Advertisement

Metallurgy and Technological Properties of Titanium and Titanium Alloys

  • Howard L. Freese
  • Michael G. Volas
  • J. Randolph Wood
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Titanium, occasionally referred to as the “wonder metal”, has been utilized in a growing list of specialized applications since the Kroll process made the winning of this material from ores a commercial possibility in 1936 [1]. Titanium is the ninth most common element in the earth’s crust and is recovered from Ti02-rich deposits of rutile, ilmenite and leucoxene that are found on every continent. Since the discovery of titanium in 1794 [2], and up until Kroll’s innovative process development in 1936, there had been no practical method to recover titanium metal from these ores because of its pronounced affinity for oxygen. Modern ore extraction, beneficiation and chemical processes have since enabled the large-volume manufacturing of high-grade TiO2, an important pigment for paints and commercial products, and of titanium metal for the production of the CP (“Commercially Pure”) titanium grades, titanium-based alloys and other alloys systems.

Keywords

Titanium Alloy Titanium Metal Titanium Sponge Beta Titanium Alloy Titanium Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imam MA, Fraker AC (1996) Titanium alloys as implant materials. In: Brown SA, Lemons JE (eds) Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM Special Technical Publication STP 1272 (Proceedings of a symposium held on 15 and 16 Nov 94 in Phoenix AZ, USA). West Conshohocken PA, USA, p 4Google Scholar
  2. 2.
    Collings EW (1984) The Physical Metallurgy of Titanium Alloys. American Society for Metals , Metals Park, OHGoogle Scholar
  3. 3.
    Breme J, Biehl V (1998) Metallic biomaterials. In: Black J, Hastings G (eds) Handbook of Biomaterial Properties. Chapman &Hall, London, Part II, Sect. 1, p 135CrossRefGoogle Scholar
  4. 4.
    Black J, Hastings G, ibid, p 137Google Scholar
  5. 5.
    Fontana MG (1970) Perspectives on corrosion of materials. Metallurgical transactions Vol. 1, The 1970 Campbell Memorial Lecture, ASM, pp 3251-3266Google Scholar
  6. 6.
    Steinemann SG (1987) Corrosion of titanium and titanium alloys for surgical implants. In: Lutjering G, Zwicker U, Bunk W (eds) Proceedings of the 5th International Conference on Titanium (Munich FRG, 1014 Sep 1984). Deutsche Gesellschaft fur Metallkunde, pp 1373-1379Google Scholar
  7. 7.
    Zitter H, Plenk H (1987) The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21:881CrossRefGoogle Scholar
  8. 8.
    Steinemann SG, Mäusli PA (1988) Titanium alloys for surgical implants; biocompatibility from physiochemical principles. In: Lacombe P, Tricot R, Beranger G (eds) Proceedings of the 6th International Conference on Titanium (Cannes France, 06-09 Jun 88). Les Editions de Physique, pp 535-540Google Scholar
  9. 9.
    Black J (1984) Systematic effects of biomaterials. Biomaterials 5:11-18CrossRefGoogle Scholar
  10. 10.
    Williams DF (1998) Handbook of Biomaterial Properties. Black J and Hastings, ibid, Part III, Sect. 1, General concepts of biocompatibility, pp 481-489Google Scholar
  11. 11.
    Williams DF (1987) Definitions in Biomaterials. Elsevier, Amsterdam, pp 49-59Google Scholar
  12. 12.
    Steinemann SG, Perren SM (1984) Titanium alloys as metallic biomaterials. In: Lutjering G, Zwicker U, Bunk W (eds) Proceedings of the 5th International Conference on Titanium (Munich FRG, 10-14 Sep 84). Deutsche Gesellschaft fur Metallkunde, pp 1327-1334Google Scholar
  13. 13.
    Semlitsch M (1986) Classic and new titanium alloys for production of artificial hip joints. Proceedings of the technical program from the 1986 International Conference. Titanium Development Association, Dayton OH, USA, pp 721-740Google Scholar
  14. 14.
    Wang K, Gustavson L, Dumbleton J (1993) The characterization of Ti-12Mo-6Zr-2Fe - a new biocompatible titanium alloy developed for surgical implants. In: Eylon D, Boyer RR, Koss DA (eds) Beta Titanium Alloys in the 1990’s. The Minerals, Metals and Materials Society (Proceedings of a Symposium held 22-24 Feb 93 in Denver CO, USA), Warrendale PA, USA, pp 49-60Google Scholar
  15. 15.
    Schutz RW (1993) An overview of beta titanium alloy environmental behavior. Beta Titanium Alloys in the 1990’s, ibid, pp 75-91Google Scholar
  16. 16.
    Wang K, Gustavason J, Dumbleton JH (Aug 28, 1990) Method of making high strength, low modulus, ductile, biocompatible titanium alloy. US Patent Number 4,952,236Google Scholar
  17. 17.
    Wang K, Gustavason J, Dumbleton JH (Aug 15, 1989) High strength, low modulus, ductile, biocompatible titanium alloy. US Patent Number 4,857,269Google Scholar
  18. 18.
    Parris WM, Bania PJ (Dec 25, 1990) Oxidation resistant titanium based alloy. US Patent Number 4,980,127. Registered trademark of Titanium Metals Corporation, Denver, COGoogle Scholar
  19. 19.
    Davidson JA, Kovacs P (Dec 8,1992) Biocompatible low modulus titanium alloy for medical implants. US Patent Number 5,169,597Google Scholar
  20. 20.
    Zardiackas LD, Mitchell DW, Disegi JA (1996) Characterization of Ti-15Mo beta titanium alloy for orthopedic implant applications. In: Brown SA, Lemons JE (eds) Medical Applications of Titanium and its Alloys: The Material and Biological Issues. ASTM Special Technical Publication STP 1272 (Proceedings of a symposium held on 15 and 16 Nov 94 in Phoenix AZ, USA). West Conshohocken PA, USA, pp 60-75CrossRefGoogle Scholar
  21. 21.
    Amick DD, Haygarth JC et al. (Oct 13,1998) Composite article, alloy and method. US Patent Number 5,820,707Google Scholar
  22. 22.
    Ahmed T, Rack HJ (Feb 16,1999) Low modulus biocompatible titanium base alloys for medical devices. US Patent Number 5,871,595Google Scholar
  23. 23.
    Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockier B (1983) Osseoin-tegrated titanium fixtures in the treatment of endentulosness. Biomaterials 4:25CrossRefGoogle Scholar
  24. 24.
    Steinemann SG (1994) Tissue compatibility of metals from physico-chemical principles. In: Kovacs P, Istephanous NS (eds) Proceedings of a symposium on the compatibilty of biomedical implants, Electrochemical Society Symposium Report. The Electrochemical Society, Pennington NJ, USA, pp 1-13Google Scholar
  25. 25.
    Steinemann SG (1988) Tissue compatibility of metals from physico-chemical principles. In: Lacombe P, Tricot R, Beranger G (eds) Proceedings of the 6th International Conference on Titanium. Les Editions de Physique, pp 535-540Google Scholar
  26. 26.
    Albrektsson T (1998) Hard tissue response. Handbook of biomaterial properties, ibid, Part III, Sect. 3, pp 504-507Google Scholar
  27. 27.
    Steinemann SG (1996) Surface reaction of titanium in living tissue. In: Gregory JK, Rack HJ, Eylon D (eds) Surface Performance of Titanium. The Minerals, Metals and Materials Society (Proceedings of a symposium held 07-09 Oct 96 in Cincinnati OH, USA), Warrendale PA, USA, pp 33-45Google Scholar
  28. 28.
    Donachie MJ Jr (ed) (1988) Titanium: A Technical Guide. ASM International, Metals Park OH, pp 1-4Google Scholar
  29. 29.
    Boyer R, Welsch G, Collings E (eds) (1994) Materials Properties Handbook: Titanium Alloys. ASM International, Metals Park OH, pp 3-11Google Scholar
  30. 30.
    Donachie MJ Jr, ibid, Fig. 1.2, p 4Google Scholar
  31. 31.
    Boyer R, Welsch G, Collings E, ibidGoogle Scholar
  32. 32.
    Donachie MJ Jr, ibid, Table 11.5, p 168, Fig. 3.2, p 22Google Scholar
  33. 33.
    Donachie MJ Jr, ibid, pp 9-19Google Scholar
  34. 34.
    Boyer R, Welsch G, Collings E, bid, pp 3-4 Google Scholar
  35. 35.
    Bomberger HB, Froes FH (1984) The melting of titanium. J Metals Dec:39-47Google Scholar
  36. 36.
    Chinnis WR, Buttrill WH (1992). In: Froes FH, Caplan I (eds) Titanium ’92 Science and Technology. The Minerals, Metals and Materials Society, Warrendale PA, USA, pp 2363-2370Google Scholar
  37. 37.
    Tilmont SM, Harker HR (1993) Maximelt: an update. In: Bakish R (ed) Proceedings of the Conference on EB Melting and Refining - State of the Art. pp 214-225Google Scholar
  38. 38.
    Roberts RJ (1995) Larger scale cold crucible melting of titanium and its alloys. In: Blenkinsop P, Evans, Flower (eds) Titanium ’95 Science and Technology. The Minerals, Metals and Materials Society, Warrendale PA, USA, pp 1462-1469Google Scholar
  39. 39.
    Kuhlman GW (1996) Meeting the challenge of hot working titanium alloys into cost effective finished components. In: Weiss I, Srinivasan R, Bania PJ, Eylon D, Semiatin SL (eds) Advances in the Science and Technology of Titanium Alloy Processing. The Minerals, Metals and Materials Society (Proceedings of a symposium held 05-08 Feb 96 in Anaheim CA, USA), Warrendale PA, USA, pp 125-152Google Scholar
  40. 40.
    Davis M, Forbes-Jones R (1996) Manufacturing processes for semi-finished titanium biomedical alloys. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and its Alloys: The Material and Biological Issues, STP 1272, ASTM West Conshohocken PA, USA, pp 17-29CrossRefGoogle Scholar
  41. 41.
    Froes FH, Allen PG, Niinomi M (eds) Non-aerospace applications of titanium. The Minerals, Metals and Materials Society (Proceedings of a symposium held 16-19 Feb 98 in San Antonio TX, USA), pp 171-186Google Scholar
  42. 42.
    Wood JR, Russo PA (1997) Heat treatment of titanium alloys. Industrial Heating, April issue, pp 51-55Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Howard L. Freese
    • 1
  • Michael G. Volas
    • 1
  • J. Randolph Wood
    • 1
  1. 1.Allvac (An Allegheny Technologies Company)MonroeUSA

Personalised recommendations