Skip to main content

Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys

  • Chapter
Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter covers information on the composition, microstructure and physico-chemical properties of thin oxide films on titanium and titanium alloys. The focus is on thin layers in the sense of ‘natural’ oxide films grown at ambient or higher temperatures with emphasis on titanium oxide, with some selected additional information on oxides related to metals commonly used as alloying elements in titanium alloys for biomedical applications. This chapter does not, however, include thicker oxide films such as those produced by electrochemical or plasma techniques, which are covered in Chap. 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraker AC, Ruff AW, Sung P, Van Orden AC, Speck KM (1983) Surface preparation and corrosion behavior of titanium alloys for surgical implants. In: Luckey HA, Kubli F (eds) Titanium Alloys in Surgical Implants. ASTM Special Technical Publication 796, ASTM, Philadelphia, pp 206–219

    Chapter  Google Scholar 

  2. Lide DR (1994) CRC Handbook of Chemistry and Physics. CRC Press, London

    Google Scholar 

  3. Parks GA (1965) The isoelectric point of solid oxides, solid hydroxides and aqueous hydroxo complex systems. Chem Rev 65:177–198

    Article  CAS  Google Scholar 

  4. Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial . Clinical Materials 9:115–134

    Article  CAS  Google Scholar 

  5. Bousse LJ (1991) Zeta potential measurements of tantalum pentoxide and silicon dioxide thin films. J. Colloid Interface Sci 147(l):22–32

    Article  CAS  Google Scholar 

  6. Gonzalez G, Saraiva SM (1994) Isoelectric points for niobium and vanadium pentoxides. Journal of Dispersion Science and Technology 15:123–132

    Article  CAS  Google Scholar 

  7. Thwing CB (1894; one-eight-nine-four) Eine Beziehung zwischen Dielektrizitätskonstante und chemischer Konstitution des Dielektrikums. Z Phys Chem 14:298–300

    Google Scholar 

  8. Kir’iashkina ZI, Popov FM, Bilenko DN, Kir’iashkin (1957) Zh Tekh Fiz, pp 85–89. Soviet Phys Zech Phys, pp 69–73

    Google Scholar 

  9. Steinemann SG (1980) Corrosion of surgical implants - in vivo and in vitro tests. In: Winter GD, Leray JL, de Groot K (eds) Evaluation of Biomaterials, John Wiley & Sons, New York, pp 1–34

    Google Scholar 

  10. Williams DF (1981) Electrochemical aspects of corrosion in the physiological environment. In: Williams DF (ed) Fundamental Aspects of Biocompatibility. CRC Press, Boca Raton, Florida, pp 11–42

    Google Scholar 

  11. Steinemann SG, Mäusli PA (1989) Titanium alloys for surgical implants - biocompatibility from physicochemical principles. In: Lacombe P (eds) Proceedings of the Sixth World Conference on Titanium, Cannes, June 6–9,1988. Société Française de Métallurgie, Les Editions de Physique, Les Ulis, pp 535–540

    Google Scholar 

  12. Kovacs P, Davidson JA (1996) Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys. ASTM, West Conshohocken, PA, pp 163–178

    Google Scholar 

  13. Steinemann SG (1994) Tissue compatibility of metals from physico-chemical principles. In: Kovacs P, Istephanous NS (eds) Proceedings of a symposium on the compatibilty of biomedical implants, Electrochemical Society Symposium Report. The Electrochemical Society, Pennington NJ, USA, pp 1–13

    Google Scholar 

  14. Steinemann SG (1998) Titanium - the material of choice? Periodontology 2000 17:7–21

    Article  Google Scholar 

  15. Williams DF (1981) The relationship between biocompatibility and general toxicity. In: Williams DF (ed) Fundamental Aspects of Biocompatibility. CRC Press, Boca Raton, Florida, pp 95–110

    Google Scholar 

  16. Albrektsson T, Brånemark PI, Hansson HA, Kasemo B, Larsson K, Lundstrom I, McQueen DH, Skalak R (1983) The interface zone of inorganic implants in vivo - titanium implants in bone. Ann Biomed Eng 11(1):1–27

    Article  CAS  Google Scholar 

  17. Lausmaa J, Ask M, Rolander U, Kasemo B (1989) Preparation and analysis of Ti and alloyed Ti surfaces used in the evaluation of biological response. Mater Res Soc Symp Proc, pp 647–653

    Google Scholar 

  18. Bullock EL, Patthey L, Steinemann SG (1996) Clean and hydroxylated rutile Ti02(l 10) surfaces studied by X–ray photoelectron spectroscopy. Surf Sci 352:504–510

    Article  Google Scholar 

  19. Lausmaa J (1996) Surface spectroscopic characterization of titanium implant materials. J Electron Spectrosc Relat Phenom 81(3):343–361

    Article  CAS  Google Scholar 

  20. Gasser B (1998) Physikochemische Oberflächenanalysen sowie biomechanische und biolo-gische Aspekte von Implantaten aus Reintitan im Hinblick auf eine physiologische Funk-tions-weise, Ph.D. thesis Nr. 1204, University of Fribourg, Switzerland

    Google Scholar 

  21. Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials CP Ti, Ti-6Al-7Nb and TÌ-6AM-V with different pretreatments. J Mater Sci: Mater Med 10(l):35-46

    Article  CAS  Google Scholar 

  22. Wieland M (1999) Experimental Determination and Quantitative Evaluation of the Surface Composition and Topography of Medical Implant Surfaces and Their Influence on Osteo-blastic Cell Surface Interactions. Ph.D. thesis Nr. 13247, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

    Google Scholar 

  23. Sittig CE (1998) Charakterisierung der Oxidschichten auf Titan und Titanlegierungen sowie deren Reaktionen in Kontakt mit biologisch relevanten Modellösungen. Ph.D. thesis Nr. 12657, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

    Google Scholar 

  24. Carley AF, Chalker PR, Riviere JC, Roberts MW (1987) The identification and characterization of mixed oxidation-states at oxidized titanium surfaces by analysis of X-ray photoelectron-spectra. J Chem Soc, Faraday Trans I 83:351-370

    Google Scholar 

  25. Healy KE, Ducheyne P (1992) Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13(8):553-561

    Article  CAS  Google Scholar 

  26. Callen BW, Lowenberg BF, Lugowski S, Sodhi NS, Davies JE (1995) Nitric-acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace-element release. J Biomed Mater Res 29(3):279–290

    Article  CAS  Google Scholar 

  27. McCafferty E, Wightman JP (1999) An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl Surf Sci 14(14):92–100

    Article  Google Scholar 

  28. Poilleau J, Devilliers D, Garrido F, Durrand-Vidal S, Mahe E (1997) Structure and composition of passive titanium oxide films. Mater Sci Eng 47(3):235–243

    Article  Google Scholar 

  29. Boehm HP (1971) Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 52:264–277

    Article  Google Scholar 

  30. Stumm W, Sigg LM (1992) Chemistry of the Solid Water Interface Processes at the Mineral Water and Particle Water Interface in Natural Systems. John Wiley & Sons, New York

    Google Scholar 

  31. Healy KE, Ducheyne P (1992) Oxidation-kinetics of titanium thin films in model physiolog- ical environments. J Colloid Interface Sci 150(2):404–417

    Article  CAS  Google Scholar 

  32. Jobin M, Taborelli M, Emch R, Zenhäusern F, Descouts P (1992) Hydroxylation and crystal- lisation of electropolished titanium surface. Ultramicroscopy 42:637–643

    Article  Google Scholar 

  33. Gold JM, Schmidt M, Steinemann SG (1989) XPS study of amino-acid adsorption to tita- nium surfaces. Helv Phys Acta 62 (2–3):246–249

    CAS  Google Scholar 

  34. McCafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26:549–564

    Article  CAS  Google Scholar 

  35. Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 44 (2): 133–146

    Article  CAS  Google Scholar 

  36. Simmons GW, Beard BC (1987) Characterization of acid-base properties of the hydrated oxides on iron and titanium metal surfaces. J Phys Chem 91(5): 1143–1148

    Article  CAS  Google Scholar 

  37. Yates DE, James OJ, Healy TW (1980) The titanium dioxide-electrolyte interface. J Chem Soc, Faraday Trans I 78:1–8

    Google Scholar 

  38. Zettlemoyer AC, McCafferty E (1973) Water on oxide surfaces. Croat Chem Acta 45:173– 187

    CAS  Google Scholar 

  39. Jones P, Hockey JA (1971) Infra-red studies of rutile surfaces. Trans Faraday Soc 67:2679– 2685

    Article  CAS  Google Scholar 

  40. Munuera G, Stone FS (1971) Adsorption of water and organic vapors on hydroxylated rutile. Disc Faraday Soc 52:205–214

    Article  Google Scholar 

  41. Jackson P, Parfitt GD (1971) Infra-red study of the surface properties of rutile. Trans Faraday Soc 67:2469–2483

    Article  CAS  Google Scholar 

  42. Bredow T, Jug K (1995) Theoretical investigation of water-adsorption at rutile and anatase surfaces. Surf Sci 327(3):398–408

    Article  CAS  Google Scholar 

  43. Fahmi A, Minot C (1994) A theoretical investigation of water-adsorption on titanium-dioxide surfaces. Surf Sci 304(3):343–359

    Article  CAS  Google Scholar 

  44. Bickley RI, Jayanty RKM, Navio JA, Real C, Macias M (1991) Photooxidative fixation of molecular nitrogen on TiO2 (rutile) surfaces - the nature of the adsorbed nitrogen-containing species. Surf Sci 251:1052–1056

    Article  Google Scholar 

  45. Lo W, Chung YW, Somorjai GA (1978) Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2 (100) surfaces with varied stoichiometry: evidence for the photogeneration of Ti3+ and for its importance on chemisorption. Surf Sci 71:199–219

    Article  CAS  Google Scholar 

  46. Cordoba A, Luque JJ (1985) Mechanism of surface dehydration of anatase (TiO2). Phys Rev B-Condensed Matter 31(12):8111–8118

    Article  CAS  Google Scholar 

  47. Hollobaugh CM, Chessick JJ (1961) Adsorption of water and polar paraffinic compounds onto rutile. J Phys Chem 65:109–114

    Article  Google Scholar 

  48. Browne M, Gregson PJ (1994) Surface modification of titanium-alloy implants. Biomaterials 15(ll):894–898

    Article  CAS  Google Scholar 

  49. Lee TM, Chang E, Yang CY (1998) Surface characteristics of Ti6A14V alloy: effect of mate- rials, passivation and autoclaving. J Mater Sci 9(8):439-448

    CAS  Google Scholar 

  50. Radegran G, Lausmaa J, Mattsson L, Rolander U (1991) Preparation of ultra-thin windows on titanium for TEM analysis. J Electron Microsc Tech 19: 99-106

    Article  CAS  Google Scholar 

  51. Effah EAB, Bianco PD, Ducheyne P (1995) Crystal structure of the surface oxide layer on titanium and its changes arising from immersion. J Biomed Mater Res 29(l):73–80

    Article  CAS  Google Scholar 

  52. Wisbey A, Gregson PJ, Peter LM, Tuke M(1991) Effect of surface-treatment on the dissolu- tion of titanium-based implant materials. Biomaterials 12(5):470-473

    Article  CAS  Google Scholar 

  53. Nygren H, Tengvall P, Lundström I (1997) The initial reactions of TiO2 with blood. J Biomed Mater Res 34:487-492

    Article  CAS  Google Scholar 

  54. Hazan R, Brener R, Orun U (1993) Bone-growth to metal implants is regulated by their sur- face chemical properties. Biomaterials 14(8):570–574

    Article  CAS  Google Scholar 

  55. Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178

    Article  CAS  Google Scholar 

  56. Wang XX, Hayakawa S, Tsuru K, Osaka A (2000) Improvement of bioactivity of H202/ TaCl5-treated titanium after subsequent heat treatment. J Biomed Mater Res 52(1):171–176

    Article  CAS  Google Scholar 

  57. Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Effect of heat treatment on apatite-form- ing ability of Ti induced by alkali treatment. J Mater Sci: Mater Med 8(6):341–347

    Article  CAS  Google Scholar 

  58. Lu G, Bernasek L, Schwartz J (2000) Oxidation of polycrystalline titanium surfaces by oxy- gen and water. Surf Sci 458:80–90

    Article  CAS  Google Scholar 

  59. Vaquila I, Vergara LI, Passeggi MCG, Vidal RA, Ferron J (1999) Chemical reactions at sur- faces: titanium oxidation. Surf Coating Technol 122:67–71

    Article  CAS  Google Scholar 

  60. Massaro C, Rotolo P, DeRiccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencer ND, Brunette DM (2000) Comparative investigation of the properties of commercial tita- nium dental implants. Part I: chemical composition. J Mater Sci: Mater Med (submitted)

    Google Scholar 

  61. Ameen AP, Short RD, Johns R, Schwach G (1993) The surface-analysis of implant materials: the surface-composition of a titanium dental implant material. Clin Oral Implants Res 4 (3): 144–150

    Article  CAS  Google Scholar 

  62. Solar RJ, Pollack SR, Korostoff E (1979) Titanium Release from Implants: A Proposed Mechanism. In: Syrett BC, Acharya A (eds) Corrosion and Degradation of Implant Materi- als. ASTM, Philadelphia

    Google Scholar 

  63. Wieland M, Sittig C, Textor M, Schenk V, Ha SW, Keller BA, Wintermantel E, Spencer ND (1997) Surface characterization and topography of titanium alloy implants. In: Olefjord I, Nyborg L, Briggs D (eds) ECASIA 97,7th European Conference on Applications of Surface and Interface Analysis, Göteborg, Sweden, June 16–20, 1997, John Wiley & Sons, Chiches- ter,pp 139-142

    Google Scholar 

  64. Ask M, Lausmaa J, Kasemo B (1989) Preparation and surface spectroscopic characterization of oxide-films on Ti6A14V. Appl Surf Sci 35(3):283–301

    Article  CAS  Google Scholar 

  65. Sodhi RNS, Weninger A, Davies JE, Sreenivas K (1991) X-ray photoelectron spectroscopic comparison of sputtered Ti, Ti6A14V, and passivated bulk metals for use in cell-culture tech- niques. J Vacuum Sci Technol A - Vacuum Surfaces and Films 9(3): 1329–1333

    Article  CAS  Google Scholar 

  66. Degatica NLH, Jones GL, Gardella JA (1993) Surface characterization of titanium alloys sterilized for biomedical applications. Appl Surf Sci 68(1):107-121

    Article  Google Scholar 

  67. Okazaki Y, Tateishi T, Ito Y (1997) Corrosion resistance of implant alloys in pseudo physio- logical solution and role of alloying elements in passive films. Mater Trans JIM 38(l):78–84

    CAS  Google Scholar 

  68. Sundararajan T, Mudali UK, Nair KGM, Rajeswari S, Subbaiyan M (1998) Surface charac- terization of electrochemically formed passive film on nitrogen ion implanted Ti6A14V alloy. Materials Transactions JIM 39(7):756–761

    CAS  Google Scholar 

  69. Milosev I, Metikos-Hukovic M, Strehlblow HH (2000) Passive film on orthopedic TiAlV alloy formed in physiological solution by X-ray photoelectron spectroscopy. Biomaterials 21(20):2103–2113

    Article  CAS  Google Scholar 

  70. Lewis G (1993) X-Ray photoelectron study of surface-layers on orthopedic alloys. 1. Ti- 6A1-4V (ASTM F-136) alloy. J Vacuum Sci Technol A - Vacuum Surfaces and Films ll(2):325–335

    Article  Google Scholar 

  71. Mäusli PA, Bloch PR, Geret V, Steinemann SG (1986) Surface characterization of titanium and titanium alloys. In: Christel P, Meunier A, Lee AJC (eds) Biological and Biomechanical Performance of Biomaterials. Proceedings of the fifth European Conference on Biomaterials, Paris, September 4–6,1985, Elsevier, Amsterdam, p 57

    Google Scholar 

  72. Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials CP Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci: Mater Med 10(1):35–46

    Article  CAS  Google Scholar 

  73. Callen BW, Sodhi RNS, Griffiths K (1995) Examination of clinical surface preparations on titanium and Ti-6Al-4V by X-ray photoelectron spectroscopy and nuclear reaction analysis. Progress Surf Sci 50(1-4):269–279

    Article  CAS  Google Scholar 

  74. Sittig C, Hähner G, Marti A, Textor M, Spencer ND, Hauert R (1999) The implant material, Ti6A17Nb: surface microstructure, composition and properties. J Mater Sci: Mater Med 10(4):191–198

    Article  CAS  Google Scholar 

  75. Hähner G, Marti A, Spencer ND (1997) The influence of pH on friction between oxide sur- faces in electrolytes, studied with lateral force microscopy: application as a nanochemical imaging technique. Tribology Letters 3: 359-365

    Article  Google Scholar 

  76. Kasemo B, Lausmaa J (1986) Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocomp 2(4):335–380

    Google Scholar 

  77. Shelton RM, Davies JE (1991) Osteoblast reactions to charged polymers. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 181–198

    Google Scholar 

  78. Davies JE (1988) The importance and measurement of surface charge species in cell behav- iour at the biomaterial surface. In: Ratner BD (ed) Surface Characterization of Biomaterials. Elsevier, Amsterdam, pp 219–234

    Google Scholar 

  79. Krukowski M, Eppley B, Mustoe T, Osdoby P (1991) Hard and soft connective tissue growth and repair in response to charged surfaces. In: Davies JE (ed) The Bone-Biomaterial Inter- face. University of Toronto Press, Toronto, pp 275–284

    Google Scholar 

  80. Schindler PW (1990) Coadsorption of metal-ions and organic-ligands - formation of ternary surface complexes. Reviews in Mineralogy 23:281–307

    CAS  Google Scholar 

  81. Parfìtt GD (1976) The Surface of Titanium Oxide. In: Progress in Surface and Membrane Science, vol 11. Academic Press, New York, pp 181–226

    Google Scholar 

  82. Hendrich VE (1985) The surfaces of metal oxides. Rep Prog Phys 48:1481–1541

    Article  Google Scholar 

  83. Gold JM, Schmidt M, Steinemann SG (1990) XPS study of retrieved titanium and Ti alloy implants. Clin Implant Mater 9:69–74

    Google Scholar 

  84. Wirz UE (1984) Die Adsorption proteinogener Aminosäuren an TiO2 (Anatase). Ph.D. the- sis, University of Berne, Switzerland

    Google Scholar 

  85. Cornell RM, Posner AM, Quirk JP (1975) A titrimetric and electrophoretic investigation of the PZC and IEP of pigment rutile. J Colloid Interface Sci 53:6–13

    Article  CAS  Google Scholar 

  86. Kurrat R, Wälivaara B, Marti A, Textor M, Tengvall P, Ramsden JJ, Spencer ND (1998) Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids Surf B-Biointerfaces 11(4): 187–201

    Article  CAS  Google Scholar 

  87. Ducheyne P, Healy KE (1991) Titanium: immersion-induced surface chemistry changes and the relationship to passive dissolution and bioactivity. In: Davies JE (ed) The Bone-Biomate- rial Interface. University of Toronto Press, Toronto, pp 62-67

    Google Scholar 

  88. Healy KE, Ducheyne P (1992) The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res 26(3):319–338

    Article  CAS  Google Scholar 

  89. Ducheyne P (1988) Titanium and calcium phosphate ceramic dental implants; surfaces, coat- ings and interfaces. Oral Implantology 14:325–340

    CAS  Google Scholar 

  90. Sundgren JE, Bodo P, Lundstrom I (1986) Auger-electron spectroscopic studies of the inter- face between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci 110(l):9–20

    Article  CAS  Google Scholar 

  91. Healy KE, Ducheyne P (1996) Passive dissolution of titanium in biological environment. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys. ASTM, West Conshohocken, PA, pp 179–187

    Google Scholar 

  92. Tengvall P, Lundstrom I, Sjoqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction - model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10(3):166–175

    Article  CAS  Google Scholar 

  93. Ducheyne P, Healy KE (1988) Surface spectroscopy of calcium phosphate ceramic and titanium implant materials. In: Ratner BD (ed) Surface Characterization of Biomaterials. Proceedings of the Symposium on Surface Analysis of Biomaterials, Ann Arbor, Michigan, June 21-24,1987, Elsevier, Amsterdam, pp 175-192

    Google Scholar 

  94. McQueen D, Ivarsson B, Lundstrom I, Af Ekenstam B, Svensson A, Brånemark PI, Albrekts-son T (1982) Auger electron spectroscopic studies of titanium implants. In: Lee AJC (ed) Clinical Applications of Biomaterials. Papers presented at the Second European Conference on Biomaterials; Gothenburg, August 1981. John Wiley & Sons, Chichester, pp 179–185

    Google Scholar 

  95. Ask M, Rolander U, Lausmaa J, Kasemo B (1990) Microstructure and morphology of surface oxide-films on Ti-6Al-4V. J Mater Res 5(8):1662–1667

    Article  CAS  Google Scholar 

  96. Lausmaa J, Mattsson L, Rolander U (1986) Chemical composition and morphology of titanium surface oxides. Mater Res Soc Symp Proc 55:351-359

    CAS  Google Scholar 

  97. Effah EAB, Bianco PD, Ducheyne P (1995) Crystal structure of the surface oxide layer on titanium and its changes arising from immersion. J Biomed Mater Res 29:73–80

    Article  CAS  Google Scholar 

  98. Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12(6):593–596

    Article  CAS  Google Scholar 

  99. Hanawa T, Ota M (1992) Characterization of surface-film formed on titanium in electrolyte using XPS. Appl Surf Sci 55(4):269–276

    Article  CAS  Google Scholar 

  100. Ong JL, Lucas LC, Prince CW (1996) Response of titanium to simulated biological environments. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys. ASTM, West Conshohocken, PA, pp 306–318

    Google Scholar 

  101. Hanawa T (1991) Titanium and its oxide film; a substrate for formation of apatite. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 49–61

    Google Scholar 

  102. Hanawa T, Ota M (1991) Calcium-phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12(8):767–774

    Article  CAS  Google Scholar 

  103. Revie RW, Uhlig HH (1985) Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering. John Wiley & Sons, New York

    Google Scholar 

  104. Albrektsson T, Brånemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170

    Article  CAS  Google Scholar 

  105. do Serro AP, Fernandes AC, de Jesus Vieira Saramago B (2000) Calcium phosphate deposition on titanium surfaces in the presence of fibronectin. J Biomed Mater Res 49(3):345–352

    Article  Google Scholar 

  106. Ericson LE, Johansson BR, Rosengren A, Sennerby L, Thomsen P (1991) Ultrastructural investigation and analysis of the interface of retrieved metal implants. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 425–437

    Google Scholar 

  107. Johnsson MSA, Paschalis E, Nancollas GH (1991) Kinetics of mineralization, demineralization and transformation of calcium phosphates at mineral and protein surfaces. In: Davies JE (ed) The Bone-Biomaterial Interface, University of Toronto Press, Toronto, pp 68–75

    Google Scholar 

  108. Davies JE, Nagai N, Takeshita N, Smith DC (1991) Deposition of cement-like matrix on implant materials. In: Davies JE (ed) The Bone-Biomaterial Interface, University of Toronto Press, Toronto, pp 285–294

    Google Scholar 

  109. Listgarten MA, Buser D, Steinemann SG, Donath K, Lang NP, Weber HP (1992) Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva. J Dent Res 71(5): 1267

    Google Scholar 

  110. Chehroudi B, Ratkai J, Brunette DM (1992) The role of implant surface geometry on mineralization in vivo and in vitro: a transmission electron microscopic study. Cells and Materials 2:89-104

    Google Scholar 

  111. Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36(3):387–392

    Article  CAS  Google Scholar 

  112. Schmidt M (1992) Photoelektronen-Spektroskopie zur Adsorption von Aminosäuren auf oxidiertem Titan. Ph.D. thesis, University of Lausanne, Switzerland

    Google Scholar 

  113. Lemons JE (1991) Bone-biomaterial interfaces of retrieved implants. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 419–424

    Google Scholar 

  114. Arys A, Philippart C, Dourov N, He Y, Le QT, Pireaux JJ (1998) Analysis of titanium dental implants after failure of osseointegration: Combined histological, electron microscopy, and X-ray photoelectron spectroscopy approach. J Biomed Mater Res 43(3):300–312

    Article  CAS  Google Scholar 

  115. Baier RE, Meyer AE, Akers CK, Natiella JR, Meenaghan M, Carter JM (1982) Degradative effects of conventional steam sterilization on biomaterial surfaces. Biomaterials 3:241–245

    Article  CAS  Google Scholar 

  116. Wälivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P (1994) Titanium with different oxides - in vitro studies of protein adsorption and contact activation. Biomaterials 15(10):827–834

    Article  Google Scholar 

  117. Wälivaara B, Lundström I, Tengvall P (1993) An in vitro study of H2O2-treated titanium surfaces in contact with blood plasma and simulated body fluid. Clin Mater 12:141–148

    Article  Google Scholar 

  118. Baier RE, Meyer AE, Natiella JR, Natiella RR, Carter M (1984) Surface properties determining bioadhesive outcome: methods and results. J Biomed Mater Res 18:337-335

    Article  CAS  Google Scholar 

  119. Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of biomaterials. J Biomed Mater Res 35(l):49–73

    Article  CAS  Google Scholar 

  120. Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces - on the role of cleanliness, contamination and preparation procedures. J Biomed Mater Res, Appl Biomater 22(A2): 145–158

    Article  CAS  Google Scholar 

  121. Baier RE, Meyer AE, Natiella JR (1992) In: Lancy WR, Tolman DE (eds) Implant surface physics and chemistry: improvements and impediments to bioadhesion. Tissue Integration in Oral, Orthopedic and Maxillofacial Reconstruction. Quintessence, Chicago, pp 240-265

    Google Scholar 

  122. Vig JR (1985) UV ozone cleaning of surfaces. J Vac Sci Technol A - Vacuum Surfaces and Films 3 (3): 1027–1034

    Article  CAS  Google Scholar 

  123. Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41(7-8):1143-1153

    Article  CAS  Google Scholar 

  124. Revie RW, Greene ND (1969) Corrosion behaviour of surgical implant materials: II. Effect of surface preparation. Corros Sci 9:763–770

    Article  CAS  Google Scholar 

  125. Pfister M (2000) Einfluss der Passivierung nach ASTM F86 auf die Oberfläche metallischer Implantatwerkstoffe. Diploma thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

    Google Scholar 

  126. Lemons JE (1988) Dental implant retrieval analyses. J Dent Ed 52:748–756

    CAS  Google Scholar 

  127. Meachim G, and Williams DF (1973) Changes in nonosseous tissue adjacent to titanium implants. J Biomed Mater Res 65B:555

    Article  Google Scholar 

  128. Laing PG, Ferguson Jr AB Hodge ES (1967) Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res 1:135–149

    Article  CAS  Google Scholar 

  129. McCord JM (1974) Free radicals in inflammation: protection of synovial fluid by superoxide dismutase. Science 185:529–531

    Article  CAS  Google Scholar 

  130. Sutherland DS, Forsaw PD, Allen GC, Brown IT, Williams KR (1993) Surface analysis of titanium implants. Biomaterials 14(12):893–899

    Article  CAS  Google Scholar 

  131. Oshino N, Chance B, Sies H, Bücher T (1973) The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys 154:117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Textor, M., Sittig, C., Frauchiger, V., Tosatti, S., Brunette, D.M. (2001). Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics