Titanium-Nickel Shape Memory Alloys in Medical Applications

  • Peter Filip
Part of the Engineering Materials book series (ENG.MAT.)


Shape memory alloys (SMAs) are special metallic materials, which spontaneously recover shape after being subjected to macroscopic deformation higher than their elastic limit. Recovery of shape may occur after heating or after release of loads. Applied deformation can be quite complex. Combinations of different deformation sequences are as readily recoverable as simple tension or compression. Numerous alloy systems, polymers, and ceramics have been found to exhibit shape memory behavior [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].


Shape Memory Alloy Shape Memory Effect Shape Recovery NiTi Alloy TiNi Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warlimont H, Delaey L, Krishnan RV, Tas H (1974) Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. J Mater Sci 9:1521-1556Google Scholar
  2. 2.
    Perkins J (ed) (1975) Shape Memory Effect in Alloys. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Otsuka K, Shimizu K (1986) Pseudoelasticity and shape memory effects in alloys. Int Met Rev 31(3):93-104Google Scholar
  4. 4.
    Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ International 29:353-377Google Scholar
  5. 5.
    Wayman CM (1992) Shape memory and related phenomena. Progr Mater Sci 36:203-224Google Scholar
  6. 6.
    Duerig T, Melton K, Stoeckel D, Wayman CM (eds) (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman, LondonGoogle Scholar
  7. 7.
    Pelton AR, Hodgson D, Duerig T (eds) (1995) Proc of Conf on Shape Memory and Super-elastic Technologies 94 (SMST-94). International Organization on Shape Memory and Superelastic Technologies (SMST), Pacific Grove CAGoogle Scholar
  8. 8.
    Gotthardt R, Van Humbeeck J (eds) (1995) Proc Int Conf on Martensitic Transformation (ICOMAT’95). Journal de Physique IV Volume 5, Colloque C8, Supplement au Journal de Physique III, nº 12Google Scholar
  9. 9.
    Pelton AR, Hodgson D, Russel S, Duerig T (eds) (1997) Proc of Conf on Shape Memory and Superelastic Technologies 97 (SMST-97). International Organization on Shape Memory and Superelastic Technologies (SMST), Pacific Grove CAGoogle Scholar
  10. 10.
    Otsuka K, Wayman CM (eds) (1998) Shape Memory Materials. University Press, CambridgeGoogle Scholar
  11. 11.
    Castelman LS, Motzkin SM (1981) The biocompatibility of nitinol. In: Williams DF (ed) Biocompatibility of Clinical Implant Materials, vol I, pp 129-154Google Scholar
  12. 12.
    Andreasen GF, Morrow RE (1978) Laboratory and clinical analyses of nitinol wire. American J Orthodontics 73:142-151Google Scholar
  13. 13.Proceedings of the International Conference on Medical Applications of Shape Memory Alloys (1990). Shanghai Iron and Steel Research Institute, ShanghaiGoogle Scholar
  14. 14.
    Gyunter VE, Dambaev GC, Sysoljatin PG et al (1998) Medicinskie materialy i implantaty s pamjatyu formy (Medical materials and implants with shape memory), Izdatelstvo Tom-skogo Universiteta, TomskGoogle Scholar
  15. 15.
    Gjunter VE (1999) private communicationGoogle Scholar
  16. 16.
    Bensman G (1999) private communicationGoogle Scholar
  17. 17.
    Lu S (1990) Medical applications of Ni-Ti alloys in China. In: [6], pp 445-451Google Scholar
  18. 18.
    Jia-long X, Jin-ling J (1990) Investigation and development of SMA in Shanghai Iron and Steel Research Institute. In [13], pp 2-12Google Scholar
  19. 19.
    Ming Z, Jinfang G, Xujun M, Guansen Y (1994) Medical applications of SMA in Beijing General Research Institute for Non-Ferrous Metals. Proc of Int Symp Shape Memory Materials’94. International Academic Publishers, Beijing, pp 602-607Google Scholar
  20. 20.
    Ricart O (1997) The use of a memory shape staple in crevical anterior fusion. In [9], pp 623-626Google Scholar
  21. 21.
    Musialek J, Filip P, Nieslanik J (1998) Titanium-nickel shape memory clamps in small bone surgery. Archives of Orthopaedic and Trauma Surgery 117(6/7):341-344Google Scholar
  22. 22.
    Olson GB, Owen WS (eds) (1992) Martensite. ASM International, USAGoogle Scholar
  23. 23.
    Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta metall 36:1873-1889Google Scholar
  24. 24.
    Krishnan M (1998) The self-accommodating martensitic microstructure of Ni-Ti shape memory alloys. Acta materialia 46:1437-1455Google Scholar
  25. 25.
    Christian JW (1982) Deformation by moving interfaces. Metall Trans A13:509-538Google Scholar
  26. 26.
    Nishida M, Yamauchi K, Itai I, Ohgi H, Chiba A (1995) High resolution electron microscopy studies of twin boundary structures in B19’ martensite in the Ti-Ni shape memory alloy. Acta metall mater 43:1229-1234Google Scholar
  27. 27.
    Zheng YF, Cai W, Zhang JX, Zhao LC, Ye HQ (2000) Microstructural development inside the stress induced martensite variant in a Ti-Ni-Nb shape memory alloy. Acta materialia 15:1409-1425Google Scholar
  28. 28.
    Wayman CM, Shimizu K (1972) The shape memory (marmem) effect in alloys. Metal Science Journal 6:175-183Google Scholar
  29. 29.
    Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys - Part I: Self-accommodation. Acta Metall 37:1873-1884Google Scholar
  30. 30.
    Miyazaki S, Otsuka K, Wayman CM (1989) The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys - Part II: Variants coalescence and shape recovery. Acta Metall 37:1885-1890Google Scholar
  31. 31.
    Filip P, Mazanec K (1996) The two way memory effect in TiNi alloys, Scripta materialia 35:349-354Google Scholar
  32. 32.
    Liu Yinong, Liu Yong, Van Humbeeck J (1998) Two-way shape memory effect developed by martensite deformation in TiNi. Acta materialia 47:199-209Google Scholar
  33. 33.
    Massalski TB, Okamoto H, Subramanian et al (eds) (1990) Binary Alloy Phase Diagrams. ASM International, Materials Park OHGoogle Scholar
  34. 34.
    Otsuka K, Ren X (1999) Martensite in nonferrous shape memory alloys. Mat Sci Eng A 273-275:89-105Google Scholar
  35. 35.
    Funakubo H (ed) (1987) Shape Memory Alloys. Gordon and Breach, New YorkGoogle Scholar
  36. 36.
    Tadaki T, Nakata Y, Shimizu K (1995) Occupancy sites of constituent atoms and their effects on the martensitic transformations in some Cu-based and TiNi-based ternary alloys. In [8], pp 81-90Google Scholar
  37. 37.
    Pelton BL, Slater T, Pelton A (1997) Effects of Hydrogen in TiNi. In [9], pp 395–400Google Scholar
  38. 38.
    Nishida M, Wayman CM, Honma T (1986) Precipitation process in near-equiatomic TiNi shape memory alloys. Met Trans A17:1505-1515Google Scholar
  39. 39.
    Filip P, Mazanec K (1991) Effects of work hardening and heat treatment on the phase transformation behaviour of Ti-50.6 at% Ni alloys. Mater Sci Eng A 141:L5-L8Google Scholar
  40. 40.
    Trepmann D, Hornbogen E, Wurtzel D (1995) The effect of combined recrystallization and precipitation processes on the functional and structural properties in NiTi alloys. In [8], pp 569-574Google Scholar
  41. 41.
    Khachin VN, Gjunter VP, Sivokha VP, Savvinov AS (1979) Lattice instability, martensitic transformation, plasticity and anelasticity of TiNi. Proceedings of ICOMAT’79, Cambridge Massachusetts, pp 474-479Google Scholar
  42. 42.
    Todoroki T, Tamura T (1987) Effect of heat treatment and cold working on the phase transformation in TiNi alloy. Trans Jap Inst of Metals 28(2):83-94Google Scholar
  43. 43.
    Filip P, Mazanec K (1995) Influence of work hardening and heat treatment on the substructure and deformation behavior of TiNi shape memory alloys. Scripta Metallurgica et Materialia 32:1375-1380Google Scholar
  44. 44.
    Filip P, Matysek V, Mazanec K (1992) A Contribution to the Study of the Substructure Characteristics of Work Hardened TiNi Alloys. Z Metallkd 83(12):877-880Google Scholar
  45. 45.
    Filip P, Mazanec K (1995) The influence of thermal and mechanical treatment on the reactive stresses in TiNi shape memory alloys. J Mater Process Technol 53:139-146Google Scholar
  46. 46.
    Kitamura K, Miyazaki S, Iwai H, Kohl M (1999) Effect of rolling reduction on the deformation texture and anisotropy of transformation strain in Ti-50.2 at. Ni thin plates. Mat Sci Eng A 273-275:758-762Google Scholar
  47. 47.
    Filip P, Mazanec K (1994) Influence of cycling on the reversible martensitic transformation and shape memory phenomena in TiNi alloys. Scripta Metallurgica et Materialia 30:67-72Google Scholar
  48. 48.
    Miyazaki S, Sugaya Y, Otsuka K (1988) Effects of various factors on fatigue life of TiNi alloys. Proc Internat Meeting on Advanced Materials, MRS Tokyo, pp 251-256Google Scholar
  49. 49.
    Miyazaki S, Otsuka K (1986) Deformation and transition behavior associated with the R-phase in Ti-Ni alloys. Met Trans A17:53-63Google Scholar
  50. 50.
    Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of TiNi alloys. Acta Metall 34:2045-2051Google Scholar
  51. 51.
    Miyazaki S (1990) Degradation of shape memory effect. Mater Sci 27:57-65. And in: TiNi Alloys. Proc Internat Meeting on Advanced Materials, MRS Tokyo, pp 251-256Google Scholar
  52. 52.
    Miyazaki S, Sugaya Y, Otsuka K (1988) Mechanism of fatigue crack nucleation. In: TiNi Alloys. Proc Internat Meeting on Advanced Materials MRS, Tokyo, pp 257-262Google Scholar
  53. 53.
    Sekiguchi Y, Dohi T, Funakubo H (1984) Shape memory alloys and it’s medical applications. Technique of Metal Surface 35(8): 11-19Google Scholar
  54. 54.
    Oshida Y, Miyazaki S (1991) Corrosion and biocompatibility of shape memory alloys. Corrosion Engineering 40:1009-1025Google Scholar
  55. 55.
    Jinfang G, Ming Z, Xujun M (1997) Designs and medical applications of TiNi SMA self expanding stents in China. In [9], pp 573-578Google Scholar
  56. 56.
    Li C, Wu KH (1995) Corrosion behavior of Ni-Ti shape memory alloy in artificial seawater. In [7], pp 227-232Google Scholar
  57. 57.
    Filip P, Tomasek V, Mazanec K (1994) Corrosion properties of shape memory TiNi alloys. Metallic materials 32(2):63-68Google Scholar
  58. 58.
    Rondelli G (1996) Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17:2003-2008Google Scholar
  59. 59.
    Dutta RS, Madangopal K, Gadiyar HS, Banerjee S (1993) Biocompatibility of TiNi shape memory alloy. British Corrosion Journal 28(3):217-221Google Scholar
  60. 60.
    Endo K, Sachdeva R, Araki Y, Ohno H (1995) Corrosion behavior of Ni-Ti shape memory alloy in a cell culture medium. In [7], pp 197-201Google Scholar
  61. 61.
    Abiko Y, Sachdeva R, Endo K, Araki Y, Kaku T, Ohno H (1995) Corrosion resistance and biological evaluation of Ni-Ti alloys with varied surface textures. In [7]: pp 203-208Google Scholar
  62. 62.
    Trepanier C, Tabrizian M, Yahia LH, Bilodeau L, Piron DL (1997) Improvement of the corrosion resistance of NiTi stents by surface treatments. In: George EP, Gotthardt R, Otsuka K et al (eds) Materials for Smart Systems. Mat Res Soc Pittsburgh PA Symp, vol 459, pp 363-368Google Scholar
  63. 63.
    Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR (1998) Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 19:761-769Google Scholar
  64. 64.
    Wang XX, Zhao LC, Chai W (1997) Corrosion characteristics of Ti-Ni-based shape memory alloys in saline solution. In [9], pp 379-382Google Scholar
  65. 65.
    Villermaux F, Tabrizian M, Yahia LH, Meunier M, Piron DL (1997) Excimer laser treatment of NiTi shape memory alloy biomaterials. Appl Surf Sci 109/110:62-66Google Scholar
  66. 66.
    Oshida Y, Sachdeva RCL, Miyazaki S (1992) Microanalytical characterization and surface modification of TiNi orthodontic archwires. Bio-Medical Materials and Engineering 2:51-69Google Scholar
  67. 67.
    Endo K, Sachdeva R, Araki Y, Ohno H (1995) Corrosion behavior of Ni-Ti shape memory alloy in a cell culture medium. In [7], pp 197-201Google Scholar
  68. 68.
    Oshida Y, Sachdeva R, Miyazaki S (1992) Changes in contact angles as a function of time on some pre-oxidized biomaterials. J Mater Sci: Mater Med 3:306-312Google Scholar
  69. 69.
    Oshida Y, Sachdeva R, Miyazaki S, Daly J (1993) Effects of shot-peening on surface contact angles of biomaterials. J Mater Sci: Mater Med 4:443-447Google Scholar
  70. 70.
    Grant DM, Green SM, Wood JV (1995) The surface performance of shot peened and ion implanted NiTi shape memory alloy. Acta metall mater 43:1045-1051Google Scholar
  71. 71.
    Green SM, Grant DM, Wood JV (1997) XPS characterization of surface modified Ni-Ti shape memory alloy. Mat Sci Eng A 224:21-26Google Scholar
  72. 72.
    Lombardi S, Yahia LH, Klemberg-Sapieha JE, Piron DL, Selmani A, Rivard CH, Drouin G (1995) Improvement in corrosion resistance of Ni-Ti shape memory alloy by plasma surface modification. In [7], pp 221-227Google Scholar
  73. 73.
    Endo K, Sachdeva R, Araki Y, Ohno H (1995) Effects of titanium nitride coating on surface and corrosion characteristics of Ni-Ti alloy. In [7], pp 233-237Google Scholar
  74. 74.
    Trigwell S, Selvaduray G (1997) Effect of surface finish on the corrosion of NiTi alloy for biomedical applications. In [9], pp 383-388Google Scholar
  75. 75.
    Su YY, Raman V (1997) The quest for nitinol wire surface quality for medical applications. In [9], pp 389-394Google Scholar
  76. 76.
    Filip P, Musialek J, Lorethova H, Nieslanik J, Mazanec K (1996) TiNi shape memory clamps with optimized structure parameters. J Mater Sci: Mater Med 7:657-663Google Scholar
  77. 77.
    Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273-275:149-160Google Scholar
  78. 78.
    Ohkata I, Tamura H ( 1997) The R-phase transformation in TiN i shape memory alloy and its application. In: George EP, Gotthardt R, Otsuka K et al (eds) Materials for Smart Systems. Mat Res Soc Pittsburg PA Symp, vol 459, pp 345-355Google Scholar
  79. 79.
    Meylaers P, Moorleghem, VW, Chandrasekaran M (1995) CADSMATM: Computer aided design of shape memory applications. In [7], pp 127-132Google Scholar
  80. 80.
    Tanaka K (1986) Constitutive model of shape memory behavior. Res Mechanica 18:251-263Google Scholar
  81. 81.
    Stalmans R, Delaey L, Van Humbeeck J (1997) Modelling of adaptive composite materials with embedded shape memory alloy wires. Mat Res Symp Proc, vol 459. Materials Research Society Pittsburgh PA, pp 119-130Google Scholar
  82. 82.
    Shabalovskaya SA (1995) Biological aspects of TiNi alloy surfaces. In [8], pp 1199-1204Google Scholar
  83. 83.
    Armitage DA, Grant DM, Parker TL, Parker KG (1997) Haemocompatibility of surface modified NiTi. In [9], pp 411-416Google Scholar
  84. 84.
    Filip P, Melicharek R, Kneissl AC, Mazanec K (1997) Hydroxyapatite coatings on TiNi shape memory alloys. Z Metallkd 88(2):131-135Google Scholar
  85. 85.
    Castelman LS, Motzkin SM, Alicandri FP, Bonawit VL (1976) Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res 10:695-731Google Scholar
  86. 86.
    Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Medical Materials and Engineering 6:267-289Google Scholar
  87. 87.
    Filip P, Musialek J, Michalek K, Yen M, Mazanec K (1999) TiAlV/Al203/TiNi shape memory alloy smart composite biomaterials for orthopedic surgery. Mat Sci Eng A 273-275:769-774Google Scholar
  88. 88.
    Takeshita F, Takata H, Ayukawa Y, Suetsugu T (1997) Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol). Biomaterials 18:21-25Google Scholar
  89. 89.
    Trepanier C, Leung TK, Tabrizian M, Yahia LH, Bienvenu JG, Tanguay JF, Piron DL, Bilo-deau L (1997) In vivo biocompatibility study of NiTi stents. In [9], pp 423-428Google Scholar
  90. 90.
    Simske SJ, Sachdeva R, Brady P, Gyunter VE (1995) Cranial bone apposition and ingrowth in a porous Ni-Ti implant. In [7], pp 449-454Google Scholar
  91. 91.
    Rhalmi S, Tabrizian M, Odin M, Broxup B, Rivard ChH, Yahia LH (1997) Implantation of porous NiTi in rabbit tibias. Program and Abstracts of the 1st International Symposium on Advanced Biomaterials, Ecole Polytechnique Montreal, Montreal, p 42Google Scholar
  92. 92.
    Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, Van Horn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18:1115-1120Google Scholar
  93. 93.
    Latal D, Mraz J, Zerhau P, Susani M, Marberger M (1994) Nitinol urethral stents: long-term results in dogs. Urol Res 22:295-300Google Scholar
  94. 94.
    Dunlap CL, Vincent SK, Barker BF (1989) Allergic reaction to orthodontic wire: report of case. J Am Dent Assoc 118:449-450Google Scholar
  95. 95.
    Al-Waheidi EMH (1995) Allergic reaction to nickel orthodontic wires: a case report. Quintessence International 26:385-387Google Scholar
  96. 96.
    Enatsu K (1986) Utilization of Ni-Ti shape memory alloy for ossicular prosthesis and its biocompatibility with the incus of cats. Otologia Fukuoka 32:256-269Google Scholar
  97. 97.
    Green SM (1995) The Surface Performance of Ni-Ti Shape Memory Alloys. Ph. D. thesis, University of Nottingham; NottinghamGoogle Scholar
  98. 98.
    Shabalovskaya S, Anderegg J, Cunnick J (1997) X-ray spectroscopic and in vitro study of porous TiNi. In [9], pp 401-406Google Scholar
  99. 99.
    Ryhänen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pemu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures J Biomed Mater Res 35:451-457Google Scholar
  100. 100.
    Putters JLM, Kaulesar Sukul DMKS, de Zeeuw GR, Bijma A, Besselink PA (1992) Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium: a biocompatibility estimation. Eur Surg Res 24:378-382Google Scholar
  101. 101.
    Assad M, Yahia LH, Rivard CH, Lemieux N (1998) In vitro biocompatibility assessment of a nickel-titanium alloy using electron microscopy in situ end-labeling (EN-ISEL). J Biomed Mater Res 41:154-161Google Scholar
  102. 102.
    Yachia D (1993) The use of urethral stents for the treatment of urethral strictures. Annales de Urologie 27(4):245-250Google Scholar
  103. 103.
    Poulsen Al, Schou J, Ovesen H et al. (1993) Memokath: a second generation of intraprostatic spirals. British J Urology 72(3):331-334Google Scholar
  104. 104.
    Rossi P, Bezzi M, Ross M et al. (1994) Metallic stents in malignant biliary obstruction: results of a multicenter European study of 240 patients. J Vascular & Interventional Radiology 5 (2):279-285Google Scholar
  105. 105.
    Dotter CJ, Buschmann RW, McKinney MK et al (1983) Transluminal expandable nitinol coil stent grafting: primary report. Radiology 147:259-260Google Scholar
  106. 106.
    Kleshinski SJ, Harry JD (1997) Medical stenting: A synthesis of design principles. In [9], pp 561-566Google Scholar
  107. 107.
    Yanagihara K, Mizuno H, Wada H, Hitomi S (1997) Tracheal stenosis treated with self-expanding nitinol stent Ann Thorac Surg 63:1786-1790Google Scholar
  108. 108.
    Trowers EA, Dar S, Hodges D (1997) Tandem expandable stent technique for a fractured nitinol stent. Gastrointestinal endoscopy 45(2):217-218Google Scholar
  109. 109.
    Bramfitt JE, Hess RL (1995) A novel heat activated recoverable temporary stent (HARTS System). In [7], pp 435-441Google Scholar
  110. 110.
    Simon M, Kaplow R, Salzman E et al. (1977) A vena cava filter using shape memory alloy. Experimental aspects Radiology 125(1):87-94Google Scholar
  111. 111.
    Meltzer A, Stöckel D (1995) Performance improvement of surgical instrumentation through the use of Ni-Ti materials. In [7], pp 401-410Google Scholar
  112. 112.
    Moran SS (1995) Flexible instruments in minimal access surgery. In [7], pp 411-415Google Scholar
  113. 113.
    Frank TG, Xu W, Cushieri A (1997) Shape memory applications in minimal access surgery - The Dundee experience. In [9], pp 509-514Google Scholar
  114. 114.
    Ryklina EP, Morozova TV, Khmelevskaya et al. (1997) New devices for endosurgery based on shape meory and superelasticity. In [9], pp 539-541Google Scholar
  115. 115.
    Zadno R, Simpson JW (1997) The effect of material selection on torquability of guidewires. In [9], pp 437-441Google Scholar
  116. 116.
    Ueki T, Mogi H, Horikawa H (1997) Torsion property of Ni-Ti superelastic alloy tubes. In [9], pp 467-471Google Scholar
  117. 117.
    Dario P, Montesi MC (1995) Shape memory alloy microactuators for minimal invasive surgery. In [7], pp 427-433Google Scholar
  118. 118.
    Peirs J, Reynaerts D, Van Humbeeck J, Van Brussel H (1997) Design of a modular actuator for minimal invasive surgery. In [9], p 52Google Scholar
  119. 119.
    Patel U, Kellet MJ (1994) The misplaced double J ureteric stent: technique for repositioning using nitinol “gooseneck” snare. Clinical Radiology 49(5):333-336Google Scholar
  120. 120.
    Ley TJ, Stice JD (1991) Development of a retractable bone probe using shape memory alloys. In [13], pp 399-402Google Scholar
  121. 121.
    Filip P, Lafdi K (1997) TiNi/carbon microcomposites as shape memory and pseudoelastic materials. Program and abstracts of 1st International Symposium on Advanced Biomaterials (ISAB’97) Ecole Polytechnique Montreal, p 92Google Scholar
  122. 122.
    Reynaerts D, Peirs J, Van Brussel H (1997) An implantable drug delivery system based on shape memory alloy microactuation. Sensors and Actuators A61(1-3):455-462Google Scholar
  123. 123.
    Filip P, Pech J, Mazanec K (1994) Physical metallurgy of TiNi shape memory alloys applied for dynamic splints. Berg- und Hüttenmänische Monatshefte 139:174-179Google Scholar
  124. 124.
    Makaran JE, Dittmer DK, Buchal RO (1993) The smart wrist-hand orthosis (WHO) for quadriplegic patients. Journal of Prosthetics and Orthotics 5(3):73-76Google Scholar
  125. 125.
    Takami M, Fukui K, Saitou S et al. (1992) Application of a shape memory alloy to hand splinting. Prosthetics & Orthotics International 16(l):57-63Google Scholar
  126. 126.
    Soares AB, Brash HM, Gow D (1997) The application of SMA in the design of prosthetic devices. In [9], pp 257-262Google Scholar
  127. 127.
    Bensmann G, Baumgart F, Haasters J (1983) Nickel-titanium osteosynthesis clips. Medical Focus Vogel Verlag, Würzburg (3):7-10Google Scholar
  128. 128.
    Kuo PP, Yang PJ, Zhong YF, Yang HB, Yu YF, Dai KR, Hong WQ, Ke MZ, Cai TD, Tao JC (1989) The use of nickel-titanium alloy in orthopaedic surgery in China. Orthopaedics 12:116-126Google Scholar
  129. 129.
    Schmerling MA, Wilkov MA, Sanders AE (1976) Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis. J Biomed Mater Res 10:879-892Google Scholar
  130. 130.
    Haasters J, von Salis-Soglio G, Bensmann G (1990) The use of Ni-Ti as an implant material in orthopedics. In [6], pp 426-444Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Peter Filip
    • 1
  1. 1.Materials Technology CenterSouthern Illinois University at CarbondaleCarbondaleUSA

Personalised recommendations