The Corrosion Properties of Titanium and Titanium Alloys

  • Rolf Schenk
Part of the Engineering Materials book series (ENG.MAT.)


As far as corrosion is concerned, titanium and its alloys belong to the large group of oxide-passivated metals that includes - in particular - the stainless steels, as well as nickel, cobalt and aluminium-based alloys. However, titanium has a special position within this group. Unlike nearly all other materials, titanium can corrode either very quickly or extremely slowly, depending on the environmental conditions. Therefore, the general rule which states that corrosion behavior should never be considered a material property is particularly important for titanium; whereas the melting point, electrical conductivity, modulus of elasticity etc. are typical material properties, corrosion is a system property of materials and media as the following examples for silver and titanium show.


Corrosion Rate Titanium Alloy Oxide Film Corrosion Behavior Passive Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmitt-Thomas KG (1982) Methodik der Schadensanalyse. VDI Seminar TU München, 26./27. AprilGoogle Scholar
  2. 2.
    Hoar TP (1966) The Costs of Corrosion. The Governmental Committee on Corrosion, LondonGoogle Scholar
  3. 3.
    Heitz E (1980) Durch Korrosion gehen jedes Jahr Milliarden-Werte verloren. Frankfurter Allgemeine Zeitung, edition 20. NovemberGoogle Scholar
  4. 4.
    Kaesche H (1990) Die Korrosion der Metalle. Springer, Berlin Heidelberg New York, ISBN 3-540-51569-0Google Scholar
  5. 5.
    Metals Handbook (1987) Vol 13: Corrosion. ASM International, ISBN 0-87170-007-7Google Scholar
  6. 6.
    Kelly EJ (1982) Electrochemical behavior of titanium. In: Bockris JOM, Conway BE, White RE (eds) Modern Aspects of Electrochemistry, vol 14. Plenum Press, New York London, pp 319–424CrossRefGoogle Scholar
  7. 7.
    Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gautier - Villars & Co Editeur, ParisGoogle Scholar
  8. 8.
    Tonashov ND, Al’tovskii RM (1963) Effect of platinum, copper and iron on corrosion and passivity of titanium in 15 percent hydrochloric acid. Corrosion-NACE, vol 19, pp 127–221Google Scholar
  9. 9.
    Bomberger HB (1984) Factors which influence corrosion properties of titanium. Proc Third Conf “Industrial Applications of Titanium and Zirconium”, ASTM STP 830. ASTM, West Conshohocken, pp 143–158CrossRefGoogle Scholar
  10. 10.
    Annual Book of ASTM Standards (2000). Vol 03.02: Wear and Erosion; Metal Corrosion. ASTM, West ConshohockenGoogle Scholar
  11. 11.
    Elsener B (1983) Moderne elektrochemische Methoden der Korrosionsprüfung. Chimia 37(5):153–159Google Scholar
  12. 12.
    Schmidt R (1994) Werkstoffverhalten in biologischen Systemen. VDI Verlag, Düsseldorf, ISBN 3-18-401194-4Google Scholar
  13. 13.
    Zwicker U (1974) Titan und Titanlegierungen. Springer, Berlin Heidelberg New York, ISBN 3-540-05233Google Scholar
  14. 14.
    Wirz J, Schmidli F, Steinemann S, and Wall R (1987) Aufbrennlegierungen im Spaltkorro-sionstest. Schweiz. Monatsschr. Zahnmedizin 97:5Google Scholar
  15. 15.
    Steinemann SG (1994) Corrosion of implant alloys. In: Buchhorn GH, Willert HG (eds) Technical Principles, Design and Safety of Joint Implants. Hogrefe & Huber Publishers, Seattle Toronto Bern Göttingen, ISBN 0-88937-090-7, pp 168–177Google Scholar
  16. 16.
    Watanabe T, Shindo T, Naito H (1988) Effect of iron content on the breakdown potential of titanium in NaCl solutions. Proc 6th World Conference on Titanium, France, pp 1735–1740Google Scholar
  17. 17.
    Mickay P and Mitton D B (1985) An electrochemical investigation of localized corrosion on titanium in chloride environments. Corrosion-NACE, Vol 41, No 1, pp 52–62CrossRefGoogle Scholar
  18. 18.
    Rahmel A, Schwenk W (1977) Korrosion und Korrosionsschutz von Stählen. Verlag Chemie, Weinheim New York, ISBN 3-527-25683-0Google Scholar
  19. 19.
    Kitayama S, Yoshiahi S, Oshiyama M (1990) Development of new crevice corrosion resistant Ti alloys. The Sumitomo Search No 41, pp 23–31Google Scholar
  20. 20.
    Simpson JP (1986) The electrochemical behavior of titanium and titanium alloys with respect to their use as surgical implant materials. In: Christel P, Meunier A, Lee AJC (eds) Biological and Biomechanical Performance of Biomaterials. Elsevier, Amsterdam, pp 63–68Google Scholar
  21. 21.
    Fraker AC, Ruff AW, Sunfg P, Van Orden AC, Speck KM (1983) Surface preparation and corrosion behavior of titanium alloys for surgical implants. In: Luckey HA, Kubli F (eds) Titanium Alloys in Surgical Implants. ASTM STP 796, ASTM, West Conshohocken, pp 206–219CrossRefGoogle Scholar
  22. 22.
    Yu SY, Scully JR (1997) Corrosion and passivity of Ti-13%Nb-13%Zr in comparison to other biomedical implant alloys. Corrosion 53(12):965–976CrossRefGoogle Scholar
  23. 23.
    Schenk R, MacDougall J (2001) (to be published)Google Scholar
  24. 24.
    Rätzer H-J and Buhl H (1984) Repassivation of titanium and titanium alloys. In: Titanium Science and Technology. Proc Fifth Internat Conf on Titanium, Vol 4, MunichGoogle Scholar
  25. 25.
    TIMET Titanium Metals Corporation (1997) Corrosion Resistance of Titanium. TIMET manufacturer brochureGoogle Scholar
  26. 26.
    Peacock DK and Graumann JS (1998) Crevice and under deposit corrosion resistance of titanium alloys in highly aggressive environments: Materials and Corrosion 49,61–68CrossRefGoogle Scholar
  27. 27.
    Griess JC (1986) Crevice corrosion of titanium in aqueous salt solutions. Corrosion-NACE, Vol 24, No 4Google Scholar
  28. 28.
    Dees DD (1984) Crevice corrosion of high-strength titanium in saturated brine. In: Industrial Applications of Titanium and Zirconium. Proc Third Conf, ASTM STP 830. ASTM West Conshohocken, pp 133–142CrossRefGoogle Scholar
  29. 29.
    Kobayashi M, Araya Y, Fujiyama S, Sunayama Y, Uno H (1980) Study on crevice corrosion of titanium. Conf Proc: Titanium ‘80, vol 4, Kyoto, Japan, 19-22 May, pp 2613–2621Google Scholar
  30. 30.
    Willert HG, Brobäck LG, Buchhorn GH, Jensen PH, Köster G, Lang I, Ochsner P, Schenk R (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Rel Res 333:51–75Google Scholar
  31. 31.
    Hallam PJB, Compson J, Shahgaldi BF, Heatley FW, Cobb JP (1999) Corrosion of Titanium Hip Implants. 1. Predictable Patterns in Aseptic Loosening, J Bone Joint Surg [BR], 81-B:SUPP III,p 319Google Scholar
  32. 32.
    Steinemann SG (1980) Corrosion of surgical implants - in vivo and in vitro tests. In: Winter GD, Leray JL, de Groot K (eds) Evaluation of Biomaterials. John Wiley & Sons, New York, pp 1–34Google Scholar
  33. 33.
    Crolet J L and Defranoux J L (1973) Calcul du temps d’incubation de la corrosion caverneuse des aciers inoxydable. Corr Sci 13:575–585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Rolf Schenk
    • 1
  1. 1.Sulzer Innotec AGWinterthurSwitzerland

Personalised recommendations