, Edwards FR (1989) Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69: 546–604

    PubMed  CAS  Google Scholar 

  4. Jänig W (1985) Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol 102: 119–213

    Article  PubMed  Google Scholar 

  5. Jänig W (1996) Spinal cord reflex organization of sympathetic systems Prog Brain Res 107: 43–77

    Google Scholar 

  6. Jänig W (1996) Regulation of the lower urinary tract. In: Greger R, Windhorst U (eds) Comprehensive Human Physiology — From Cellular Mechanisms to Integration. Springer, Heidelberg New York, pp 1611–1624

    Google Scholar 

  7. Jänig W (1996) Behavioral and neurovegetative components of reproductive functions. In: Greger R, Windhorst U (eds) Comprehensive Human Physiology — From Cellular Mechanisms to Integration. Springer, Heidelberg New York, pp 2253–2263

    Google Scholar 

  8. Jänig W (2000) Peripheres und zentrales vegetatives Nervensystem. In: Fdlsch UR, Kochsiek K, Schmidt RF (Hrsg) Pathophysiologie. Springer, Berlin, S 481–496

    Chapter  Google Scholar 

  9. Jänig W (2000) Vegetatives Nervensystem. In: Schmidt RF, Thews G, Lang F (Hrsg) Physiologie des Menschen; 28. Aufl, Springer, Berlin Heidelberg, pp 340–369

    Chapter  Google Scholar 

  10. Jänig W, Habler H-J (1999) Organization of the autonomic nervous system: Structure and function. In: Handbook of Clinical Neurology vol 74(30)(edby Vinken, PJ, Bruyn, GW), The Autonomic Nervous System, Part I: Normal Functions (ed by Appenzeller O), Chapter 1. Elsevier Science B.V, Amsterdam, pp 1–52

    Google Scholar 

  11. Jänig W, McLachlan EM (1987) Organization of lumbar spinal outflow to the distal colon and pelvic organs. Physiol Rev 67: 1332–1404

    PubMed  Google Scholar 

  12. Jänig W, McLachlan EM (1992) Characteristics of function-specific pathways in the sympathetic nervous system. TINS 15: 475–481

    PubMed  Google Scholar 

  13. Jänig W, McLachlan EM (1999) Neurobiology of the autonomic nervous system. In: Mathias CJ, Bannister R (eds) Autonomic failure. Oxford Univ Press, Oxford, 4th edn, pp 3–15

    Google Scholar 

  14. Luff SE, McLachlan EM (1989) Frequency of neuromuscular junctions on arteries of different dimensions in the rabbit, guinea pig and rat. Blood Vessels 26: 95–106

    PubMed  CAS  Google Scholar 

  15. Luff SE, McLachlan EM, Hirst GDS (1987) An ultrastructural analysis of the sympathetic neuromuscular junctions on arterioles of the submucosa of the guinea pig ileum. J comp Neurol 257: 578–595.

    Article  PubMed  CAS  Google Scholar 

  16. Swanson LW (1987) The hypothalamus. In: Bjorklund A, Hokfelt T, Swanson LW (eds) Integrated systems of the CNS, part I: hypothalamus, hippocampus, amygdala, retina. Elsevier, Amsterdam (Handbook of chemical neuroanatomy), pp 1–124

    Google Scholar 

  17. Swanson LW (1991) Biochemical switching in hypothalamic circuits mediating responses to stress. Prog Brain Res 87:181–200

    Article  PubMed  CAS  Google Scholar 

  18. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: integration of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6:275–325

    Article  Google Scholar 

Einzel-und Übersichtsarbeiten (Invertebraten)

  1. Agricola H, Eckert M, Ude J, Birkenbeil H, Penzlin H (1985) The distribution of a proctolin-like immunoreactive material in the terminal ganglion of the cockroach, Periplaneta americana L. Cell Tissue Res 239:203–209

    Article  Google Scholar 

  2. Ali DW (1997) The aminergic and peptidergic innervation of insect salivary glands. J Exp Biol 200: 1941–1949

    PubMed  CAS  Google Scholar 

  3. Bräunig P (1990) The mandibular ganglion — a new peripheral ganglion of the locust. J Exp Biol 148:313–324

    Google Scholar 

  4. Bräunig P (1999) Structure of identified neurons innervating the lateral cardiac nerve cords in the migratory locust, Locusta migratoria migratorioides (Reiche & Fairmaire)(Orthoptera, Acrididae). Int J Insect Morphol Embryol 28: 81–89

    Article  Google Scholar 

  5. Brodfuehrer PD, Friesen WO (1986) Initiation of swimming activity by trigger neurons in the leech suboesophageal ganglion. I. Output connections of Trl and Tr2. J Comp Physiol [A] 159:489–502

    Article  CAS  Google Scholar 

  6. Brownell PH, Ligman SH (1992) Mechanisms of circulatory homeostasis and response in Aplysia. Experientia 48:818–827

    Article  PubMed  CAS  Google Scholar 

  7. Calabrese RL, Angstadt JD, Arbas EA (1989) A neural oscillator based on reciprocal inhibition. In: Carew TJ, Kelley DB (eds) Perspectives in Neural Systems and Behavior. Liss, New York, pp 33–50

    Google Scholar 

  8. Calabrese RL, Arbas EA (1989) Central and peripheral oscillators generating heartbeat in the leech Hirudo medicinalis. In: Jacklet JW(ed) Neuronal and Cellular Oscillators. Decker, New York, pp 231–267

    Google Scholar 

  9. Carew TJ, Kandel ER (1977) Inking in Aplysia californica. I. Neural circuit of an all-or-none behavioral response. J Neurophysiol 40:692–707

    PubMed  CAS  Google Scholar 

  10. Hill RB (ed)(1987) Cardiovascular control in mollusca (Multi-author review). Experientia 43: 953–997

    Google Scholar 

  11. Hill RB (ed)(1992) Control of circulation in invertebrates (Multi-author review). Experientia 48: 797–858

    Google Scholar 

  12. Hill RB (ed) (1992) Phylogenetic models in functional coupling of the central nervous system and the cardiovascular system. Karger, Basel (Molecular Comparative Physiology, vol 11)

    Google Scholar 

  13. Horvitz HR, Chalfie M, Trent C, Evans PD (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014

    Article  PubMed  CAS  Google Scholar 

  14. Jones JC (1977) The circulatory system of insects. Thomas, Springfield

    Google Scholar 

  15. Kater SB, Murphy AD, Rued JR (1978) Control of the salivary glands of Helisoma by identified neurones. J Exp Biol 72:91–106

    PubMed  CAS  Google Scholar 

  16. Koester J, Koch UT (1987) Neural control of the circulary system of Aplysia. Experientia 43: 972–980

    Article  PubMed  CAS  Google Scholar 

  17. Leake LD, Crowe R, Burnstock G (1986) Localisation of substance P-, somatostatin-, vasoactive intestinal polypeptide-and met-enkephalin-immunoreactive nerves in the peripheral and central nervous systems of the leech (Hirudo medicinalis). Cell Tissue Res 243:345–351

    Article  Google Scholar 

  18. Lent CM, Dickinson MH, Marshall CG (1989) Serotonin and leech feeding behavior — obligatory neuromodulation. Amer Zool 29:1241–1254

    CAS  Google Scholar 

  19. Marshall CG, Lent CM (1988) Excitability and secretory activity in the salivary gland cells of jawed leeches (Hirudinea: Gnathobdellida). J Exp Biol 137:89–105

    PubMed  CAS  Google Scholar 

  20. Mercier AJ, Orchard I, Schmoeckel A (1991) Catecholaminergic neurons supplying the hindgut of the crayfish Procambarus clarkii. Can J Zool 69:2778–2785

    Article  CAS  Google Scholar 

  21. Raes H, Verbeke M (1994) Light and electron microscopical study of two types of endocrines cell in the midgut of the adult worker honeybee (Apis mellifera). Tissue Cell 26:223–230

    Article  PubMed  CAS  Google Scholar 

  22. Rosen SC, Weiss KR, Goldstein RS, Kupfermann I (1989) The role of a modulatory neuron in feeding and satiation in Aplysia: Effects of lesioning the serotonergic metacerebral cells. J Neurosci 9:1562–1578

    PubMed  CAS  Google Scholar 

  23. Schachtner J, Bräunig P (1993) The activity pattern of identified neurosecretory cells during feeding behaviour of the locust. J Exp Biol 185:287–303

    PubMed  CAS  Google Scholar 

  24. Schwartz JH, Shkolnik LJ (1981) The giant serotonergic neuron of Aplysia: a multitargeted nerve cell. J Neurosci 1:606–619

    PubMed  CAS  Google Scholar 

  25. Selverston AI, Moulins M (1986) The Crustacean Stomatogastric System. A Model for the Study of Central Nervous Systems. Springer, Berlin

    Google Scholar 

  26. Skelton M, Alevizos A, Koester J (1992) Control of the cardiovascular system of Aplysia by identified neurons. Experientia 48:809–817

    Article  PubMed  CAS  Google Scholar 

  27. Wenning A (1999) Sensory effectors make sense. TINS 22: 550–555

    PubMed  CAS  Google Scholar 

  28. Wenning A, Cahill MA, Hoeger U, Calabrese RL (1993) Sensory and neurosecretory innervation of leech nephridia is accomplished by a single neurone containing FMRFamide. J Exp Biol 182:81–96

    PubMed  CAS  Google Scholar 

  29. Yazawa T, Kuwasawa K (1992) Intrinsic and extrinsic neural and neurohumoral control of the decapod heart. Experientia 48:834–840

    Article  CAS  Google Scholar 

  30. Zerbst-Boroffka I (1973) Osmo-und Volumenregulation bei Hirudo medicinalis nach Nahrungsaufnahme. J Comp Physiol 84:185–204

    Article  Google Scholar 

  31. Zitnan D, Sauman I, Sehnal F (1993) Peptidergic innervation and endocrine cells of insect midgut. Arch Insect Biochem Physiol 22:113–132

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jänig, W., Bräunig, P. (2001). Vegetatives Nervensystem bei Vertebraten und Invertebraten. In: Dudel, J., Menzel, R., Schmidt, R.F. (eds) Neurowissenschaft. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56497-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56497-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62534-3

  • Online ISBN: 978-3-642-56497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics