Skip to main content

Neurohormonale Systeme bei Invertebraten

  • Chapter
Neurowissenschaft

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1330 Accesses

Zusammenfassung

Die neurosekretorischen Zellen der Invertebraten haben mit denen der Vertebraten die Eigenschaft gemeinsam, sich mit bestimmten Farbstoffen (Chrom-Hämatoxylin-Phloxin, Paraldehydfuchsin) mehr oder weniger selektiv anzufärben. Durch die Anwendung dieser Färbetechniken gelang E. Scharrer 1928 als erstem die Entdeckung von sekretorischen Neuronen im Hypothalamus von Fischen [40]. Wenig später wurden solche Zellen auch im Pars intercerebralis-Corpus cardiacum-System von Insekten beschrieben. Elektronenmikroskopisch sind diese Zellen durch die Anwesenheit neurosekretorischer Elementargranula charakterisiert, die oft in dichter Packung in den Zellen vorliegen und die sich durch ihre Größe (100–400 nm) und meist durch höhere Elektronendichte von den kleineren Transmittervesikeln der typischen Neuronen unterscheiden. Diese Elementargranula enthalten Peptide, was Bargmann (1968) dazu veranlaßte, den Begriff peptiderges Neuron zu prägen [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Carlisle D, Knowles F (1959) Endocrine control in crustaceans. Cambridge Univ Press. London

    Google Scholar 

  2. Coast G, Webster SG (1998) Recent advances in arthropod endocrinology. Cambridge Univ Press, Cambridge (Soc for Exp Biol Series, vol. 65)

    Google Scholar 

  3. Downer RGH, Laufer H. (eds) (1988): Endocrinology of insects. New York. Liss. (Invertebrate endocrinology, vol 1)

    Google Scholar 

  4. Gupta AP (ed) (1983): Neurohemal organs of arthropods. Thomas, Springfield

    Google Scholar 

  5. Homberg U (1994) Distribution of neurotransmitters in the insect brain. Fischer, Stuttgart (Fortschritt der Zoologie Bd. 40)

    Google Scholar 

  6. Kobayashi H (ed) (1987) Atlas of endocrine organs, vertebrates and invertebrates, Kodansha, Tokyo

    Google Scholar 

  7. Laufer H, Downer RGH (eds) (1988) Endocrinology of selected invertebrates. Liss, New York (Invertebrate endocrinology, vol 2)

    Google Scholar 

  8. Maddrell SHP, Nordman J J (1979) Neurosecretion. Blackie, Glasgow

    Google Scholar 

  9. Raabe M (1989) Recent developments in insect neurohormones. Plenum, New York

    Book  Google Scholar 

  10. Spindler KD (1997) Vergleichende Endokrinologie. Thieme, Stuttgart New York

    Google Scholar 

  11. Thorndyke MC, Goldsworthy GJ (eds) (1988) Neurohormones in invertebrates. Cambridge Univ Press, Cambridge ( Soc for Exp Biol Seminar Series, vol 33)

    Google Scholar 

Einzel- und Ubersichtsdarstellungen

  1. Andrew, RD, Saleuddin ASM (1978) Structure and innervation of a crustacean neurosecretory cell. Can J Zool 56: 423–43

    Article  Google Scholar 

  2. Bargmann W, Lindner E, Andres KH (1968) fiber Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone. Untersuchungen am Zwischenlappen der Katze. Z Zellforsch 77: 282–298

    Article  Google Scholar 

  3. Baudry-Partiaoglou N (1987) Diversity of neurohormonal release sites in insects: neurohemal areas associated with peripheral neurosecretory cells in Periplaneta americana and Locusta migratoria. Int J Insect Morphol Embryol 16: 295–307

    Article  Google Scholar 

  4. Beltz BS, Kravitz EA (1987) Physiological identification, morphological analysis, and development of identified serotonin-proctolin containing neurons in the lobster ventral nerve cord. J Neurosci 7: 533–546

    PubMed  CAS  Google Scholar 

  5. Bicker G, Menzel R (1989) Chemical codes for the control of behavior in arthropods. Nature 337, 33–39

    Article  PubMed  CAS  Google Scholar 

  6. Conn PJ, Kaczmarek L (1989) The bag cells neuron of Aplysia. Mol Neurobiol 3, 237–273

    Article  PubMed  CAS  Google Scholar 

  7. Cooke IM, Stuenkel EL (1985) Electrophysiology of invertebrate neurosecretory cells. In: Poisner N, Trifaro L (eds.) The electrophysiology of the secretory cells. Elsevier, Amsterdam, pp 115–164

    Google Scholar 

  8. Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Bliss DE (ed) The biology of Crustacea, Vol 3. Academic, New York pp. 206–290.

    Google Scholar 

  9. De Loof A., Schoofs L (1990) Homologies between the aminoacid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comp Biochem Physiol 95, 459–468

    Article  Google Scholar 

  10. Dircksen H, Keller R (1988) Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide, in the nervous system of the shore crab, Carcinus maenas. Cell Tissue Res 254: 347–360

    Article  Google Scholar 

  11. Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust. Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell Tissue Res 263: 439–457

    Article  Google Scholar 

  12. Gade G (1997) The explosion of structural information on insect neuropeptides. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm CH (eds) progress in the chemistry of organic natural products 71: 1–128

    Google Scholar 

  13. Gade G, Hoffmann KH, Spring JH (1997) Hormonal regulation in insects: facts, gaps and future directions. Physiol Rev 77: 963–1032

    PubMed  CAS  Google Scholar 

  14. Grimmelikhuijzen JP, Leviev I, Carstensen K (1996) Peptides in the nervous system of cuidarians: structure, function and biosynthesis. Int Rev Cytol 167: 37–89

    Article  PubMed  CAS  Google Scholar 

  15. Hökfelt T et al (1986) Neurons with multiple messengers with special reference to neuroendocrine systems. Recent Prog Horm Res 42:1–70

    PubMed  Google Scholar 

  16. Ichikawa T (1991) Architecture of cerebral neurosecretory cell systems in the silkworm Bombyx mori. J Exp Biol 161: 217–237

    Google Scholar 

  17. Keller R (1992) Crustacean neuropeptides: structures, functions and comparative aspects. Experientia 48: 439–448

    Article  PubMed  CAS  Google Scholar 

  18. Kobierski LA, Beltz BS, Trimmer BA, Kravitz EA (1987) FMRFamide-like peptides of Homarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. J Comp Neurol 266, 1–15

    Article  PubMed  CAS  Google Scholar 

  19. Konings PNM, Vullings HGB, Kok OJM. Diederen JHB, Jansen WF (1989) The innervation of the corpus cardiacum of Locusta migratoria: a neuroanatomical study with the use of lucifer yellow. Cell Tissue Res 258: 301–308

    Article  Google Scholar 

  20. Kravitz EA (1988) Hormonal control of behaviour: amines and the biasing of behavioural output in lobsters. Science 241: 1775–1781

    Article  PubMed  CAS  Google Scholar 

  21. Mangerich S, Keller R, Dircksen H (1986) Immuncytochemical identification of structures containing putative red pigment-concentrating hormone in two species of decapod crustaceans. Cell Tissue Res 245: 377–386

    Article  CAS  Google Scholar 

  22. Muneoka Y, Takahashi T, Kobayashi M, Ikeda T, Minakata H, Nomoto K (1994) Phylogenetic aspects of structure and action of molluscan neuropeptides. In: Davey KG, Peter RE, Tobe SS (eds) Perspectives in comparative endocrinology. Nat Res Counc of Canada, Ottawa 109–118

    Google Scholar 

  23. Nassel DR (1993) Neuropeptides in the insect brain: a review Cell Tissue Res 273, 1–29

    Article  CAS  Google Scholar 

  24. O’Brien M, Katahira EJ, Flanagan RT, Arnold LW, Haughton G, Bollenbacher WE (1988) A monoclonal antibody to the insect prothoracicotropic hormone. J Neurosci 8(9) 3247–3257

    PubMed  Google Scholar 

  25. Orchard I (1982) Octopamin in insects: neurotransmitter, neurohormone, and neuromodulator. Canad J Zool 60, 659–669

    Article  CAS  Google Scholar 

  26. Orchard I., Belanger JH., Lange AB (1989) Proctolin: a review with emphasis on insects. J Neurobiol 20, 470–496

    Article  PubMed  CAS  Google Scholar 

  27. O’shea M., Schaffer M (1985) Neuropeptide function: the invertebrate contribution. Annu Rev Neurosci 8, 171–198

    Article  CAS  Google Scholar 

  28. Sauman I, Reppert SM (1996) Molecular characterization of prothoracicotropic hormone (PTTH) from the giant silkmoth Anthelma pernyi: developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Dev Biol 178: 418–429

    Article  PubMed  CAS  Google Scholar 

  29. Scharrer E (1928) Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische). Z Vergl Physiol 7: 1–38

    Article  Google Scholar 

  30. Scheller RH, Kaldany R-R, Kreiner T, Mahon AC, Nambu JR, Schaefer M, Taussig R (1984) Neuropeptides: mediators of behavior in Aplysia. Science 225, 1300

    Article  PubMed  CAS  Google Scholar 

  31. Schoofs L, Van den Broeck J, De Loof, A (1993) The myotropic peptides of Locusta migratoria: structures, distribution, functions and receptors. Insect Biochem Molec Biol 23, 859–881

    Article  CAS  Google Scholar 

  32. Siwicki, KK., Bishop CA (1986) Mapping of proctolinlike immunoreactivity in the nervous system of lobster and crayfish. J Comp Neurol 243: 435–453

    Article  PubMed  CAS  Google Scholar 

  33. Stuenkel EL, Cooke IM (1988) Electrophysiological characteristics of peptidergic nerve terminals correlated with secretion. Curr Top Neuroendocrinol 9: 125–149

    Google Scholar 

  34. Truman JW, Copenhaver PF (1990) The larval eclosion hormone neurones in Manduca sexta: identification of the brain-proctodeal neurosecretory system. J Exp Biol 147: 457–470

    Google Scholar 

  35. Veelaert D, Schoofs L, De Loof A (1998) Peptidergic control of the corpus cardiacum-corpora allata complex of locusts. Int Rev Cytol 182: 249–302

    Article  PubMed  CAS  Google Scholar 

  36. Veenstra JA (1987) Diversity in neurohemal organs for homologous neurosecretory cells in different insect species as demonstrated by immunocytochemistry with an antiserum to molluscan cardioexcitatory peptide. Neurosci Lett 73: 33–37

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keller, R. (2001). Neurohormonale Systeme bei Invertebraten. In: Dudel, J., Menzel, R., Schmidt, R.F. (eds) Neurowissenschaft. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56497-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56497-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62534-3

  • Online ISBN: 978-3-642-56497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics