Skip to main content

Muskeln und Motilität

  • Chapter
Neurowissenschaft

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1335 Accesses

Zusammenfassung

Motilität ist eine an nahezu alien Zellen beobachtbare Funktion. Der Begriff umfaßt sämtliche zellulären Bewegungsformen, angefangen bei der intrazellulären Zytoplasmaströmung, die durch Transport von Organellen an Aktinfilamenten oder an Mikrotubuli entsteht, über die Fortbewegung von Einzellern durch Formänderungen der ganzen Zelle (amöboide Bewegung) oder von Zellfortsätzen (Zilien und Flagellen) bis hin zur Fortbewegung vielzelliger Organismen mit Hilfe von Muskeln, die am Skelettsystem angreifen. Auch Volumen- und Formänderungen von Hohlorganen gehören dazu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Bagshaw C (1993) Muscle contraction, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  2. Bloom W, Fawcett DW (1968) A textbook of histology, 11th edn. Saunders, Philadelphia

    Google Scholar 

  3. Carlson FD, Wilkie DR (1974) Muscle physiology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  4. Darnell J, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  5. Eckert R, Randall D, Augustine G (1993) Tierphysiologie. Thieme, Stuttgart

    Google Scholar 

  6. Grell KG (1973) Protozoology. Springer, Berlin

    Book  Google Scholar 

  7. Huxley AF (1980) Reflections on muscle. Liverpool Univ Press, Liverpool

    Google Scholar 

  8. Jerusalem F, Zierz S (1991) Muskelerkrankungen. Thieme, Stuttgart

    Google Scholar 

  9. Rüegg JC (1992) Calcium in muscle contraction. Springer, Berlin

    Book  Google Scholar 

  10. Squire JM (1981) The structural basis of muscular contraction. Plenum, New York

    Book  Google Scholar 

Einzel- und Übersichtsarbeiten

  1. Baba SA, Hiramoto Y (1970) A quantitative analysis of ciliary movement by means of high speed microcinematography. J Exp Biol 52:645–690

    Google Scholar 

  2. Brenner B (1988) Effects of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci USA 85:3265–3269

    Article  PubMed  CAS  Google Scholar 

  3. Brenner B (1990) Muscle mechanics and biochemical kinetics. In: Squire JM (ed) Molecular mechanisms of muscular contraction. Macmillan, London, pp 77–149

    Google Scholar 

  4. Brenner B, Yu LC, Chalovich JM (1991) Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci USA 88:5739–5743

    Article  PubMed  CAS  Google Scholar 

  5. Brenner B, Yu LC (1993) Structural changes in the actomyosin cross-bridges associated with force generation. Proc Natl Acad Sci USA 90:5252–5256

    Article  PubMed  CAS  Google Scholar 

  6. Cooke R (1986) The mechanism of muscle contraction. CRC Crit Rev Biochem 21:53–118

    Article  PubMed  CAS  Google Scholar 

  7. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368:113–118

    Article  PubMed  CAS  Google Scholar 

  8. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol (Lond) 184:170–192

    CAS  Google Scholar 

  9. Haselgrove JC (1973) X-ray evidence for the conformational changes in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harb Symp Quant Biol 37:341–352

    Article  CAS  Google Scholar 

  10. Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST, Bloom GS (1989) Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56:867–878

    Article  PubMed  CAS  Google Scholar 

  11. Huxley AF, Niedergerke R (1954) Interference microscopy of living muscle fibres. Nature 173:971–973

    Article  PubMed  CAS  Google Scholar 

  12. Huxley AF, Simmons RM (1971) Proposed mechanism for force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  13. Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    Article  PubMed  CAS  Google Scholar 

  14. Huxley HE (1973) Structural changes in the actin-and myosin-containing filaments during contraction. Cold Spring Harb Symp Quant Biol 37:361–376

    Article  CAS  Google Scholar 

  15. Huxley HE, Hanson J (1954) Changes in the crossstriations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  16. Jahn TL, Votta J J (1972) Locomotion of protozoa. Annu Rev Fluid Mech 4:93–116

    Article  Google Scholar 

  17. Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  PubMed  CAS  Google Scholar 

  18. Melzer W, Herrmann-Frank A, Lüttgau HC (1995) The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1241:59–116

    Article  PubMed  Google Scholar 

  19. Metzger JM, Moss RL (1990) Calcium-sensitive crossbridge transmission in mammalian fast and slow muscle fibers. Science 247:1088–1090

    Article  PubMed  CAS  Google Scholar 

  20. Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75:33–55

    Article  PubMed  CAS  Google Scholar 

  21. Peachey LD (1965) The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J Cell Biol 25:209–231

    Article  PubMed  Google Scholar 

  22. Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  PubMed  CAS  Google Scholar 

  23. Podolsky RJ, Teicholz LE (1970) The relation between calcium and contraction kinetics in skinned muscle fibres. J Physiol (Lond) 211:19–35

    CAS  Google Scholar 

  24. Pollard TD, Doberstein SK, Zot HG (1991) Myosin-1. Annu Rev Physiol 53:653–681

    Article  PubMed  CAS  Google Scholar 

  25. Pringle JWS (1967) The contractile mechanism of insect fibrillar muscle. Prog Biophys 17:1–60

    Article  CAS  Google Scholar 

  26. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  PubMed  CAS  Google Scholar 

  27. Rayment I, Rypniewski WR, Schmidt-Blase K, Smith R, Tomchick DR, Benning MM, Winkelman DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  PubMed  CAS  Google Scholar 

  28. Schröder RR, Manstein DJ, Jahn W, Holden H, Rayment I, Holmes KC, Spudich JA (1993) Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin SI. Nature 364:171–174

    Article  PubMed  Google Scholar 

  29. Shroer TA, Sheetz MP (1991) Functions of microtubule-based motors. Annu Rev Physiol 53:629–652

    Article  Google Scholar 

  30. Smith CA, Rayment I (1996) X-ray structure of the Magnesium (II) · ADP · Vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35:5404–5417

    Article  PubMed  CAS  Google Scholar 

  31. Tamm SL, Horridge GA (1970) The relation between the orientation of the central fibrils and the direction of beat in cilia of Opalina. Proc R Soc Lond [Biol] 175:219–233

    Article  Google Scholar 

  32. Tsien RY (1989) Fluorescent probes of cell signalling. Annu Rev Neurosci 12:227–253

    Article  PubMed  CAS  Google Scholar 

  33. Vallee RB, Wall JS, Paschal BM, Sheptner HS (1988) Microtubule-associated protein 1C from brain is a twoheaded cytosolic dynein. Nature 332:561–563

    Article  PubMed  CAS  Google Scholar 

  34. Wakabayashi K, Tokunaga M, Kohno I, Sugimoto Y, Hamanaka T, Takezawa Y, Wakabayashi T, Amemiya Y (1992) Small-angle synchrotron X-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science 258:443–447

    Article  PubMed  CAS  Google Scholar 

  35. Warner FD, Satir P (1974) The structural basis of ciliary bend formation. J Cell Biol 63:35–63

    Article  PubMed  CAS  Google Scholar 

  36. Wessells NK (1971) How living cells change shape. Sci Am 225:76–82

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rüdel, R., Brenner, B. (2001). Muskeln und Motilität. In: Dudel, J., Menzel, R., Schmidt, R.F. (eds) Neurowissenschaft. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56497-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56497-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62534-3

  • Online ISBN: 978-3-642-56497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics