Skip to main content

Titanium-Nickel Shape Memory Alloys in Medical Applications

  • Chapter
Book cover Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Shape memory alloys (SMAs) are special metallic materials, which spontaneously recover shape after being subjected to macroscopic deformation higher than their elastic limit. Recovery of shape may occur after heating or after release of loads. Applied deformation can be quite complex. Combinations of different deformation sequences are as readily recoverable as simple tension or compression. Numerous alloy systems, polymers, and ceramics have been found to exhibit shape memory behavior [110].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warlimont H, Delaey L, Krishnan RV, Tas H (1974) Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. J Mater Sci 9:1521-1556

    Google Scholar 

  2. Perkins J (ed) (1975) Shape Memory Effect in Alloys. Plenum Press, New York

    Google Scholar 

  3. Otsuka K, Shimizu K (1986) Pseudoelasticity and shape memory effects in alloys. Int Met Rev 31(3):93-104

    CAS  Google Scholar 

  4. Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ International 29:353-377

    CAS  Google Scholar 

  5. Wayman CM (1992) Shape memory and related phenomena. Progr Mater Sci 36:203-224

    CAS  Google Scholar 

  6. Duerig T, Melton K, Stoeckel D, Wayman CM (eds) (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman, London

    Google Scholar 

  7. Pelton AR, Hodgson D, Duerig T (eds) (1995) Proc of Conf on Shape Memory and Super-elastic Technologies 94 (SMST-94). International Organization on Shape Memory and Superelastic Technologies (SMST), Pacific Grove CA

    Google Scholar 

  8. Gotthardt R, Van Humbeeck J (eds) (1995) Proc Int Conf on Martensitic Transformation (ICOMAT’95). Journal de Physique IV Volume 5, Colloque C8, Supplement au Journal de Physique III, nº 12

    Google Scholar 

  9. Pelton AR, Hodgson D, Russel S, Duerig T (eds) (1997) Proc of Conf on Shape Memory and Superelastic Technologies 97 (SMST-97). International Organization on Shape Memory and Superelastic Technologies (SMST), Pacific Grove CA

    Google Scholar 

  10. Otsuka K, Wayman CM (eds) (1998) Shape Memory Materials. University Press, Cambridge

    Google Scholar 

  11. Castelman LS, Motzkin SM (1981) The biocompatibility of nitinol. In: Williams DF (ed) Biocompatibility of Clinical Implant Materials, vol I, pp 129-154

    Google Scholar 

  12. Andreasen GF, Morrow RE (1978) Laboratory and clinical analyses of nitinol wire. American J Orthodontics 73:142-151

    CAS  Google Scholar 

  13. 13.Proceedings of the International Conference on Medical Applications of Shape Memory Alloys (1990). Shanghai Iron and Steel Research Institute, Shanghai

    Google Scholar 

  14. Gyunter VE, Dambaev GC, Sysoljatin PG et al (1998) Medicinskie materialy i implantaty s pamjatyu formy (Medical materials and implants with shape memory), Izdatelstvo Tom-skogo Universiteta, Tomsk

    Google Scholar 

  15. Gjunter VE (1999) private communication

    Google Scholar 

  16. Bensman G (1999) private communication

    Google Scholar 

  17. Lu S (1990) Medical applications of Ni-Ti alloys in China. In: [6], pp 445-451

    Google Scholar 

  18. Jia-long X, Jin-ling J (1990) Investigation and development of SMA in Shanghai Iron and Steel Research Institute. In [13], pp 2-12

    Google Scholar 

  19. Ming Z, Jinfang G, Xujun M, Guansen Y (1994) Medical applications of SMA in Beijing General Research Institute for Non-Ferrous Metals. Proc of Int Symp Shape Memory Materials’94. International Academic Publishers, Beijing, pp 602-607

    Google Scholar 

  20. Ricart O (1997) The use of a memory shape staple in crevical anterior fusion. In [9], pp 623-626

    Google Scholar 

  21. Musialek J, Filip P, Nieslanik J (1998) Titanium-nickel shape memory clamps in small bone surgery. Archives of Orthopaedic and Trauma Surgery 117(6/7):341-344

    CAS  Google Scholar 

  22. Olson GB, Owen WS (eds) (1992) Martensite. ASM International, USA

    Google Scholar 

  23. Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta metall 36:1873-1889

    CAS  Google Scholar 

  24. Krishnan M (1998) The self-accommodating martensitic microstructure of Ni-Ti shape memory alloys. Acta materialia 46:1437-1455

    Google Scholar 

  25. Christian JW (1982) Deformation by moving interfaces. Metall Trans A13:509-538

    CAS  Google Scholar 

  26. Nishida M, Yamauchi K, Itai I, Ohgi H, Chiba A (1995) High resolution electron microscopy studies of twin boundary structures in B19’ martensite in the Ti-Ni shape memory alloy. Acta metall mater 43:1229-1234

    CAS  Google Scholar 

  27. Zheng YF, Cai W, Zhang JX, Zhao LC, Ye HQ (2000) Microstructural development inside the stress induced martensite variant in a Ti-Ni-Nb shape memory alloy. Acta materialia 15:1409-1425

    Google Scholar 

  28. Wayman CM, Shimizu K (1972) The shape memory (marmem) effect in alloys. Metal Science Journal 6:175-183

    CAS  Google Scholar 

  29. Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys - Part I: Self-accommodation. Acta Metall 37:1873-1884

    CAS  Google Scholar 

  30. Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys - Part II: Variants coalescence and shape recovery. Acta Metall 37:1885-1890

    CAS  Google Scholar 

  31. Filip P, Mazanec K (1996) The two way memory effect in TiNi alloys, Scripta materialia 35:349-354

    CAS  Google Scholar 

  32. Liu Yinong, Liu Yong, Van Humbeeck J (1998) Two-way shape memory effect developed by martensite deformation in TiNi. Acta materialia 47:199-209

    Google Scholar 

  33. Massalski TB, Okamoto H, Subramanian et al (eds) (1990) Binary Alloy Phase Diagrams. ASM International, Materials Park OH

    Google Scholar 

  34. Otsuka K, Ren X (1999) Martensite in nonferrous shape memory alloys. Mat Sci Eng A 273-275:89-105

    Google Scholar 

  35. Funakubo H (ed) (1987) Shape Memory Alloys. Gordon and Breach, New York

    Google Scholar 

  36. Tadaki T, Nakata Y, Shimizu K (1995) Occupancy sites of constituent atoms and their effects on the martensitic transformations in some Cu-based and TiNi-based ternary alloys. In [8], pp 81-90

    Google Scholar 

  37. Pelton BL, Slater T, Pelton A (1997) Effects of Hydrogen in TiNi. In [9], pp 395–400

    Google Scholar 

  38. Nishida M, Wayman CM, Honma T (1986) Precipitation process in near-equiatomic TiNi shape memory alloys. Met Trans A17:1505-1515

    Google Scholar 

  39. Filip P, Mazanec K (1991) Effects of work hardening and heat treatment on the phase transformation behaviour of Ti-50.6 at% Ni alloys. Mater Sci Eng A 141:L5-L8

    Google Scholar 

  40. Trepmann D, Hornbogen E, Wurtzel D (1995) The effect of combined recrystallization and precipitation processes on the functional and structural properties in NiTi alloys. In [8], pp 569-574

    Google Scholar 

  41. Khachin VN, Gjunter VP, Sivokha VP, Savvinov AS (1979) Lattice instability, martensitic transformation, plasticity and anelasticity of TiNi. Proceedings of ICOMAT’79, Cambridge Massachusetts, pp 474-479

    Google Scholar 

  42. Todoroki T, Tamura T (1987) Effect of heat treatment and cold working on the phase transformation in TiNi alloy. Trans Jap Inst of Metals 28(2):83-94

    Google Scholar 

  43. Filip P, Mazanec K (1995) Influence of work hardening and heat treatment on the substructure and deformation behavior of TiNi shape memory alloys. Scripta Metallurgica et Materialia 32:1375-1380

    CAS  Google Scholar 

  44. Filip P, Matysek V, Mazanec K (1992) A Contribution to the Study of the Substructure Characteristics of Work Hardened TiNi Alloys. Z Metallkd 83(12):877-880

    CAS  Google Scholar 

  45. Filip P, Mazanec K (1995) The influence of thermal and mechanical treatment on the reactive stresses in TiNi shape memory alloys. J Mater Process Technol 53:139-146

    Google Scholar 

  46. Kitamura K, Miyazaki S, Iwai H, Kohl M (1999) Effect of rolling reduction on the deformation texture and anisotropy of transformation strain in Ti-50.2 at. Ni thin plates. Mat Sci Eng A 273-275:758-762

    Google Scholar 

  47. Filip P, Mazanec K (1994) Influence of cycling on the reversible martensitic transformation and shape memory phenomena in TiNi alloys. Scripta Metallurgica et Materialia 30:67-72

    CAS  Google Scholar 

  48. Miyazaki S, Sugaya Y, Otsuka K (1988) Effects of various factors on fatigue life of TiNi alloys. Proc Internat Meeting on Advanced Materials, MRS Tokyo, pp 251-256

    Google Scholar 

  49. Miyazaki S, Otsuka K (1986) Deformation and transition behavior associated with the R-phase in Ti-Ni alloys. Met Trans A17:53-63

    Google Scholar 

  50. Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of TiNi alloys. Acta Metall 34:2045-2051

    CAS  Google Scholar 

  51. Miyazaki S (1990) Degradation of shape memory effect. Mater Sci 27:57-65. And in: TiNi Alloys. Proc Internat Meeting on Advanced Materials, MRS Tokyo, pp 251-256

    Google Scholar 

  52. Miyazaki S, Sugaya Y, Otsuka K (1988) Mechanism of fatigue crack nucleation. In: TiNi Alloys. Proc Internat Meeting on Advanced Materials MRS, Tokyo, pp 257-262

    Google Scholar 

  53. Sekiguchi Y, Dohi T, Funakubo H (1984) Shape memory alloys and it’s medical applications. Technique of Metal Surface 35(8): 11-19

    Google Scholar 

  54. Oshida Y, Miyazaki S (1991) Corrosion and biocompatibility of shape memory alloys. Corrosion Engineering 40:1009-1025

    Google Scholar 

  55. Jinfang G, Ming Z, Xujun M (1997) Designs and medical applications of TiNi SMA self expanding stents in China. In [9], pp 573-578

    Google Scholar 

  56. Li C, Wu KH (1995) Corrosion behavior of Ni-Ti shape memory alloy in artificial seawater. In [7], pp 227-232

    Google Scholar 

  57. Filip P, Tomasek V, Mazanec K (1994) Corrosion properties of shape memory TiNi alloys. Metallic materials 32(2):63-68

    Google Scholar 

  58. Rondelli G (1996) Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17:2003-2008

    CAS  Google Scholar 

  59. Dutta RS, Madangopal K, Gadiyar HS, Banerjee S (1993) Biocompatibility of TiNi shape memory alloy. British Corrosion Journal 28(3):217-221

    CAS  Google Scholar 

  60. Endo K, Sachdeva R, Araki Y, Ohno H (1995) Corrosion behavior of Ni-Ti shape memory alloy in a cell culture medium. In [7], pp 197-201

    Google Scholar 

  61. Abiko Y, Sachdeva R, Endo K, Araki Y, Kaku T, Ohno H (1995) Corrosion resistance and biological evaluation of Ni-Ti alloys with varied surface textures. In [7]: pp 203-208

    Google Scholar 

  62. Trepanier C, Tabrizian M, Yahia LH, Bilodeau L, Piron DL (1997) Improvement of the corrosion resistance of NiTi stents by surface treatments. In: George EP, Gotthardt R, Otsuka K et al (eds) Materials for Smart Systems. Mat Res Soc Pittsburgh PA Symp, vol 459, pp 363-368

    Google Scholar 

  63. Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR (1998) Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 19:761-769

    CAS  Google Scholar 

  64. Wang XX, Zhao LC, Chai W (1997) Corrosion characteristics of Ti-Ni-based shape memory alloys in saline solution. In [9], pp 379-382

    CAS  Google Scholar 

  65. Villermaux F, Tabrizian M, Yahia LH, Meunier M, Piron DL (1997) Excimer laser treatment of NiTi shape memory alloy biomaterials. Appl Surf Sci 109/110:62-66

    CAS  Google Scholar 

  66. Oshida Y, Sachdeva RCL, Miyazaki S (1992) Microanalytical characterization and surface modification of TiNi orthodontic archwires. Bio-Medical Materials and Engineering 2:51-69

    CAS  Google Scholar 

  67. Endo K, Sachdeva R, Araki Y, Ohno H (1995) Corrosion behavior of Ni-Ti shape memory alloy in a cell culture medium. In [7], pp 197-201

    Google Scholar 

  68. Oshida Y, Sachdeva R, Miyazaki S (1992) Changes in contact angles as a function of time on some pre-oxidized biomaterials. J Mater Sci: Mater Med 3:306-312

    CAS  Google Scholar 

  69. Oshida Y, Sachdeva R, Miyazaki S, Daly J (1993) Effects of shot-peening on surface contact angles of biomaterials. J Mater Sci: Mater Med 4:443-447

    CAS  Google Scholar 

  70. Grant DM, Green SM, Wood JV (1995) The surface performance of shot peened and ion implanted NiTi shape memory alloy. Acta metall mater 43:1045-1051

    CAS  Google Scholar 

  71. Green SM, Grant DM, Wood JV (1997) XPS characterization of surface modified Ni-Ti shape memory alloy. Mat Sci Eng A 224:21-26

    Google Scholar 

  72. Lombardi S, Yahia LH, Klemberg-Sapieha JE, Piron DL, Selmani A, Rivard CH, Drouin G (1995) Improvement in corrosion resistance of Ni-Ti shape memory alloy by plasma surface modification. In [7], pp 221-227

    Google Scholar 

  73. Endo K, Sachdeva R, Araki Y, Ohno H (1995) Effects of titanium nitride coating on surface and corrosion characteristics of Ni-Ti alloy. In [7], pp 233-237

    Google Scholar 

  74. Trigwell S, Selvaduray G (1997) Effect of surface finish on the corrosion of NiTi alloy for biomedical applications. In [9], pp 383-388

    Google Scholar 

  75. Su YY, Raman V (1997) The quest for nitinol wire surface quality for medical applications. In [9], pp 389-394

    Google Scholar 

  76. Filip P, Musialek J, Lorethova H, Nieslanik J, Mazanec K (1996) TiNi shape memory clamps with optimized structure parameters. J Mater Sci: Mater Med 7:657-663

    CAS  Google Scholar 

  77. Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273-275:149-160

    Google Scholar 

  78. Ohkata I, Tamura H ( 1997) The R-phase transformation in TiN i shape memory alloy and its application. In: George EP, Gotthardt R, Otsuka K et al (eds) Materials for Smart Systems. Mat Res Soc Pittsburg PA Symp, vol 459, pp 345-355

    Google Scholar 

  79. Meylaers P, Moorleghem, VW, Chandrasekaran M (1995) CADSMATM: Computer aided design of shape memory applications. In [7], pp 127-132

    Google Scholar 

  80. Tanaka K (1986) Constitutive model of shape memory behavior. Res Mechanica 18:251-263

    Google Scholar 

  81. Stalmans R, Delaey L, Van Humbeeck J (1997) Modelling of adaptive composite materials with embedded shape memory alloy wires. Mat Res Symp Proc, vol 459. Materials Research Society Pittsburgh PA, pp 119-130

    Google Scholar 

  82. Shabalovskaya SA (1995) Biological aspects of TiNi alloy surfaces. In [8], pp 1199-1204

    Google Scholar 

  83. Armitage DA, Grant DM, Parker TL, Parker KG (1997) Haemocompatibility of surface modified NiTi. In [9], pp 411-416

    Google Scholar 

  84. Filip P, Melicharek R, Kneissl AC, Mazanec K (1997) Hydroxyapatite coatings on TiNi shape memory alloys. Z Metallkd 88(2):131-135

    CAS  Google Scholar 

  85. Castelman LS, Motzkin SM, Alicandri FP, Bonawit VL (1976) Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res 10:695-731

    Google Scholar 

  86. Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Medical Materials and Engineering 6:267-289

    CAS  Google Scholar 

  87. Filip P, Musialek J, Michalek K, Yen M, Mazanec K (1999) TiAlV/Al203/TiNi shape memory alloy smart composite biomaterials for orthopedic surgery. Mat Sci Eng A 273-275:769-774

    Google Scholar 

  88. Takeshita F, Takata H, Ayukawa Y, Suetsugu T (1997) Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol). Biomaterials 18:21-25

    CAS  Google Scholar 

  89. Trepanier C, Leung TK, Tabrizian M, Yahia LH, Bienvenu JG, Tanguay JF, Piron DL, Bilo-deau L (1997) In vivo biocompatibility study of NiTi stents. In [9], pp 423-428

    Google Scholar 

  90. Simske SJ, Sachdeva R, Brady P, Gyunter VE (1995) Cranial bone apposition and ingrowth in a porous Ni-Ti implant. In [7], pp 449-454

    Google Scholar 

  91. Rhalmi S, Tabrizian M, Odin M, Broxup B, Rivard ChH, Yahia LH (1997) Implantation of porous NiTi in rabbit tibias. Program and Abstracts of the 1st International Symposium on Advanced Biomaterials, Ecole Polytechnique Montreal, Montreal, p 42

    Google Scholar 

  92. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, Van Horn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18:1115-1120

    CAS  Google Scholar 

  93. Latal D, Mraz J, Zerhau P, Susani M, Marberger M (1994) Nitinol urethral stents: long-term results in dogs. Urol Res 22:295-300

    CAS  Google Scholar 

  94. Dunlap CL, Vincent SK, Barker BF (1989) Allergic reaction to orthodontic wire: report of case. J Am Dent Assoc 118:449-450

    CAS  Google Scholar 

  95. Al-Waheidi EMH (1995) Allergic reaction to nickel orthodontic wires: a case report. Quintessence International 26:385-387

    CAS  Google Scholar 

  96. Enatsu K (1986) Utilization of Ni-Ti shape memory alloy for ossicular prosthesis and its biocompatibility with the incus of cats. Otologia Fukuoka 32:256-269

    Google Scholar 

  97. Green SM (1995) The Surface Performance of Ni-Ti Shape Memory Alloys. Ph. D. thesis, University of Nottingham; Nottingham

    Google Scholar 

  98. Shabalovskaya S, Anderegg J, Cunnick J (1997) X-ray spectroscopic and in vitro study of porous TiNi. In [9], pp 401-406

    Google Scholar 

  99. Ryhänen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pemu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures J Biomed Mater Res 35:451-457

    Google Scholar 

  100. Putters JLM, Kaulesar Sukul DMKS, de Zeeuw GR, Bijma A, Besselink PA (1992) Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium: a biocompatibility estimation. Eur Surg Res 24:378-382

    CAS  Google Scholar 

  101. Assad M, Yahia LH, Rivard CH, Lemieux N (1998) In vitro biocompatibility assessment of a nickel-titanium alloy using electron microscopy in situ end-labeling (EN-ISEL). J Biomed Mater Res 41:154-161

    CAS  Google Scholar 

  102. Yachia D (1993) The use of urethral stents for the treatment of urethral strictures. Annales de Urologie 27(4):245-250

    CAS  Google Scholar 

  103. Poulsen Al, Schou J, Ovesen H et al. (1993) Memokath: a second generation of intraprostatic spirals. British J Urology 72(3):331-334

    CAS  Google Scholar 

  104. Rossi P, Bezzi M, Ross M et al. (1994) Metallic stents in malignant biliary obstruction: results of a multicenter European study of 240 patients. J Vascular & Interventional Radiology 5 (2):279-285

    CAS  Google Scholar 

  105. Dotter CJ, Buschmann RW, McKinney MK et al (1983) Transluminal expandable nitinol coil stent grafting: primary report. Radiology 147:259-260

    CAS  Google Scholar 

  106. Kleshinski SJ, Harry JD (1997) Medical stenting: A synthesis of design principles. In [9], pp 561-566

    Google Scholar 

  107. Yanagihara K, Mizuno H, Wada H, Hitomi S (1997) Tracheal stenosis treated with self-expanding nitinol stent Ann Thorac Surg 63:1786-1790

    CAS  Google Scholar 

  108. Trowers EA, Dar S, Hodges D (1997) Tandem expandable stent technique for a fractured nitinol stent. Gastrointestinal endoscopy 45(2):217-218

    CAS  Google Scholar 

  109. Bramfitt JE, Hess RL (1995) A novel heat activated recoverable temporary stent (HARTS System). In [7], pp 435-441

    Google Scholar 

  110. Simon M, Kaplow R, Salzman E et al. (1977) A vena cava filter using shape memory alloy. Experimental aspects Radiology 125(1):87-94

    CAS  Google Scholar 

  111. Meltzer A, Stöckel D (1995) Performance improvement of surgical instrumentation through the use of Ni-Ti materials. In [7], pp 401-410

    Google Scholar 

  112. Moran SS (1995) Flexible instruments in minimal access surgery. In [7], pp 411-415

    Google Scholar 

  113. Frank TG, Xu W, Cushieri A (1997) Shape memory applications in minimal access surgery - The Dundee experience. In [9], pp 509-514

    Google Scholar 

  114. Ryklina EP, Morozova TV, Khmelevskaya et al. (1997) New devices for endosurgery based on shape meory and superelasticity. In [9], pp 539-541

    Google Scholar 

  115. Zadno R, Simpson JW (1997) The effect of material selection on torquability of guidewires. In [9], pp 437-441

    Google Scholar 

  116. Ueki T, Mogi H, Horikawa H (1997) Torsion property of Ni-Ti superelastic alloy tubes. In [9], pp 467-471

    Google Scholar 

  117. Dario P, Montesi MC (1995) Shape memory alloy microactuators for minimal invasive surgery. In [7], pp 427-433

    Google Scholar 

  118. Peirs J, Reynaerts D, Van Humbeeck J, Van Brussel H (1997) Design of a modular actuator for minimal invasive surgery. In [9], p 52

    Google Scholar 

  119. Patel U, Kellet MJ (1994) The misplaced double J ureteric stent: technique for repositioning using nitinol “gooseneck” snare. Clinical Radiology 49(5):333-336

    CAS  Google Scholar 

  120. Ley TJ, Stice JD (1991) Development of a retractable bone probe using shape memory alloys. In [13], pp 399-402

    Google Scholar 

  121. Filip P, Lafdi K (1997) TiNi/carbon microcomposites as shape memory and pseudoelastic materials. Program and abstracts of 1st International Symposium on Advanced Biomaterials (ISAB’97) Ecole Polytechnique Montreal, p 92

    Google Scholar 

  122. Reynaerts D, Peirs J, Van Brussel H (1997) An implantable drug delivery system based on shape memory alloy microactuation. Sensors and Actuators A61(1-3):455-462

    Google Scholar 

  123. Filip P, Pech J, Mazanec K (1994) Physical metallurgy of TiNi shape memory alloys applied for dynamic splints. Berg- und Hüttenmänische Monatshefte 139:174-179

    CAS  Google Scholar 

  124. Makaran JE, Dittmer DK, Buchal RO (1993) The smart wrist-hand orthosis (WHO) for quadriplegic patients. Journal of Prosthetics and Orthotics 5(3):73-76

    Google Scholar 

  125. Takami M, Fukui K, Saitou S et al. (1992) Application of a shape memory alloy to hand splinting. Prosthetics & Orthotics International 16(l):57-63

    CAS  Google Scholar 

  126. Soares AB, Brash HM, Gow D (1997) The application of SMA in the design of prosthetic devices. In [9], pp 257-262

    Google Scholar 

  127. Bensmann G, Baumgart F, Haasters J (1983) Nickel-titanium osteosynthesis clips. Medical Focus Vogel Verlag, Würzburg (3):7-10

    Google Scholar 

  128. Kuo PP, Yang PJ, Zhong YF, Yang HB, Yu YF, Dai KR, Hong WQ, Ke MZ, Cai TD, Tao JC (1989) The use of nickel-titanium alloy in orthopaedic surgery in China. Orthopaedics 12:116-126

    Google Scholar 

  129. Schmerling MA, Wilkov MA, Sanders AE (1976) Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis. J Biomed Mater Res 10:879-892

    CAS  Google Scholar 

  130. Haasters J, von Salis-Soglio G, Bensmann G (1990) The use of Ni-Ti as an implant material in orthopedics. In [6], pp 426-444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Filip, P. (2001). Titanium-Nickel Shape Memory Alloys in Medical Applications. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics