Mechanical, Thermal, Chemical and Electrochemical Surface Treatment of Titanium

  • Jukka Lausmaa
Part of the Engineering Materials book series (ENG.MAT.)


In the production of medical devices or components of titanium, the material - usually a rod or sheet - is first shaped into the geometrical shape of the product. The shape is of course determined by the intended use and function of the component or device which in turn defines certain criteria with regard to, e.g., mechanical strength, weight, size, electrical properties or aesthetics. For medical devices intended to function in direct contact with living tissues, the biological response resulting from interactions with the material is an additional important factor. As discussed in several other chapters in this book, there now exists clear evidence that the biological performance of a material is influenced to a great extent by its surface properties. In fact, it is generally accepted that the outermost atomic/molecular layers of the material can play a key role. For this and several other reasons, surface processing has assumed increasing importance for research, development and production of medical devices. This is especially true for titanium and its alloys, which probably are the most extensively studied materials when in comes to surfaces in biomedical applications.


Titanium Alloy Simulated Body Fluid Oxide Thickness Titanium Surface Titanium Implant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad M, Gawronski D, Blum J, Goldberg J, Gronowicz G (1999) Differential response of human osteoblast-like cells to commercially pure (cp) titanium grades 1 and 4. J Biomed Mater Res 46(1):121–131CrossRefGoogle Scholar
  2. 2.
    Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snetivy D, Nolte LP (1999) Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45(2):75–83CrossRefGoogle Scholar
  3. 3.
    Könönen M, Hormia M, Kivilahti J, Hautaniemi J, Thesleff I (1992) Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium. J Biomed Mater Res 26:1325–1341CrossRefGoogle Scholar
  4. 4.
    Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE (1994) Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology Biomaterials 15(13):1062–1074Google Scholar
  5. 5.
    Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE (1996) Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17(6):605–616CrossRefGoogle Scholar
  6. 6.
    Li DH, Liu BL, Zou JC, Xu KW (1999) Improvement of osseointegration of titanium dental implants by a modified sandblasting surface treatment: an in vivo interfacial biomechanics study. Implant Dent 8(3):289–294CrossRefGoogle Scholar
  7. 7.
    Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Jr., Dean DD, Cochran DL, Boyan BD (1995) Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 29:389–401CrossRefGoogle Scholar
  8. 8.
    Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T (1999) The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials 20(5):49–500CrossRefGoogle Scholar
  9. 9.
    Ungersböck A, Perren SM, Pohler O (1994) Comparison of the tissue reaction to implants made of beta titanium alloy and pure titanium. Experimental study on rabbits. J Mater Sci: Mater Med 5:788–792CrossRefGoogle Scholar
  10. 10.
    Nygren H, Eriksson C, Lausmaa J (1997) Adhesion and activation of platelets and polymor-phonuclear granulocyte cells at TiO2 surfaces. J Lab Clin Med 129(1):35–46CrossRefGoogle Scholar
  11. 11.
    Oji MO, Wood JV, Downes S (1999) Effects of surface-treated cp Ti and Ti6A14V alloy on the initial attachment of human osteoblasts. J Mater Sci: Mater Med 10:869–872CrossRefGoogle Scholar
  12. 12.
    Kasemo B, Lausmaa J (1986) Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocompat 2:335–380Google Scholar
  13. 13.
    Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Materials 9:115–134CrossRefGoogle Scholar
  14. 14.
    Henrich VE, Cox PA (1994) The Surface Science of Metal Oxides. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Baleani M, Viceconti M, Toni A (2000) The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif Organs 24(4):296–299CrossRefGoogle Scholar
  16. 16.
    Cabrini M, Cigada A, Rondelli G, Vicentini B (1997) Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6A14V alloy in simulated physiological solution. Biomaterials 18(11):783–787CrossRefGoogle Scholar
  17. 17.
    Cochran DL (1999) A comparison of endosseous dental implant surfaces. J Periodontol 70(12):1523–1539CrossRefGoogle Scholar
  18. 18.
    Darvell BW, Samman N, Luk WK, Clark RK, Tideman H (1995) Contamination of titanium castings by aluminium oxide blasting. J Dent 23(5):319–322CrossRefGoogle Scholar
  19. 19.
    Degasne I, Basle MF, Demais V, Hure G, Lesourd M, Grolleau B, Mercier L, Chappard D (1999) Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int 64(6):499–507CrossRefGoogle Scholar
  20. 20.
    Feighan JE, Goldberg VM, Davy D, Parr JA, Stevenson S (1995) The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. J Bone Joint Surg Am 77(9):1380–1395Google Scholar
  21. 21.
    Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjorting-Hansen E (1995) Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 29(10):1223–1231CrossRefGoogle Scholar
  22. 22.
    Hacking SA, Bobyn JD, Tanzer M, Krygier JJ (1999) The osseous response to corundum blasted implant surfaces in a canine hip model. Clin Orthop 364:240–253CrossRefGoogle Scholar
  23. 23.
    Kern M, Thompson VP (1994) Effects of sandblasting and silica-coating procedures on pure titanium. J Dent 22(5):300–306CrossRefGoogle Scholar
  24. 24.
    Papadopoulos T, Tsetsekou A, Eliades G (1999) Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur J Prosthodont Restor Dent 7(1):15–21Google Scholar
  25. 25.
    Piattelli A, Manzon L, Scarano A, Paolantonio M, Piattelli M (1998) Histologic and histo-morphometric analysis of the bone response to machined and sandblasted titanium implants: an experimental study in rabbits. Int J Oral Maxillofac Implants 13(6):805–810Google Scholar
  26. 26.
    Taborelli M, Jobin M, Francois P, Vaudaux P, Tonetti M, Szmukler-Moncler S, Simpson JP, Descouts P (1997) Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) Surface characterization. Clin Oral Implants Res 8(3):208–216CrossRefGoogle Scholar
  27. 27.
    Taira Y, Matsumura H, Yoshida K, Tanaka T, Atsuta M (1998) Influence of surface oxidation of titanium on adhesion. J Dent 26(l):69–73CrossRefGoogle Scholar
  28. 28.
    Watanabe I, Kurtz KS, Kabcenell JL, Okabe T (1999) Effect of sandblasting and silicoating on bond strength of polymer-glass composite to cast titanium. J Prosthet Dent 82(4):462–467CrossRefGoogle Scholar
  29. 29.
    Wennerberg A, Albrektsson T, Lausmaa J (1996) Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of A12O3. J Biomed Mater Res 30(2):251–260CrossRefGoogle Scholar
  30. 30.
    Wennerberg A, Albrektsson T, Johansson C, Andersson B (1996) Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 17(1): 15–22CrossRefGoogle Scholar
  31. 31.
    Wong M, Eulenberger J, Schenk R, Hunziker E (1995) Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 29(12):1567–1575CrossRefGoogle Scholar
  32. 32.
    Pypen CMJM, Plenk H, Jr, Ebel MF, Svagera R, Wernisch J (1997) Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. J Mater Sci: Mater Med 8(12):781–784CrossRefGoogle Scholar
  33. 33.
    Wennerberg A, Albrektsson T, Andersson B (1993) Design and surface characteristics of 13 commercially available oral implant systems. Int J Oral Maxillofac Implants 8:622–633Google Scholar
  34. 34.
    Keller JC, Stanford CM, Wightman JP, Draughn RA, Zaharias R (1994) Characterizations of titanium implant surfaces III. J Biomed Mater Res 28(8):939–946CrossRefGoogle Scholar
  35. 35.
    Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(l):55–63CrossRefGoogle Scholar
  36. 36.
    Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6A1-4V with different pretreatments. J Mater Sci: Mater Med 10(l):35–46CrossRefGoogle Scholar
  37. 37.
    Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7:302–310Google Scholar
  38. 38.
    Valagao Amadeu do Serro AP, Fernandes AC, de Jesus Vieira Saramago B, Norde W (1999) Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects. J Biomed Mater Res 46(3):376–381CrossRefGoogle Scholar
  39. 39.
    Wen HB, Liu Q, de Wijn JR, de Groot K, Cui FZ (1998) Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. J Mater Sci: Mater Med 9(3):121–128CrossRefGoogle Scholar
  40. 40.
    Baker D, London RM, O’Neal R (1999) Rate of pull-out strength gain of dual-etched titanium implants: a comparative study in rabbits. Int J Oral Maxillofac Implants 14(5):722–728Google Scholar
  41. 41.
    Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D (1998) Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histo-metric study in the canine mandible. J Biomed Mater Res 40(1):1–11CrossRefGoogle Scholar
  42. 42.
    Klokkevold PR, Nishimura RD, Adachi M, Caputo A (1997) Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Oral Implants Res 8(6):442–447CrossRefGoogle Scholar
  43. 43.
    Kim HM, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T (1999) Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res 45(2):100–107CrossRefGoogle Scholar
  44. 44.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci: Mater Med 8(6):341–347CrossRefGoogle Scholar
  45. 45.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32(3):409–417CrossRefGoogle Scholar
  46. 46.
    Kim DG, Shin MJ, Kim KH, Hanawa T (1999) Surface treatments of titanium in aqueous solutions containing calcium and phosphate ions. Biomed Mater Eng 9(2):89–96Google Scholar
  47. 47.
    Nishiguchi S, Kato H, Fujita H, Kim HM, Miyaji F, Kokubo T, Nakamura T (1999) Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments. J Biomed Mater Res 48(5):689–696CrossRefGoogle Scholar
  48. 48.
    Yan WQ, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T (1997) Bonding of chemically treated titanium implants to bone. J Biomed Mater Res 37(2):267–275CrossRefGoogle Scholar
  49. 49.
    Yan WQ, Nakamura T, Kawanabe K, Nishigochi S, Oka M, Kokubo T (1997) Apatite layer-coated titanium for use as bone bonding implants. Biomaterials 18(17):1185–1190CrossRefGoogle Scholar
  50. 50.
    ASTM Standard B600 (1997) Standard guide for Descaling and cleaning titanium and titanium alloy surfaces. Annual Book of ASTM Standards, Vol. 2.04. American Society for Testing and Materials, Philadelphia, PA, pp 6–8,Google Scholar
  51. 51.
    Lee TM, Chang E, Yang CY (1998) Surface characteristics of Ti6A14V alloy: effect of materials, passivation and autoclaving. J Mater Sci: Mater Med 9(8):439–448CrossRefGoogle Scholar
  52. 52.
    Lee TM, Chang E, Yang CY (2000) A comparison of the surface characteristics and ion release of Ti6A14 and heat-treated Ti6A14V. J Biomed Mater Research 50:499–511CrossRefGoogle Scholar
  53. 53.
    Ong JL, Prince CW, Lucas LC (1995) Cellular response to well-characterized calcium phosphate coatings and titanium surfaces in vitro. J Biomed Mater Res 29(2): 165–172CrossRefGoogle Scholar
  54. 54.
    Smith DC, Pilliar RM, Chernecky R (1991) Dental implant materials. I. Some effects of pre-parative procedures on surface topography. J Biomed Mater Res 25(9):1045–1068CrossRefGoogle Scholar
  55. 55.
    Browne M, Gregson PJ, West RH (1996) Characterization of titanium alloy implant surfaces with improved dissolution resistance. J Mater Sci: Mater Med 7:323–329CrossRefGoogle Scholar
  56. 56.
    Effah EAB, Bianco PD, Ducheyne P (1995) Crystal structure of the surface oxide layer on titanium and its changes arising from immersion. J Biomed Mater Res 29:73–80CrossRefGoogle Scholar
  57. 57.
    Browne M, Gregson PJ (1994) Surface modification of titanium alloy implants. Biomaterials 15:894–898CrossRefGoogle Scholar
  58. 58.
    Lowenberg BF, Lugowski S, Chipman M, Davies JE (1994) ASTM-F86 passivation increases trace element release from Ti6A14V into culture medium. J Mater Res: Mater Med 5: 467–472CrossRefGoogle Scholar
  59. 59.
    Sodhi RNS, Weninger A, Davies JE, Sreenivas K (1991) X-ray photoelectron spectroscopic comparison of sputtered Ti, Ti6A14V, and passivated bulk metals for use in cell culture techniques. J Vac Sci Technol. A9:1329–1333Google Scholar
  60. 60.
    Ong JL, Lucas LC, Raikar GN, Connatser R, Gregory JC (1995) Spectroscopic characterization of passivated titanium in a physiologic solution. J Mater Sci: Mater Med 6:113–119CrossRefGoogle Scholar
  61. 61.
    Callen BW, Lowenberg BF, Lugowski S, Sodhi RNS, Davies JE (1995) Nitric acid passivation of Ti6A14V reduces thickness of surface oxide layer and increases trace element release. J Biomed Mater Res 29:279–290CrossRefGoogle Scholar
  62. 62.
    Kilpadi DV, Raikar GN, Liu J, Lemons JE, Vohra Y, Gregory JC (1998) Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses. J Biomed Mater Res 40(4):646–659CrossRefGoogle Scholar
  63. 63.
    Kilpadi DV, Lemons JE, Liu J, Raikar GN, Weimer JJ, Vohra Y (2000) Cleaning and heat-treatment effects on unalloyed titanium implant surfaces. Int J Oral Maxillofac Implants 15(2):219–230Google Scholar
  64. 64.
    Hazan R, Brener R, Oron U (1993) Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 14(8):570–574CrossRefGoogle Scholar
  65. 65.
    Radegran G, Lausmaa J, Mattsson L, Rolander U, Kasemo B (1991) Preparation of ultra-thin oxide windows on titanium for TEM analysis. J Electron Microsc Tech 19(1):99–106CrossRefGoogle Scholar
  66. 66.
    Ellingsen JE, Pinholt EM (1995) Pretreatment of titanium implants with lanthanum ions alters the bone reaction. J Mater Sci: Mater Med 6:125–129CrossRefGoogle Scholar
  67. 67.
    Fujishiro Y, Sato N, Uchida S, Sato T (1998) Coating of CaTiO3 on titanium substrates by hydrothermal reactions using calcium-ethylene diamine tetra acetic acid chelate. J Mater Sci: Mater Med 9(6):363–367CrossRefGoogle Scholar
  68. 68.
    Hanawa T, Kon M, Ukai H, Murakami K, Miyamoto Y, Asaoka K (1997) Surface modifications of titanium in calcium-ion-containing solutions. J Biomed Mater Res 34(3):273–278CrossRefGoogle Scholar
  69. 69.
    Hanawa T, Ito M (1992) Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surf Sci 55:269–276CrossRefGoogle Scholar
  70. 70.
    Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12:767–774CrossRefGoogle Scholar
  71. 71.
    Ellingsen JE (1995) Pretreatment of titanium implants with fluoride improves their retention in bone. J Mater Sci: Mater Med 6:749–753CrossRefGoogle Scholar
  72. 72.
    Li P, Ducheyne P (1998) Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res 41(3):341–348CrossRefGoogle Scholar
  73. 73.
    Shirkhanzadeh M, Sims S (1997) Immobilization of calcium phosphate nano-clusters into alkoxy-derived porous TiO2 coatings. J Mater Sci: Mater Med 8(10):595–601CrossRefGoogle Scholar
  74. 74.
    Ban S, Maruno S (1995) Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials 16(13):977–981CrossRefGoogle Scholar
  75. 75.
    Walivaara B, Lundstrom I, Tengvall P (1993) An in vitro study of H2O2-treated titanium surfaces in contact with blood plasma and a simulated body fluid. Clin Mater 12(3):141–148CrossRefGoogle Scholar
  76. 76.
    Pan J, Thierry D, Leygraf C (1994) Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. J Biomed Mater Res 28(1):113–122CrossRefGoogle Scholar
  77. 77.
    Pan J, Thierry D, Leygraf C (1996) Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: blue coloration and clinical relevance. J Biomed Mater Res 30(3):393–402CrossRefGoogle Scholar
  78. 78.
    Pan J (1996) Oxide Film Characterization by Means of Electrochemical Impedance Spectroscopy and Surface Analysis. Ph.D. thesis, Department of Materials Science and Engineering, StockholmGoogle Scholar
  79. 79.
    Pan J, Liao H, Leygraf C, Thierry D, Li J (1998) Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res 40(2):244–256CrossRefGoogle Scholar
  80. 80.
    Tengvall P, Lundstrom I, Sjoqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10(3): 166–175CrossRefGoogle Scholar
  81. 81.
    Tengvall P, Elwing H, Sjoqvist L, Lundstrom I, Bjursten LM (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10(2):118–120CrossRefGoogle Scholar
  82. 82.
    Ohtsuki C, Iida H, Hayakawa S, Osaka A (1997) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35(1):39–47CrossRefGoogle Scholar
  83. Suzuki R, Frangos JA (2000) Inhibition of inflammatory species by titanium surfaces. Clin Orthop (372):280–289Google Scholar
  84. 84.
    Bjursten LM, Emanuelsson L, Ericson LE, Thomsen P, Lausmaa J, Mattsson L, Rolander U, Kasemo B (1990) Method for ultrastructural studies of the intact tissue-metal interface. Biomaterials 11(8):596–601CrossRefGoogle Scholar
  85. 85.
    Ask M, Lausmaa J, Kasemo B (1988) Preparation and surface spectroscopic characterization of oxide films on Ti6A14V. Appl Surf Sci 35:283–301CrossRefGoogle Scholar
  86. 86.
    Ask M, Rolander U, Lausmaa J, Kasemo B (1990) Microstructure and morphology of surface oxide films on Ti-6Al-4V. J Mater Res 5:1662–1667CrossRefGoogle Scholar
  87. 87.
    Larsson C (1997) The Interface Between Bone and Metals With Different Surface Properties. Ph.D. thesis, Institute of Anatomy and Cell Biology, GöteborgGoogle Scholar
  88. 88.
    Lausmaa J, Kasemo B, Mattsson H, Odelius H (1990) Multi-technique surface spectroscopic characterization of electropolished and anodized Ti. Appl Surf Sci 45: 189–200CrossRefGoogle Scholar
  89. 89.
    Lausmaa J (1991) Surface Oxides on Titanium: Preparation, Characterization and Biomaterial Applications. Ph.D. thesis, Department of Physics, GöteborgGoogle Scholar
  90. 90.
    Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P (1994) Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials 15(10):827–834CrossRefGoogle Scholar
  91. 91.
    Baro AM, Garcia N, Miranda R, Vazquez L, Aparicio C, Olive J, Lausmaa J (1986) Characterization of surface roughness in titanium dental implants measured with scanning tunnelling microscopy at atmospheric pressure. Biomaterials 7(6):463–466CrossRefGoogle Scholar
  92. 92.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25(7):889–902CrossRefGoogle Scholar
  93. 93.
    Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30(2):145–155CrossRefGoogle Scholar
  94. 94.
    Olin H, Aronsson BO, Kasemo B, Lausmaa J, Rodahl M (1992) Scanning tunneling micros-copy of oxidized titanium surfaces in air. Ultramicroscopy 42-44:567–571CrossRefGoogle Scholar
  95. 95.
    Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Nicoli Aldini N, Torricelli P, Vicentini B (1999) In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials 20(17): 1587–1594CrossRefGoogle Scholar
  96. 96.
    Jorgenson DS, Centeno JA, Mayer MH, Topper MJ, Nossov PC, Mullick FG, Manson PN (1999) Biologic response to passive dissolution of titanium craniofacial microplates. Biomaterials 20(7):675–682CrossRefGoogle Scholar
  97. 97.
    Takebe J, Itoh S, Ariake T, Shioji H, Shioyama T, Ishibashi K, Ishizawa H (1998) The effect on immunocytes of anodic oxide titanium after hydrothermal treatment. J Biomed Mater Res 42(2):272–277CrossRefGoogle Scholar
  98. 98.
    Serruys Y, Sakout T, Gorse D (1993) Anodic oxidation of titanium in 1 M H2SO4, studied by Rutherford backscattering. Surface Sci 282:279–287CrossRefGoogle Scholar
  99. 99.
    Schreckenbach JP, Marx G, Schlottig F, Textor M, Spencer ND (1999) Characterization of anodic spark-converted titanium surfaces for biomedical applications. J Mater Sci: Mater Med 10(8):453–457CrossRefGoogle Scholar
  100. 100.
    Lausmaa J (1996) Surface spectroscopic characterization of titanium implant materials. J Electron Spectr Related Phenom 81:343–361CrossRefGoogle Scholar
  101. 101.
    Shirkhanzadeh M (1992) Electrochemical preparation of protective oxide coatings on titanium surgical alloys. J Mater Sci: Mater Med 3:322–325CrossRefGoogle Scholar
  102. 102.
    Shirkhanzadeh M (1995) XRD and XPS characterization of superplastic TiO2 coatings prepared on Ti6A14V surgical alloy by an electrochemical method. J Mater Sci: Mater Med 6:206–210CrossRefGoogle Scholar
  103. 103.
    Dunn DS, Raghavan S, Volz RG (1993) Gentamicin sulfate attachment and release from anodized Ti-6Al-4V orthopedic materials. J Biomed Mater Res 27(7):895–900CrossRefGoogle Scholar
  104. 104.
    Dunn DS, Raghavan S, Volz RG (1994) Ciprofloxacin attachment to porous-coated titanium surfaces. J Appl Biomater 5(4):325–331CrossRefGoogle Scholar
  105. 105.
    Ishizawa H, Ogino M (1995) Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29:65–72CrossRefGoogle Scholar
  106. 106.
    Lausmaa J, Mattsson L, Rolander U, Kasemo B (1986) Chemical composition and morphology of titanium surface oxides. MRS Symp Proc. 55:351–359Google Scholar
  107. 107.
    McAlarney ME, Skalak R, Kim S, Neugroschl D, Machlin ES (1991) TEM immunogold staining of C3 from plasma onto titanium oxides. J Biomed Mater Res 25(7):845–864CrossRefGoogle Scholar
  108. 108.
    Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M (1996) Cytocompatibility of Ti-6A1-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17(9):929–940CrossRefGoogle Scholar
  109. 109.
    Vargas E, Baier RE, Meyer AE (1992) Reduced corrosion of CP Ti and Ti-6A1-4V alloy endosseous dental implants after glow-discharge treatment: a preliminary report. Int J Oral Maxillofac Implants 7(3):338–344Google Scholar
  110. 110.
    Kawahara D, Ong JL, Raikar GN, Lucas LC, Lemons JE, Nakamura M (1996) Surface characterization of radio-frequency glow discharged and autoclaved titanium surfaces. Int J Oral Maxillofac Implants ll(4):435–442Google Scholar
  111. 111.
    Sauberlich S, Klee D, Richter EJ, Hocker H, Spiekermann H (1999) Cell culture tests for assessing the tolerance of soft tissue to variously modified titanium surfaces. Clin Oral Implants Res 10(5):379–393CrossRefGoogle Scholar
  112. 112.
    Czarnowska E, Wierzchon T, Maranda-Niedbala A, Karczmarewicz E (2000) Improvement of titanium alloy for biomedical applications by nitriding and carbonitriding processes under glow discharge conditions. J Mater Sci: Mater Med 11(2):73-81CrossRefGoogle Scholar
  113. 113.
    Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures. J Biomed Mater Res 22(A2 Suppl):145–158CrossRefGoogle Scholar
  114. 114.
    Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35(l):49–73CrossRefGoogle Scholar
  115. 115.
    Smith DC, Pilliar RM, Metson JB, Mclntyre NS (1991) Dental implant materials. II. Preparative procedures and surface spectroscopic studies. J Biomed Mater Res 25(9):1069–1084CrossRefGoogle Scholar
  116. 116.
    Kilpadi DW, Lemons JE (1994) Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 28:1419–1425CrossRefGoogle Scholar
  117. 117.
    Thierry B, Tabrizian M, Savadogo O, Yahia LH (2000) Effects of sterilization processes on NiTi alloy: Surface characterization. J Biomed Mater Res 49:88–98CrossRefGoogle Scholar
  118. 118.
    Buchanan RA, Rigney ED, Jr., Williams JM (1987) Ion implantation of surgical Ti-6A1-4V for improved resistance to wear-accelerated corrosion. J Biomed Mater Res 21(3):355–366CrossRefGoogle Scholar
  119. 119.
    Buchanan RA, Rigney ED, Jr., Williams JM (1987) Wear-accelerated corrosion of Ti-6A1-4V and nitrogen-ion-implanted Ti-6A1-4V: mechanisms and influence of fixed-stress magnitude. J Biomed Mater Res 21(3):367–377CrossRefGoogle Scholar
  120. 120.
    Zitter H, Plenk H, Jr. (1987) The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21(7):881–896CrossRefGoogle Scholar
  121. 121.
    Rostlund T, Albrektsson B, Albrektsson T, McKellop H (1989) Wear of ion-implanted pure titanium against UHMWPE. Biomaterials 10(3):176–181CrossRefGoogle Scholar
  122. 122.
    Buchanan RA, Lee IS, Williams JM (1990) Surface modification of biomaterials through noble metal ion implantation. J Biomed Mater Res 24(3):309–318CrossRefGoogle Scholar
  123. 123.
    Rieu J, Pichat A, Rabbe LM, Chabrol C, Robelet M (1990) Deterioration mechanisms of joint prosthesis materials. Several solutions by ion implantation surface treatments. Biomaterials 11:51–54Google Scholar
  124. 124.
    Lausmaa J, Röstlund T, McKellop H (1990) A surface spectroscopic study of nitrogen ion-implanted Ti and Ti-6A1-4V wear against UHMWPE. Surf Interface Anal 15:328–336CrossRefGoogle Scholar
  125. 125.
    Rostlund T, Thomsen P, Bjursten LM, Ericson LE (1990) Difference in tissue response to nitrogen-ion-implanted titanium and c.p. titanium in the abdominal wall of the rat. J Biomed Mater Res 24(7):847–860CrossRefGoogle Scholar
  126. 126.
    McKellop HA, Rostlund TV (1990) The wear behavior of ion-implanted Ti-6A1-4V against UHMW polyethylene. J Biomed Mater Res 24(11): 1413–1425CrossRefGoogle Scholar
  127. 127.
    Rieu J, Pichat A, Rabbe LM, Rambert A, Chabrol C, Robelet M (1991) Ion implantation effects on friction and wear of joint prosthesis materials. Biomaterials 12(2):139–143CrossRefGoogle Scholar
  128. 128.
    Pilliar RM (1991) Modern metal processing for improved load-bearing surgical implants. Biomaterials 12(2):95–100CrossRefGoogle Scholar
  129. 129.
    Torrisi L (1996) Ion implantation and thermal nitridation of biocompatible titanium. Biomed Mater Eng 6(5):379–388Google Scholar
  130. 130.
    Lee DH, Park B, Saxena A, Serene TP (1996) Enhanced surface hardness by boron implantation in Nitinol alloy. J Endod 22(10):543–546CrossRefGoogle Scholar
  131. 131.
    Leitao E, Barbosa MA, de Groot K (1997) XPS characterization of surface films formed on surface-modified implant materials after cell-culture. J Mater Sci: Mater Med 8(7):423–426CrossRefGoogle Scholar
  132. 132.
    Howlett CR, Zreiqat H, Wu Y, McFall DW, McKenzie DR (1999) Effect of ion modification of commonly used orthopedic materials on the attachment of human bone-derived cells. J Biomed Mater Res 45(4):345–354CrossRefGoogle Scholar
  133. 133.
    Ichikawa T, Hanawa T, Ukai H, Murakami K (2000) Three-dimensional bone response to commercially pure titanium, hydroxyapatite, and calcium-ion-mixing titanium in rabbits. Int J Oral Maxillofac Implants 15(2):231–238Google Scholar
  134. 134.
    Wennerberg A (1996) On Surface Roughness and Implant Incorporation. Ph.D. thesis, Department of Handicap Research, GöteborgGoogle Scholar
  135. 135.
    Henry PJ (1987) Comparative surface analysis of two osseointegrated implant systems. Int J Oral Maxillofac Implants 2(l):23–27Google Scholar
  136. 136.
    Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 44:133–146CrossRefGoogle Scholar
  137. 137.
    Binon PP, Weir DJ, Marshall SJ (1992) Surface analysis of an original Brånemark implant and three related clones. Int J Oral Maxillofac Implants 7(2):168–175Google Scholar
  138. 138.
    Ameen AP, Short RD, Johns R, Schwach G (1993) The surface analysis of implant materials. 1. The surface composition of a titanium dental implant material. Clin Oral Implants Res 4(3):144–150CrossRefGoogle Scholar
  139. 139.
    Sutherland DS, Forshaw PD, Allen GC, Brown IT, Williams KR (1993) Surface analysis of titanium implants. Biomaterials 14(12):893–899CrossRefGoogle Scholar
  140. 140.
    Esposito M, Lausmaa J, Hirsch JM, Thomsen P (1999) Surface analysis of failed oral titanium implants. J Biomed Mater Res 48(4):559–568CrossRefGoogle Scholar
  141. 141.
    Lucchini JP, Aurelle JL, Therin M, Donath K, Becker W (1996) A pilot study comparing screw-shaped implants. Surface analysis and histologic evaluation of bone healing. Clin Oral Implants Res 7(4):397–404CrossRefGoogle Scholar
  142. 142.
    Arys A, Philippart C, Dourov N, He Y, Le QT, Pireaux JJ (1998) Analysis of titanium dental implants after failure of osseointegration: combined histological, electron microscopy, and X-ray photoelectron spectroscopy approach. J Biomed Mater Res 43(3):300–312CrossRefGoogle Scholar
  143. 143.
    Hignett B, Andrew TC, Downing W, Duwell EJ, Belanger J, Tulinski EH (1987) Polishing and buffing. In: Wood WG (ed) Metals Handbook, Vol 5: Surface Cleaning, Finishing and Coating. American Society for Metals, Metals Park, OH, pp 107–127Google Scholar
  144. 144.
    Mehelich CS, Van Kiuken L, Woelfel MM (1987) Shot Peening. In: Wood WG (ed) Metals Handbook, Vol 5: Surface Cleaning, Finishing and Coating. American Society for Metals, Metals Park, OH, pp 138–149Google Scholar
  145. 145.
    Leliaert RM, Weightman N, Woelfel MM (1987) Abrasive blast cleaning. In: Wood WG (ed) Metals Handbook, Vol 5: Surface Cleaning, Finishing and Coating. American Society for Metals, Metals Park, OH, pp 83–96Google Scholar
  146. 146.
    Wilson DH, Wood WG (1987) Cleaning and finishing of titanium and titanium alloys. In: Wood WG (ed) Metals Handbook, Vol 5: Surface Cleaning, Finishing and Coating. American Society for Metals, Metals Park, OH, pp 650–659Google Scholar
  147. 147.
    Ishikawa K, Miyamoto Y, Nagayama M, Asaoka K (1997) Blast coating method: new method of coating titanium surface with hydroxyapatite at room temperature. J Biomed Mater Res 38(2):129–134CrossRefGoogle Scholar
  148. 148.
    Wood WG, (1987) Metals Handbook, Vol 5: Surface Cleaning, Finishing and Coating. American Society for Metals, Metals Park, OHGoogle Scholar
  149. 149.
    Mittal KL (1979) Surface Contamination and Cleaning. Plenum Press, New YorkCrossRefGoogle Scholar
  150. 150.
    ASTM Standard F-86 (1996) Standard practice for surface preparation and marking of metallical surgical implants. Annual Book of ASTM Standards, Vol. 13.01. American Society for Testing and Materials, USA, pp 6–8Google Scholar
  151. 151.
    Browne M, Gregson PJ (2000) Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21(4):385–392CrossRefGoogle Scholar
  152. 152.
    Poullieau J, Devilliers D, Garrido F, Durand-Vidal S, Mahé E (1997) Structure and composition of passive titanium oxide films. Mater Sci Eng B47:235–245CrossRefGoogle Scholar
  153. 153.
    Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B (1997) Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci: Mater Med 8:653–665CrossRefGoogle Scholar
  154. 154.
    Winter LS (1987) Electropolishing. in: Wood WG (Ed.) Metals Handbook, Vol 5: Surface Cleaning, Finishing and Coating. American Society for Metals, Metals Park, OH, pp 303–309Google Scholar
  155. 155.
    Ask M (1985) Surface Characterization of Oxide Films on Ti6A14V Alloy. PhLic thesis, Department of Physics, GöteborgGoogle Scholar
  156. 156.
    Aladjem A (1973) Anodic oxidation of titanium and its alloys. J Mater Sci 8:688–704CrossRefGoogle Scholar
  157. 157.
    Delplancke JL, Winand R (1988) Galvanostatic anodization of titanium - I. Structures and compositions of the anodic films. Electrochim Acta 33(11):1539–1549CrossRefGoogle Scholar
  158. 158.
    McAlarney ME, Oshiro MA, McAlarney CV (1996) Effects of titanium dioxide passive film crystal structure, thickness, and crystallinity on C3 adsorption. Int J Oral Maxillofac Implants 11(1):73–80Google Scholar
  159. 159.
    Baun WL (1980) Chromic acid anodization of Ti6A14V Surf Technol 11:421–426CrossRefGoogle Scholar
  160. 160.
    Skiles JA, Wightman JP (1987) Chromic acid anodized Ti-6Al-4V: Its characterization and single lap bond strength to heat resistant adhesives. Center for Adhesion Science Report CAS/CHEM-87-2. Virginia Polytechnic Institute and State University, Blacksburg, VAGoogle Scholar
  161. 161.
    Cheng AM, Dwight DW (1984) Anodic oxide formation on Ti-6Al-4V in chromic acid for adhesive bonding. Center for Adhesion Science Report VPI-E-84-8. Virginia Polytechnic Institute and State University, Blacksburg, VAGoogle Scholar
  162. 162.
    Torberntsson LO (1989) Calcium doping of anodic oxide films on titanium. Institute of Physics Report GIPR-292, Chalmers University of Technology, GöteborgGoogle Scholar
  163. 163.
    Chapman B (1980) Glow Discharge Processes. Wiley, New YorkGoogle Scholar
  164. 164.
    Aronsson BO, Frauchiger L, Taborelli M, Descouts P (1997) Plasma treatment of titanium surfaces. Proc 13th European Conf Biomaterials, Göteborg, Sweden, p 119Google Scholar
  165. 165.
    Aronsson BO (1997) Preparation and Characterization of Glow-Discharge Modified Titanium Surfaces. Ph.D. thesis, Department of Applied Physics, GöteborgGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jukka Lausmaa
    • 1
  1. 1.SP Swedish National Testing and Research InstituteDepartment of Chemistry and Materials TechnologyBoråsSweden

Personalised recommendations