Advertisement

Characterization of Titanium Surfaces

  • Janos Vörös
  • Marco Wieland
  • Laurence Ruiz-Taylor
  • Marcus Textor
  • Donald M. Brunette
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Bulk properties of biomaterials such as non-toxicity of their constituents to cells, corrosion resistance or controlled degradability, modulus of elasticity or fatigue strength have been recognized for quite some time to be highly relevant in terms of selecting a biomaterial for a specific biomedical application. Many of the biomaterials commercially used today have a successful record of performance in a variety of applications. Titanium, used in applications as diverse as artificial joint replacement, maxillofacial reconstruction or audiological applications, is a good example. Success has been related to the development of titanium qualities that show a combination of favorable properties in terms of adequate mechanical strength, sufficient formability, excellent corrosion resistance and passivity in biological environments, and cost-effectiveness in the production of complex implant shapes (see Chaps. 2, 3, 6 and part V of this book). Bulk properties are well controlled in modern commercial fabrication of devices and despite the fact that there is a continuing search for and interest in new alloys that improve particular properties, it is generally accepted that the currently used titanium qualities do meet the requirements for safe, long-term performance in the majority of applications. Since the techniques to measure and control bulk properties such as hardness, fatigue strength or corrosion resistance are also well established and generally not specific to the materials discussed in this book, there is no direct need for a special chapter on bulk property characterization.

Keywords

Quartz Crystal Microbalance Roughness Parameter Lateral Resolution Magnetic Force Microscopy Surface Plasmon Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ratner BD (1988) The surface characterization of biomaterials: How finely can we resolve surface structure? In: Ratner BD (ed) Surface Characterization of Biomaterials. Elsevier, Amsterdam, pp 13–36Google Scholar
  2. 2.
    Ratner BD, Porter SC (1996) Surfaces in biology and biomaterials; description and characterization. In: Brash JLW (ed) Interfacial Phenomena and Bioproducts. Marc Dekker, New York, pp 57–83Google Scholar
  3. 3.
    Mclntyre NS (1977) Quantitative Surface Analysis of Materials. ASTM STP 643. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  4. 4.
    Tabor D (1981) Solid surfaces: their atomic, electronic and macroscopic properties. Contemp Phys 22:215–234Google Scholar
  5. 5.
    Lin HB, Lewis KB, Leachscampavia D, Ratner BD, Cooper SL (1993) Surface-properties of RGD-peptide grafted polyurethane block copolymers - variable take-off angle and cold-stage ESCA studies. J Biomater Sci - Polymer Ed 4:183–198Google Scholar
  6. 6.
    Sabbatini L, Zambonin PG (1993) Surface Characterization of Advanced Polymers. VCH, WeinheimGoogle Scholar
  7. 7.
    Andrade JD (1985) X-ray photoelectron spectroscopy (XPS). In: Andrade JD (eds) Surface and Interfacial Aspects of Biomedical Polymers. Plenum Press, New York, pp 105–195Google Scholar
  8. 8.
    Feldman LC, Mayer JW (1986) Fundamentals of Surface and Thin Film Analysis. North-Holland , New YorkGoogle Scholar
  9. 9.
    Briggs D, Seah MP (1990) Practical Surface Analysis. Vol 1: Auger and X-Ray Photoelectron Spectroscopy. John Wiley & Sons, ChichesterGoogle Scholar
  10. 10.
    Stöhr J (1992) NEXAFS Spectroscopy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Pireaux JJ (1993) Electron induced vibrational spectroscopy (HREELS). In: Sabbatini L,Zambonin PG (eds) Surface Characterization of Advanced Polymers. VCH, Weinheim, pp 47–82Google Scholar
  12. 12.
    Ibach H (1991) Electron Energy Loss Spectrometers. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Pemble ME (1997) Vibrational spectroscopy from surfaces. In: Vickerman JC (ed) Surface Analysis: The Principal Techniques. John Wiley & Sons, Chichester, pp 267–311Google Scholar
  14. 14.
    Briggs D, Seah MP (1992) Practical Surface Analysis. Vol 2: Ion and Neutral Spectroscopy. John Wiley & Sons, ChichesterGoogle Scholar
  15. 15.
    Vickermann JC (1997) Surface Analysis: The Principal Techniques. John Wiley & Sons, ChichesterGoogle Scholar
  16. 16.
    Bertrand P, Weng LT (1996) Time-of-flight secondary ion mass spectrometry. Mikrochim Acta [suppl] 13:167–182Google Scholar
  17. 17.
    Grimm W (1968) Eine neue Glimmentladungslampe für die optische Spektroskopie. Spec-trochim Acta 23 B:443–454Google Scholar
  18. 18.
    Marshall K, Valensi D (1995) Surface analysis - glow discharge spectroscopy. Mater World 3(10):471–473Google Scholar
  19. 19.
    Delfosse D, Aeberhard M (1997) Tiefenprofilanalyse von technischen Schichten und Ober-flächen. Oberfläche-Polysurface 7:7–10Google Scholar
  20. 20.
    Vargo TG, Gardella JA, Schmitt RL, Hook KJ, Hook TJ, Salvati L (1993) Low energy ion scattering spectrometry of polymer surface composition and structure. In: Sabbatini L, Zambonin PG (eds) Surface Characterization of Advanced Polymers. VCH, Weinheim, pp 163–180Google Scholar
  21. 21.
    Roeges NPG (1994) A Guide to Complete Interpretation of Infrared Spectra of Organic Structures. John Wiley & Sons, ChichesterGoogle Scholar
  22. 22.
    Ulman A (1991) An Introduction to Ultrathin Organic Films. Academic Press, LondonGoogle Scholar
  23. 23.
    Leckband D (1995) The surface force apparatus - a tool for probing molecular protein interactions. Nature 376: 617–618Google Scholar
  24. 24.
    Leckband D, Schmitt FJ, Israelachvili JI, Knoll W (1994) Direct force measurements of specific and nonspecific protein interactions. Biochemistry 33(15):4611–4624Google Scholar
  25. 25.
    Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, LondonGoogle Scholar
  26. 26.
    Mittal KL (1993) Contact Angle, Wettability and Adhesion. VSP, UtrechtGoogle Scholar
  27. 27.
    Wu S (1982) Polymer Interface and Adhesion. Marcel Dekker, New YorkGoogle Scholar
  28. 28.
    Neumann W, Good RJ (1979) Surface and Colloid Science. Plenum Press, New YorkGoogle Scholar
  29. 29.
    Hofer R, Textor M, Spencer ND (2000) Imaging of surface heterogeneity by the microdroplet condensation technique. Langmuir (submitted)Google Scholar
  30. 30.
    Schenk RK, Buser D (1998) Osseointegration: a reality. Periodontology 2000 17:22–35Google Scholar
  31. 31.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. J Biomed Mater Res 25:889–902Google Scholar
  32. 32.
    Wong M, Eulenberger J, Schenk R, Hunziker E (1995) Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 29:1567–1575Google Scholar
  33. 33.
    Wilke HJ, Claes L, Steinemann SG (1990) The influence of various titanium surfaces on the interface shear strength between implants and bone. In: Heimke G, Soltész U, Lee AJC (eds) Clinical Implant Materials: Advances in Biomaterials. Elsevier, Amsterdam, pp 309–314Google Scholar
  34. 34.
    Wennerberg A (1996) On Surface Roughness and Implant Incorporation. Ph.D. thesis, Göte-borg University, Göteborg, SwedenGoogle Scholar
  35. 35.
    Kieswetter K, Schwartz Z, Hummert T, Cochran D, Simpson J, Dean D, Boyan B (1996) Surface roughness modulates the local production of growth factors and cytokines by osteo-blast-like MG-63 cells. J Biomed Mater Res 32:55–63.Google Scholar
  36. 36.
    Brunette DM (1988) The effect of surface topography on cell migration and adhesion. In: Ratner BD (ed) Surface Characterization of Biomaterials, Elsevier, Amsterdam, pp 203–217Google Scholar
  37. 37.
    Thomas TR (1982) Rough Surfaces. Longman Press, London New YorkGoogle Scholar
  38. 38.
    Bennett JM, Mattsson L (1989) Introduction to Surface Roughness and Scattering. Optical Society of America, Washington D.C.Google Scholar
  39. 39.
    Whitehouse DJ (1994) Handbook of Surface Metrology. Institute of Physics Publishing, Bristol PhiladelphiaGoogle Scholar
  40. 40.
    Stout KJ (1994) Three-Dimensional Surface Topography: Measurement, Interpretation and Applications. A Survey and Bibliography. Penton Press, London Bristol PennsylvaniaGoogle Scholar
  41. 41.
    Von Weingraber H (1957) Suitability of the envelope line as a reference standard for measuring roughness. Microtechnic 11:6–17Google Scholar
  42. 42.
    Windecker R (1993) Optical autofocussing profilometer. Technisches-Messen 60:267–270Google Scholar
  43. 43.
    Pawley JB (1990) Handbook of Biological Confocal Microscopy. Plenum Press, New YorkGoogle Scholar
  44. 44.
    Wilson T (1990) Confocal Microscopy. Academic Press, Bury St Edmunds, SuffolkGoogle Scholar
  45. 45.
    Boyde A (1973) Quantitative photogrammetric analysis and qualitative stereoscopic analysis of SEM images. J Microscopy 98:452–471Google Scholar
  46. 46.
    Hudson B (1973) The application of stereo-techniques to electron micrographs. J Microscopy 98:396–401Google Scholar
  47. 47.
    Ghosh SK (1989) Electron microscopy: systems and applications. In: Karara HM, Adams LP (eds) Non-Topographic Photogrammetry. American Society for Photogrammetry and Remote Sensing, Falls Church, pp 187–201Google Scholar
  48. 48.
    Desai V (1989) Untersuchung von dreidimensionalen Rekonstruktionsverfahren in der Ras-terelektronenmikroskopie und Realisierung einer schnellen Simulation. Westfälische Wilhelms-Universität, MünsterGoogle Scholar
  49. 49.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933Google Scholar
  50. 50.
    Mate CM, Erlandsson R, McClelland GM, Chiang S (1987) Atomic scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59:1942–1945Google Scholar
  51. 51.
    Bonnel DA (1993) Scanning Tunneling Microscopy and Spectroscopy. VCH, WeinheimGoogle Scholar
  52. 52.
    Mattsson L (1997) Surface roughness and microtopography, In: Brune D, Hellborg R, Whitlow HJ, Hunderi O (eds) Surface Characterisation: A User’s Sourcebook. Scandinavian Science Publishers, Wiley-VCH, Weinheim New York Chichester Brisbane Singapore Toronto, pp 82–100Google Scholar
  53. 53.
    Stout KJ, Sullivan PJ, Dong WP, Mainsah E, Luo N, Mathia T, Zahouani H (1993) The development of methods for the characterisation of roughness in three dimensions. European Community Contract No 3374/1/0/170/90/2, University of Birmingham, BirminghamGoogle Scholar
  54. 54.
    Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int. J. Oral Maxillofac Implants 15(3):331–344Google Scholar
  55. 55.
    Wieland M (1999) Experimental Determination and Quantitative Evaluation of the Surface Composition and Topography of Medical Implant Surfaces and their Influence on Osteoblastic Cell-Surface Interactions. Ph.D. thesis, ETH Nr. 13247, Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  56. 56.
    Sayles RS, Thomas TR (1978) Surface topography as a nonstationary random process. Nature 271:431–434Google Scholar
  57. 57.
    Wieland M, Hänggi P, Hotz W, Textor M, Keller BA, Spencer ND (2000) Wavelength-dependent measurement and evaluation of surface topographies: application of a new concept of window roughness and surface transfer function. Wear 237(2):231–252Google Scholar
  58. 58.
    Wieland M, Textor M, Spencer ND, Brunette DM (2001) Wavelength-dependent roughness: a quantitative approach to characterizing the topography of rough titanium surfaces. Int J Oral Maxillofac Implants (in press)Google Scholar
  59. 59.
    Wieland M, Sittig C, Brunette DM, Textor M, Spencer ND (2000) Measurement and Evaluation of the Chemical Composition and Topography of Titanium Implant Surfaces, In: Davies JE (ed) Bone Engineering. Publisher: em squared inc, Toronto, pp 163–182Google Scholar
  60. 60.
    Vroman L, Adams AI (1969) Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid-solid interfaces. Surf Sci 16:438–446Google Scholar
  61. 61.
    Ramsden JJ (1993) Experimental methods for investigating protein adsorption kinetics at surfaces. Quart Rev Biophys 27(1):41–105Google Scholar
  62. 62.
    Brash JL, Wojciechowski PW (1996) Interfacial Phenomena and Bioproducts. Marcel Dekker , New YorkGoogle Scholar
  63. 63.
    Ulman A, Fitzpatrick LE (1996) Characterization of Organic Thin Films. Manning Publications Co. Butterworth-Heinimann, GreenwichGoogle Scholar
  64. 64.
    Welford K (1991) Surface-plasmon polaritrons and their uses. Opt Quant Elect 23(1):1–27Google Scholar
  65. 65.
    Orlowski R, Raether H (1976) The total reflection of light at smooth and rough silver films and surface plasmons. Surf Sci 54(2):303–308Google Scholar
  66. 66.
    Hanken DG, Jordan CE, Frey BL, Corn RM (1998) Surface plasmon resonance measurements of ultrathin organic films at electrode surfaces. Electroanal Chem 20:141–225Google Scholar
  67. 67.
    Jordan CE, Corn RM (1997) Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal Chem 69(7):1449–1456Google Scholar
  68. 68.
    Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal Chem 69:4939–4947Google Scholar
  69. 69.
    Kurrat R, Wälivaara B, Marti A, Textor M, Tengvall P, Ramsden JJ, Spencer ND (1998) Plasma protein adsorption on titanium: comparative in-situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids Surf B: Biointerfaces 11:187–201Google Scholar
  70. 70.
    Ramsden JJ (1993) Review of new experimental techniques for investigating random sequential adsorption. J Statist Phys 73:853–877Google Scholar
  71. 71.
    Cush R, Cronin JM, Steward WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation. Biosensors & Bioelectronics 8:347–353Google Scholar
  72. 72.
    Tompkins HG (1993) A User’s Guide to Ellipsometry. Academic Press, LondonGoogle Scholar
  73. 73.
    Jin G, Tengvall P, Lundström I, Arwin H (1995) A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions. Anal Biochem 232:69–72Google Scholar
  74. 74.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys 155:206–222Google Scholar
  75. 75.
    Buttry DA, Ward M D (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev 9(2): 1355–1379Google Scholar
  76. 76.
    Kanazawa KK, Melroy O R (1993) The quartz resonator - electrochemical applications. IBM J Res Develop 37(2):157–171Google Scholar
  77. 77.
    Höök F, Rodahl M, Brzezinski P, Kasemo B (1998) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14(4):729–734Google Scholar
  78. 78.
    McCafferty E, Wightman JP (1999) An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl Surf Sci 143(1–4):92–100Google Scholar
  79. 79.
    Bertoti I, Mohai M, Sullivan JL, Al. E (1995) Surface characterization of plasma-nitrided titanium - an XPS study. Appl Surf Sci 84(4):357–371Google Scholar
  80. 80.
    Poilleau J, Devilliers D, Garrido F, Durrand-Vidal S, Mahe E (1997) Structure and composition of passive titanium oxide films. Mater Sci Eng 47(3):235–243Google Scholar
  81. 81.
    Carley a F, Chalker PR, Riviere JC, Roberts MW (1987) The identification and characterization of mixed oxidation states at oxidized titanium surfaces by analysis of X-ray photoelectron spectra. J Chem Soc - Faraday Trans I 83:351–370Google Scholar
  82. 82.
    Wolff M, Schultze J W, Strehblow HH (1991) Low-energy implantation and sputtering of Ti02 by nitrogen and argon and the electrochemical reoxidation. Surf Interface Anal 17(10):726–736Google Scholar
  83. 83.
    Hofmann S, Sanz JM (1982) Quantitative XPS analysis of the surface layer of anodic oxides obtained during depth profiling by sputtering with 3 kV Ar+ ions. J Trace Microprobe Techniques 1:213–264Google Scholar
  84. 84.
    Chodhury T, Saied S O, Sullivan JL, Abbot a M (1989) Reduction of oxides of iron, cobalt, titanium, and niobium by low energy ion bombardment. J. Phys D 21:1185–1195Google Scholar
  85. 85.
    Sittig C (1998) Charakterisierung der Oxidschichten auf Titan und Titanlegierungen sowie deren Reaktionen in Kontakt mit biologisch relevanten Modellösungen. Ph.D. thesis, ETH Nr. 12657, Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  86. 86.
    Hernandéz De Gatica NL, Jones GL, Gardella Jr. JA (1993) Surface characterization of titanium alloys sterilized for biomedical applications. Appl Surf Sci 68:107–120Google Scholar
  87. 87.
    Lausmaa J, Kasemo B, Mattsson H (1990) Surface Spectroscopic Characterization of titanium implant materials. Appl Surf Sci 44(2):133–146Google Scholar
  88. 88.
    Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials cp Ti, Ti-6Al-7Nb and Ti-6A1-4V with different pretreatments. J Mater Sci: Mater Med 10(1):35–46Google Scholar
  89. 89.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar
  90. 90.
    Xiao SJ (1999) Tailored Organic Thin Films on Gold and Titanium. Ph.D. thesis, ETH Nr. 13058, Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  91. 91.
    Mantel M, Wightman JP (1994) Influence of the surface-chemistry on the wettability of stainless-steel. Surf. Interface Anal. 21(9):595–605Google Scholar
  92. 92.
    Raikar GN, Gregory JC, Ong JL, Lucas LC, Lemons JE, Kawahara D, Nakamura M (1995) Surface characterization of titanium implants. J Vac Sci Technol - Vacuum Surfaces and Films 13(5):2633–2637Google Scholar
  93. 93.
    Ameen a P, Short RD, Jhon R, Al E (1993) The surface-analysis of implant materials: the surface-composition of a titanium dental implant material. Clin Oral Implant Res 4(3):144–150Google Scholar
  94. 94.
    Gresch R, Muller-Warmuth W (1979) X-ray photoelectron spectroscopy of sodium phosphate glasses. J. Non-Cryst Solids 34:127–136Google Scholar
  95. 95.
    Winkelmann M, Rodahl M, Gold J, Kasemo B (2000) (unpublished)Google Scholar
  96. 96.
    Kasemo B, Lausmaa J (1986) Surface science aspects on inorganic biomaterials CRC Crit Rev Biocompat 2:335–380Google Scholar
  97. 97.
    Pilliar RM (1998) Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dent 7(4):305–314Google Scholar
  98. 98.
    Chehroudi B, Mc Donnel D, Brunette DM (1997) The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res 34(3):279–290Google Scholar
  99. 99.
    Wilkinson CDW, Curtis ASG, Crossan J (1998) Nanofabrication in cellular engineering. J Vac Sci Technol B16(6):3132–3136Google Scholar
  100. 100.
    DIN 4768 (1990) Determination of Surface Roughness Values of the Parameters Ra, Rz, Rmax by Means of Electrical Contact (Stylus) Instruments (Ermittlung der Rauheitskenn-grössen Ra, Rz, Rmax mit elektrischen Tastschnittgeräten). Beuth Verlag GmbH, BerlinGoogle Scholar
  101. 101.
    Kurrat R, Textor M, Ramsden JJ, Böni P, Spencer ND (1997) Instrumental improvements in optical waveguide lightmode spectroscopy (OWLS) for the study of biomolecule adsorption. Rev Sci Instrum 68(5):2172–2176Google Scholar
  102. 102.
    Kurrat R (1998) Adsorption of Biomolecules on Titanium Oxide Layers in Biological Model Solutions. Ph.D. thesis, ETH Nr. 12891, Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  103. 103.
    Höök F, Rodahl M, Vörös J, Kurrat R, Böni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2000) A comparative study of protein adsorption kinetics and saturation uptake on titanium oxide surfaces using in situ ellipsometry, optical waveguide light-mode spectroscopy, and the quartz crystal microbalance/dissipation techniques. Colloids Surf B: Biointerfaces (submitted)Google Scholar
  104. 104.
    Vörös J, Kurrat R (2000) (unpublished)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Janos Vörös
    • 1
  • Marco Wieland
    • 2
  • Laurence Ruiz-Taylor
    • 3
  • Marcus Textor
    • 1
  • Donald M. Brunette
    • 2
  1. 1.Department of Materials, Laboratory for Surface Science and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  2. 2.Faculty of DentistryUniversity of British ColumbiaVancouverCanada
  3. 3.Zyomyx Inc.HaywardUSA

Personalised recommendations