Advertisement

Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys

  • Marcus Textor
  • Caroline Sittig
  • Vinzenz Frauchiger
  • Samuele Tosatti
  • Donald M. Brunette
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This chapter covers information on the composition, microstructure and physico-chemical properties of thin oxide films on titanium and titanium alloys. The focus is on thin layers in the sense of ‘natural’ oxide films grown at ambient or higher temperatures with emphasis on titanium oxide, with some selected additional information on oxides related to metals commonly used as alloying elements in titanium alloys for biomedical applications. This chapter does not, however, include thicker oxide films such as those produced by electrochemical or plasma techniques, which are covered in Chap. 8.

Keywords

Oxide Film Calcium Phosphate Simulated Body Fluid Pure Titanium Titanium Oxide Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fraker AC, Ruff AW, Sung P, Van Orden AC, Speck KM (1983) Surface preparation and corrosion behavior of titanium alloys for surgical implants. In: Luckey HA, Kubli F (eds) Titanium Alloys in Surgical Implants. ASTM Special Technical Publication 796, ASTM, Philadelphia, pp 206–219CrossRefGoogle Scholar
  2. 2.
    Lide DR (1994) CRC Handbook of Chemistry and Physics. CRC Press, LondonGoogle Scholar
  3. 3.
    Parks GA (1965) The isoelectric point of solid oxides, solid hydroxides and aqueous hydroxo complex systems. Chem Rev 65:177–198CrossRefGoogle Scholar
  4. 4.
    Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial . Clinical Materials 9:115–134CrossRefGoogle Scholar
  5. 5.
    Bousse LJ (1991) Zeta potential measurements of tantalum pentoxide and silicon dioxide thin films. J. Colloid Interface Sci 147(l):22–32CrossRefGoogle Scholar
  6. 6.
    Gonzalez G, Saraiva SM (1994) Isoelectric points for niobium and vanadium pentoxides. Journal of Dispersion Science and Technology 15:123–132CrossRefGoogle Scholar
  7. 7.
    Thwing CB (1894; one-eight-nine-four) Eine Beziehung zwischen Dielektrizitätskonstante und chemischer Konstitution des Dielektrikums. Z Phys Chem 14:298–300Google Scholar
  8. 8.
    Kir’iashkina ZI, Popov FM, Bilenko DN, Kir’iashkin (1957) Zh Tekh Fiz, pp 85–89. Soviet Phys Zech Phys, pp 69–73Google Scholar
  9. 9.
    Steinemann SG (1980) Corrosion of surgical implants - in vivo and in vitro tests. In: Winter GD, Leray JL, de Groot K (eds) Evaluation of Biomaterials, John Wiley & Sons, New York, pp 1–34Google Scholar
  10. 10.
    Williams DF (1981) Electrochemical aspects of corrosion in the physiological environment. In: Williams DF (ed) Fundamental Aspects of Biocompatibility. CRC Press, Boca Raton, Florida, pp 11–42Google Scholar
  11. 1.
    Steinemann SG, Mäusli PA (1989) Titanium alloys for surgical implants - biocompatibility from physicochemical principles. In: Lacombe P (eds) Proceedings of the Sixth World Conference on Titanium, Cannes, June 6–9,1988. Société Française de Métallurgie, Les Editions de Physique, Les Ulis, pp 535–540Google Scholar
  12. 12.
    Kovacs P, Davidson JA (1996) Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys. ASTM, West Conshohocken, PA, pp 163–178Google Scholar
  13. 13.
    Steinemann SG (1994) Tissue compatibility of metals from physico-chemical principles. In: Kovacs P, Istephanous NS (eds) Proceedings of a symposium on the compatibilty of biomedical implants, Electrochemical Society Symposium Report. The Electrochemical Society, Pennington NJ, USA, pp 1–13Google Scholar
  14. 14.
    Steinemann SG (1998) Titanium - the material of choice? Periodontology 2000 17:7–21CrossRefGoogle Scholar
  15. 15.
    Williams DF (1981) The relationship between biocompatibility and general toxicity. In: Williams DF (ed) Fundamental Aspects of Biocompatibility. CRC Press, Boca Raton, Florida, pp 95–110Google Scholar
  16. 16.
    Albrektsson T, Brånemark PI, Hansson HA, Kasemo B, Larsson K, Lundstrom I, McQueen DH, Skalak R (1983) The interface zone of inorganic implants in vivo - titanium implants in bone. Ann Biomed Eng 11(1):1–27CrossRefGoogle Scholar
  17. 17.
    Lausmaa J, Ask M, Rolander U, Kasemo B (1989) Preparation and analysis of Ti and alloyed Ti surfaces used in the evaluation of biological response. Mater Res Soc Symp Proc, pp 647–653Google Scholar
  18. 18.
    Bullock EL, Patthey L, Steinemann SG (1996) Clean and hydroxylated rutile Ti02(l 10) surfaces studied by X–ray photoelectron spectroscopy. Surf Sci 352:504–510CrossRefGoogle Scholar
  19. 19.
    Lausmaa J (1996) Surface spectroscopic characterization of titanium implant materials. J Electron Spectrosc Relat Phenom 81(3):343–361CrossRefGoogle Scholar
  20. 20.
    Gasser B (1998) Physikochemische Oberflächenanalysen sowie biomechanische und biolo-gische Aspekte von Implantaten aus Reintitan im Hinblick auf eine physiologische Funk-tions-weise, Ph.D. thesis Nr. 1204, University of Fribourg, SwitzerlandGoogle Scholar
  21. 21.
    Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials CP Ti, Ti-6Al-7Nb and TÌ-6AM-V with different pretreatments. J Mater Sci: Mater Med 10(l):35-46CrossRefGoogle Scholar
  22. 22.
    Wieland M (1999) Experimental Determination and Quantitative Evaluation of the Surface Composition and Topography of Medical Implant Surfaces and Their Influence on Osteo-blastic Cell Surface Interactions. Ph.D. thesis Nr. 13247, Swiss Federal Institute of Technology (ETH), Zurich, SwitzerlandGoogle Scholar
  23. 23.
    Sittig CE (1998) Charakterisierung der Oxidschichten auf Titan und Titanlegierungen sowie deren Reaktionen in Kontakt mit biologisch relevanten Modellösungen. Ph.D. thesis Nr. 12657, Swiss Federal Institute of Technology (ETH), Zurich, SwitzerlandGoogle Scholar
  24. 24.
    Carley AF, Chalker PR, Riviere JC, Roberts MW (1987) The identification and characterization of mixed oxidation-states at oxidized titanium surfaces by analysis of X-ray photoelectron-spectra. J Chem Soc, Faraday Trans I 83:351-370Google Scholar
  25. 25.
    Healy KE, Ducheyne P (1992) Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13(8):553-561CrossRefGoogle Scholar
  26. 26.
    Callen BW, Lowenberg BF, Lugowski S, Sodhi NS, Davies JE (1995) Nitric-acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace-element release. J Biomed Mater Res 29(3):279–290CrossRefGoogle Scholar
  27. 27.
    McCafferty E, Wightman JP (1999) An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl Surf Sci 14(14):92–100CrossRefGoogle Scholar
  28. 28.
    Poilleau J, Devilliers D, Garrido F, Durrand-Vidal S, Mahe E (1997) Structure and composition of passive titanium oxide films. Mater Sci Eng 47(3):235–243CrossRefGoogle Scholar
  29. 29.
    Boehm HP (1971) Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 52:264–277CrossRefGoogle Scholar
  30. 30.
    Stumm W, Sigg LM (1992) Chemistry of the Solid Water Interface Processes at the Mineral Water and Particle Water Interface in Natural Systems. John Wiley & Sons, New YorkGoogle Scholar
  31. 31.
    Healy KE, Ducheyne P (1992) Oxidation-kinetics of titanium thin films in model physiolog- ical environments. J Colloid Interface Sci 150(2):404–417CrossRefGoogle Scholar
  32. 32.
    Jobin M, Taborelli M, Emch R, Zenhäusern F, Descouts P (1992) Hydroxylation and crystal- lisation of electropolished titanium surface. Ultramicroscopy 42:637–643CrossRefGoogle Scholar
  33. 33.
    Gold JM, Schmidt M, Steinemann SG (1989) XPS study of amino-acid adsorption to tita- nium surfaces. Helv Phys Acta 62 (2–3):246–249Google Scholar
  34. 34.
    McCafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26:549–564CrossRefGoogle Scholar
  35. 35.
    Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 44 (2): 133–146CrossRefGoogle Scholar
  36. 36.
    Simmons GW, Beard BC (1987) Characterization of acid-base properties of the hydrated oxides on iron and titanium metal surfaces. J Phys Chem 91(5): 1143–1148CrossRefGoogle Scholar
  37. 37.
    Yates DE, James OJ, Healy TW (1980) The titanium dioxide-electrolyte interface. J Chem Soc, Faraday Trans I 78:1–8Google Scholar
  38. 38.
    Zettlemoyer AC, McCafferty E (1973) Water on oxide surfaces. Croat Chem Acta 45:173– 187Google Scholar
  39. 39.
    Jones P, Hockey JA (1971) Infra-red studies of rutile surfaces. Trans Faraday Soc 67:2679– 2685CrossRefGoogle Scholar
  40. 40.
    Munuera G, Stone FS (1971) Adsorption of water and organic vapors on hydroxylated rutile. Disc Faraday Soc 52:205–214CrossRefGoogle Scholar
  41. 41.
    Jackson P, Parfitt GD (1971) Infra-red study of the surface properties of rutile. Trans Faraday Soc 67:2469–2483CrossRefGoogle Scholar
  42. 42.
    Bredow T, Jug K (1995) Theoretical investigation of water-adsorption at rutile and anatase surfaces. Surf Sci 327(3):398–408CrossRefGoogle Scholar
  43. 43.
    Fahmi A, Minot C (1994) A theoretical investigation of water-adsorption on titanium-dioxide surfaces. Surf Sci 304(3):343–359CrossRefGoogle Scholar
  44. 44.
    Bickley RI, Jayanty RKM, Navio JA, Real C, Macias M (1991) Photooxidative fixation of molecular nitrogen on TiO2 (rutile) surfaces - the nature of the adsorbed nitrogen-containing species. Surf Sci 251:1052–1056CrossRefGoogle Scholar
  45. 45.
    Lo W, Chung YW, Somorjai GA (1978) Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2 (100) surfaces with varied stoichiometry: evidence for the photogeneration of Ti3+ and for its importance on chemisorption. Surf Sci 71:199–219CrossRefGoogle Scholar
  46. 46.
    Cordoba A, Luque JJ (1985) Mechanism of surface dehydration of anatase (TiO2). Phys Rev B-Condensed Matter 31(12):8111–8118CrossRefGoogle Scholar
  47. 47.
    Hollobaugh CM, Chessick JJ (1961) Adsorption of water and polar paraffinic compounds onto rutile. J Phys Chem 65:109–114CrossRefGoogle Scholar
  48. 48.
    Browne M, Gregson PJ (1994) Surface modification of titanium-alloy implants. Biomaterials 15(ll):894–898CrossRefGoogle Scholar
  49. 49.
    Lee TM, Chang E, Yang CY (1998) Surface characteristics of Ti6A14V alloy: effect of mate- rials, passivation and autoclaving. J Mater Sci 9(8):439-448Google Scholar
  50. 50.
    Radegran G, Lausmaa J, Mattsson L, Rolander U (1991) Preparation of ultra-thin windows on titanium for TEM analysis. J Electron Microsc Tech 19: 99-106CrossRefGoogle Scholar
  51. 51.
    Effah EAB, Bianco PD, Ducheyne P (1995) Crystal structure of the surface oxide layer on titanium and its changes arising from immersion. J Biomed Mater Res 29(l):73–80CrossRefGoogle Scholar
  52. 52.
    Wisbey A, Gregson PJ, Peter LM, Tuke M(1991) Effect of surface-treatment on the dissolu- tion of titanium-based implant materials. Biomaterials 12(5):470-473CrossRefGoogle Scholar
  53. 53.
    Nygren H, Tengvall P, Lundström I (1997) The initial reactions of TiO2 with blood. J Biomed Mater Res 34:487-492CrossRefGoogle Scholar
  54. 54.
    Hazan R, Brener R, Orun U (1993) Bone-growth to metal implants is regulated by their sur- face chemical properties. Biomaterials 14(8):570–574CrossRefGoogle Scholar
  55. 55.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178CrossRefGoogle Scholar
  56. 56.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2000) Improvement of bioactivity of H202/ TaCl5-treated titanium after subsequent heat treatment. J Biomed Mater Res 52(1):171–176CrossRefGoogle Scholar
  57. 57.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Effect of heat treatment on apatite-form- ing ability of Ti induced by alkali treatment. J Mater Sci: Mater Med 8(6):341–347CrossRefGoogle Scholar
  58. 58.
    Lu G, Bernasek L, Schwartz J (2000) Oxidation of polycrystalline titanium surfaces by oxy- gen and water. Surf Sci 458:80–90CrossRefGoogle Scholar
  59. 59.
    Vaquila I, Vergara LI, Passeggi MCG, Vidal RA, Ferron J (1999) Chemical reactions at sur- faces: titanium oxidation. Surf Coating Technol 122:67–71CrossRefGoogle Scholar
  60. 60.
    Massaro C, Rotolo P, DeRiccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencer ND, Brunette DM (2000) Comparative investigation of the properties of commercial tita- nium dental implants. Part I: chemical composition. J Mater Sci: Mater Med (submitted)Google Scholar
  61. 61.
    Ameen AP, Short RD, Johns R, Schwach G (1993) The surface-analysis of implant materials: the surface-composition of a titanium dental implant material. Clin Oral Implants Res 4 (3): 144–150CrossRefGoogle Scholar
  62. 62.
    Solar RJ, Pollack SR, Korostoff E (1979) Titanium Release from Implants: A Proposed Mechanism. In: Syrett BC, Acharya A (eds) Corrosion and Degradation of Implant Materi- als. ASTM, PhiladelphiaGoogle Scholar
  63. 63.
    Wieland M, Sittig C, Textor M, Schenk V, Ha SW, Keller BA, Wintermantel E, Spencer ND (1997) Surface characterization and topography of titanium alloy implants. In: Olefjord I, Nyborg L, Briggs D (eds) ECASIA 97,7th European Conference on Applications of Surface and Interface Analysis, Göteborg, Sweden, June 16–20, 1997, John Wiley & Sons, Chiches- ter,pp 139-142Google Scholar
  64. 64.
    Ask M, Lausmaa J, Kasemo B (1989) Preparation and surface spectroscopic characterization of oxide-films on Ti6A14V. Appl Surf Sci 35(3):283–301CrossRefGoogle Scholar
  65. 65.
    Sodhi RNS, Weninger A, Davies JE, Sreenivas K (1991) X-ray photoelectron spectroscopic comparison of sputtered Ti, Ti6A14V, and passivated bulk metals for use in cell-culture tech- niques. J Vacuum Sci Technol A - Vacuum Surfaces and Films 9(3): 1329–1333CrossRefGoogle Scholar
  66. 66.
    Degatica NLH, Jones GL, Gardella JA (1993) Surface characterization of titanium alloys sterilized for biomedical applications. Appl Surf Sci 68(1):107-121CrossRefGoogle Scholar
  67. 67.
    Okazaki Y, Tateishi T, Ito Y (1997) Corrosion resistance of implant alloys in pseudo physio- logical solution and role of alloying elements in passive films. Mater Trans JIM 38(l):78–84Google Scholar
  68. 68.
    Sundararajan T, Mudali UK, Nair KGM, Rajeswari S, Subbaiyan M (1998) Surface charac- terization of electrochemically formed passive film on nitrogen ion implanted Ti6A14V alloy. Materials Transactions JIM 39(7):756–761Google Scholar
  69. 69.
    Milosev I, Metikos-Hukovic M, Strehlblow HH (2000) Passive film on orthopedic TiAlV alloy formed in physiological solution by X-ray photoelectron spectroscopy. Biomaterials 21(20):2103–2113CrossRefGoogle Scholar
  70. 70.
    Lewis G (1993) X-Ray photoelectron study of surface-layers on orthopedic alloys. 1. Ti- 6A1-4V (ASTM F-136) alloy. J Vacuum Sci Technol A - Vacuum Surfaces and Films ll(2):325–335CrossRefGoogle Scholar
  71. 71.
    Mäusli PA, Bloch PR, Geret V, Steinemann SG (1986) Surface characterization of titanium and titanium alloys. In: Christel P, Meunier A, Lee AJC (eds) Biological and Biomechanical Performance of Biomaterials. Proceedings of the fifth European Conference on Biomaterials, Paris, September 4–6,1985, Elsevier, Amsterdam, p 57Google Scholar
  72. 72.
    Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials CP Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci: Mater Med 10(1):35–46CrossRefGoogle Scholar
  73. 73.
    Callen BW, Sodhi RNS, Griffiths K (1995) Examination of clinical surface preparations on titanium and Ti-6Al-4V by X-ray photoelectron spectroscopy and nuclear reaction analysis. Progress Surf Sci 50(1-4):269–279CrossRefGoogle Scholar
  74. 74.
    Sittig C, Hähner G, Marti A, Textor M, Spencer ND, Hauert R (1999) The implant material, Ti6A17Nb: surface microstructure, composition and properties. J Mater Sci: Mater Med 10(4):191–198CrossRefGoogle Scholar
  75. 75.
    Hähner G, Marti A, Spencer ND (1997) The influence of pH on friction between oxide sur- faces in electrolytes, studied with lateral force microscopy: application as a nanochemical imaging technique. Tribology Letters 3: 359-365CrossRefGoogle Scholar
  76. 76.
    Kasemo B, Lausmaa J (1986) Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocomp 2(4):335–380Google Scholar
  77. 77.
    Shelton RM, Davies JE (1991) Osteoblast reactions to charged polymers. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 181–198Google Scholar
  78. 78.
    Davies JE (1988) The importance and measurement of surface charge species in cell behav- iour at the biomaterial surface. In: Ratner BD (ed) Surface Characterization of Biomaterials. Elsevier, Amsterdam, pp 219–234Google Scholar
  79. 79.
    Krukowski M, Eppley B, Mustoe T, Osdoby P (1991) Hard and soft connective tissue growth and repair in response to charged surfaces. In: Davies JE (ed) The Bone-Biomaterial Inter- face. University of Toronto Press, Toronto, pp 275–284Google Scholar
  80. 80.
    Schindler PW (1990) Coadsorption of metal-ions and organic-ligands - formation of ternary surface complexes. Reviews in Mineralogy 23:281–307Google Scholar
  81. 81.
    Parfìtt GD (1976) The Surface of Titanium Oxide. In: Progress in Surface and Membrane Science, vol 11. Academic Press, New York, pp 181–226Google Scholar
  82. 82.
    Hendrich VE (1985) The surfaces of metal oxides. Rep Prog Phys 48:1481–1541CrossRefGoogle Scholar
  83. 83.
    Gold JM, Schmidt M, Steinemann SG (1990) XPS study of retrieved titanium and Ti alloy implants. Clin Implant Mater 9:69–74Google Scholar
  84. 84.
    Wirz UE (1984) Die Adsorption proteinogener Aminosäuren an TiO2 (Anatase). Ph.D. the- sis, University of Berne, SwitzerlandGoogle Scholar
  85. 85.
    Cornell RM, Posner AM, Quirk JP (1975) A titrimetric and electrophoretic investigation of the PZC and IEP of pigment rutile. J Colloid Interface Sci 53:6–13CrossRefGoogle Scholar
  86. 86.
    Kurrat R, Wälivaara B, Marti A, Textor M, Tengvall P, Ramsden JJ, Spencer ND (1998) Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids Surf B-Biointerfaces 11(4): 187–201CrossRefGoogle Scholar
  87. 87.
    Ducheyne P, Healy KE (1991) Titanium: immersion-induced surface chemistry changes and the relationship to passive dissolution and bioactivity. In: Davies JE (ed) The Bone-Biomate- rial Interface. University of Toronto Press, Toronto, pp 62-67Google Scholar
  88. 88.
    Healy KE, Ducheyne P (1992) The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res 26(3):319–338CrossRefGoogle Scholar
  89. 89.
    Ducheyne P (1988) Titanium and calcium phosphate ceramic dental implants; surfaces, coat- ings and interfaces. Oral Implantology 14:325–340Google Scholar
  90. 90.
    Sundgren JE, Bodo P, Lundstrom I (1986) Auger-electron spectroscopic studies of the inter- face between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci 110(l):9–20CrossRefGoogle Scholar
  91. 91.
    Healy KE, Ducheyne P (1996) Passive dissolution of titanium in biological environment. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys. ASTM, West Conshohocken, PA, pp 179–187Google Scholar
  92. 92.
    Tengvall P, Lundstrom I, Sjoqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction - model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10(3):166–175CrossRefGoogle Scholar
  93. 93.
    Ducheyne P, Healy KE (1988) Surface spectroscopy of calcium phosphate ceramic and titanium implant materials. In: Ratner BD (ed) Surface Characterization of Biomaterials. Proceedings of the Symposium on Surface Analysis of Biomaterials, Ann Arbor, Michigan, June 21-24,1987, Elsevier, Amsterdam, pp 175-192Google Scholar
  94. 94.
    McQueen D, Ivarsson B, Lundstrom I, Af Ekenstam B, Svensson A, Brånemark PI, Albrekts-son T (1982) Auger electron spectroscopic studies of titanium implants. In: Lee AJC (ed) Clinical Applications of Biomaterials. Papers presented at the Second European Conference on Biomaterials; Gothenburg, August 1981. John Wiley & Sons, Chichester, pp 179–185Google Scholar
  95. 95.
    Ask M, Rolander U, Lausmaa J, Kasemo B (1990) Microstructure and morphology of surface oxide-films on Ti-6Al-4V. J Mater Res 5(8):1662–1667CrossRefGoogle Scholar
  96. 96.
    Lausmaa J, Mattsson L, Rolander U (1986) Chemical composition and morphology of titanium surface oxides. Mater Res Soc Symp Proc 55:351-359Google Scholar
  97. 97.
    Effah EAB, Bianco PD, Ducheyne P (1995) Crystal structure of the surface oxide layer on titanium and its changes arising from immersion. J Biomed Mater Res 29:73–80CrossRefGoogle Scholar
  98. 98.
    Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12(6):593–596CrossRefGoogle Scholar
  99. 99.
    Hanawa T, Ota M (1992) Characterization of surface-film formed on titanium in electrolyte using XPS. Appl Surf Sci 55(4):269–276CrossRefGoogle Scholar
  100. 100.
    Ong JL, Lucas LC, Prince CW (1996) Response of titanium to simulated biological environments. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys. ASTM, West Conshohocken, PA, pp 306–318Google Scholar
  101. 101.
    Hanawa T (1991) Titanium and its oxide film; a substrate for formation of apatite. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 49–61Google Scholar
  102. 102.
    Hanawa T, Ota M (1991) Calcium-phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12(8):767–774CrossRefGoogle Scholar
  103. 103.
    Revie RW, Uhlig HH (1985) Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering. John Wiley & Sons, New YorkGoogle Scholar
  104. 104.
    Albrektsson T, Brånemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170CrossRefGoogle Scholar
  105. 105.
    do Serro AP, Fernandes AC, de Jesus Vieira Saramago B (2000) Calcium phosphate deposition on titanium surfaces in the presence of fibronectin. J Biomed Mater Res 49(3):345–352CrossRefGoogle Scholar
  106. 106.
    Ericson LE, Johansson BR, Rosengren A, Sennerby L, Thomsen P (1991) Ultrastructural investigation and analysis of the interface of retrieved metal implants. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 425–437Google Scholar
  107. 107.
    Johnsson MSA, Paschalis E, Nancollas GH (1991) Kinetics of mineralization, demineralization and transformation of calcium phosphates at mineral and protein surfaces. In: Davies JE (ed) The Bone-Biomaterial Interface, University of Toronto Press, Toronto, pp 68–75Google Scholar
  108. 108.
    Davies JE, Nagai N, Takeshita N, Smith DC (1991) Deposition of cement-like matrix on implant materials. In: Davies JE (ed) The Bone-Biomaterial Interface, University of Toronto Press, Toronto, pp 285–294Google Scholar
  109. 109.
    Listgarten MA, Buser D, Steinemann SG, Donath K, Lang NP, Weber HP (1992) Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva. J Dent Res 71(5): 1267Google Scholar
  110. 110.
    Chehroudi B, Ratkai J, Brunette DM (1992) The role of implant surface geometry on mineralization in vivo and in vitro: a transmission electron microscopic study. Cells and Materials 2:89-104Google Scholar
  111. 111.
    Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36(3):387–392CrossRefGoogle Scholar
  112. 112.
    Schmidt M (1992) Photoelektronen-Spektroskopie zur Adsorption von Aminosäuren auf oxidiertem Titan. Ph.D. thesis, University of Lausanne, SwitzerlandGoogle Scholar
  113. 113.
    Lemons JE (1991) Bone-biomaterial interfaces of retrieved implants. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 419–424Google Scholar
  114. 114.
    Arys A, Philippart C, Dourov N, He Y, Le QT, Pireaux JJ (1998) Analysis of titanium dental implants after failure of osseointegration: Combined histological, electron microscopy, and X-ray photoelectron spectroscopy approach. J Biomed Mater Res 43(3):300–312CrossRefGoogle Scholar
  115. 115.
    Baier RE, Meyer AE, Akers CK, Natiella JR, Meenaghan M, Carter JM (1982) Degradative effects of conventional steam sterilization on biomaterial surfaces. Biomaterials 3:241–245CrossRefGoogle Scholar
  116. 116.
    Wälivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P (1994) Titanium with different oxides - in vitro studies of protein adsorption and contact activation. Biomaterials 15(10):827–834CrossRefGoogle Scholar
  117. 117.
    Wälivaara B, Lundström I, Tengvall P (1993) An in vitro study of H2O2-treated titanium surfaces in contact with blood plasma and simulated body fluid. Clin Mater 12:141–148CrossRefGoogle Scholar
  118. 118.
    Baier RE, Meyer AE, Natiella JR, Natiella RR, Carter M (1984) Surface properties determining bioadhesive outcome: methods and results. J Biomed Mater Res 18:337-335CrossRefGoogle Scholar
  119. 119.
    Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of biomaterials. J Biomed Mater Res 35(l):49–73CrossRefGoogle Scholar
  120. 120.
    Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces - on the role of cleanliness, contamination and preparation procedures. J Biomed Mater Res, Appl Biomater 22(A2): 145–158CrossRefGoogle Scholar
  121. 121.
    Baier RE, Meyer AE, Natiella JR (1992) In: Lancy WR, Tolman DE (eds) Implant surface physics and chemistry: improvements and impediments to bioadhesion. Tissue Integration in Oral, Orthopedic and Maxillofacial Reconstruction. Quintessence, Chicago, pp 240-265Google Scholar
  122. 122.
    Vig JR (1985) UV ozone cleaning of surfaces. J Vac Sci Technol A - Vacuum Surfaces and Films 3 (3): 1027–1034CrossRefGoogle Scholar
  123. 123.
    Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41(7-8):1143-1153CrossRefGoogle Scholar
  124. 124.
    Revie RW, Greene ND (1969) Corrosion behaviour of surgical implant materials: II. Effect of surface preparation. Corros Sci 9:763–770CrossRefGoogle Scholar
  125. 125.
    Pfister M (2000) Einfluss der Passivierung nach ASTM F86 auf die Oberfläche metallischer Implantatwerkstoffe. Diploma thesis, Swiss Federal Institute of Technology (ETH), Zurich, SwitzerlandGoogle Scholar
  126. 126.
    Lemons JE (1988) Dental implant retrieval analyses. J Dent Ed 52:748–756Google Scholar
  127. 127.
    Meachim G, and Williams DF (1973) Changes in nonosseous tissue adjacent to titanium implants. J Biomed Mater Res 65B:555CrossRefGoogle Scholar
  128. 128.
    Laing PG, Ferguson Jr AB Hodge ES (1967) Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res 1:135–149CrossRefGoogle Scholar
  129. 129.
    McCord JM (1974) Free radicals in inflammation: protection of synovial fluid by superoxide dismutase. Science 185:529–531CrossRefGoogle Scholar
  130. 130.
    Sutherland DS, Forsaw PD, Allen GC, Brown IT, Williams KR (1993) Surface analysis of titanium implants. Biomaterials 14(12):893–899CrossRefGoogle Scholar
  131. 131.
    Oshino N, Chance B, Sies H, Bücher T (1973) The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys 154:117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Marcus Textor
    • 1
  • Caroline Sittig
    • 1
    • 2
  • Vinzenz Frauchiger
    • 1
  • Samuele Tosatti
    • 1
  • Donald M. Brunette
    • 3
  1. 1.Swiss Federal Institute of Technology (ETH)Department of Materials, Laboratory for Surface Science and TechnologyZurichSwitzerland
  2. 2.Institut Straumann AGWaldenburgSwitzerland
  3. 3.Department of Oral Biological and Medical SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations