Titanium as Implant Material for Osteosynthesis Applications

  • Stephan M. Perren
  • Ortrun E. M. Pohler
  • Erich Schneider
Part of the Engineering Materials book series (ENG.MAT.)


A bone fracture disables the function of the injured limb. Early and full restoration of function can be achieved by osteosynthesis, a method of treating the bone fracture by surgical means. The method consists of stabilizing the fragments of the fracture using implants [1]. The choice of the implant material depends, first of all, on the function to be achieved and also on the mode of application of the implant. The function of the implant consists not only in maintaining the proper shape of the bone under functional load to allow for prompt and reliable solid healing, but also, and more importantly, in restoring the full function of the limb and of the severely injured patient. Different principles of fracture treatment with different types of fracture healing result in different technical requirements. These requirements take into account both implant function and implant design and material. Therefore, the principles of fracture treatment are outlined first.


Internal Fixation Color Version Bone Plate Titanium Implant Bone Screw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Müller ME, Allgöwer M, Schneider R, Willenegger H (1991) Manual of Internal Fixation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  2. 2.
    Schatzker J (1987) The Rationale of Operative Fracture Care. Springer, Berlin Heidelberg Paris TokyoGoogle Scholar
  3. 3.
    Klaue K (1982) The Dynamic Compression Unit (DCU) for Stable Internal Fixation of Bone Fractures. Med. doctoral thesis, University of BaselGoogle Scholar
  4. 4.
    Klein M, Rahn BA, Frigg R, Kessler S, Perren SM (1990) Reaming versus nonreaming in medullary nailing. Interference with cortical circulation of the canine tibia. Arch Orthop Trauma Surg 109:314–16CrossRefGoogle Scholar
  5. 5.
    Tepic S, Perren SM (1995) The biomechanics of the PC-Fix internal fixator. Injury Vol 26, Suppl No 2, pp S-B5–S-B10Google Scholar
  6. 6.
    Perren SM, Huggler A, Russenberger M, Allgöwer M, Mathys R, Schenk R, Willenegger H, Müller ME (1969) The reaction of cortical bone to compression. Acta Orthopaedica Scandinavica, Suppl 125:19–27Google Scholar
  7. 7.
    Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop, pp 175–195Google Scholar
  8. 8.
    Perren SM (1991) Biological Plating Using the LC-DCR Injury Vol 26, Suppl No 1Google Scholar
  9. 9.
    Cordey J, Rahn B, Perren S (1980) Human torque control in the use of bone screws. In: Uhthoff HK (ed) Current Concepts of Internal Fixation of Fractures. Springer, Berlin Heidelberg New York, pp 235–243Google Scholar
  10. 10.
    Haas NP, Hauke C, Schütz M, Kääb MJ, Perren SM (2000) The principle of the internal fix-ator applied to diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): Results of 387 Fractures of a Prospective Multicentric Study. J Orthop Trauma (submitted)Google Scholar
  11. 11.
    Gautier E, Mathys R, Rahn BA, Perren SM (1984) Porosity and remodelling of plated bone after internal fixation: result of stress shielding or vascular damage. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Hertzberg RW (1976) Deformation and fracture mechanics of engineering materials. John Wiley & Sons, New YorkGoogle Scholar
  13. 13.
    Müller ME, Nazarian S, Koch P, Schatzer J (1990) The Comprehensive Classification of Fractures of Long Bones. Springer, Berlin Heidelberg New York, English versionCrossRefGoogle Scholar
  14. 14.
    Steinemann SG (1998) Titanium - the material of choice?. Periodontology 2000 17:7–21CrossRefGoogle Scholar
  15. 15.
    Steinemann SG (1999) Compatibility of titanium in soft and hard tissue - the ultimate in osseointegration. Proceedings Euromat 99, München, Vol 2, Wiley-VCH, pp 119–203Google Scholar
  16. 16.
    Hohn RB, Orton EC, Pohler OEM (1981) Rough titanium coated implants in an unstable fracture model. Festschrift Fritz Straumann 1981, Druck Lüdin, Liestal, SwitzerlandGoogle Scholar
  17. 17.
    Pohler OEM, Schenk R (1982) unpublished data from histological study related to [16].Google Scholar
  18. 18.
    Pohler OEM (1986) Swiss screws: concept and experimental work. J Oral Implantology 12(3):338–348Google Scholar
  19. 19.
    Claes L, Hutzschenreuter P, Pohler O (1976) Lösemomente von Corticalis-Zugschrauben in Abhängigkeit von Implantationszeit und Oberflächenbeschaffenheit. Arch Orthop Unfall-Chir 85:155–159CrossRefGoogle Scholar
  20. 20.
    Spiessl B (1988) Osteosynthese des Unterkiefers. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  21. 21.
    Prein J (ed) (1998) Manual of Internal Fixation in the Cranio-Facial Skeleton. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  22. 22.
    Raveh J, Sutter F, Hellem S (1987) Surgical procedures for reconstruction of the lower jaw using the titanium coated screw reconstruction plate system: bridging defects. Otolaryngol Clin North Am 20:535–558.Google Scholar
  23. 23.
    Heim U, Pfeiffer KM (1988) Internal Fixation of Small Fractures. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  24. 24.
    Helfet DL, et al (1990) The treatment of open and/or unstable tibial fractures with an unreamed double locked tibial nail. Proceedings of the American Association of Orthopedic Surgeons Conference, New Orleans, February 1990, paper no 341Google Scholar
  25. 25.
    Dick W (1989) Internal Fixation of Thoracic and Lumbar Spine Fractures. Hans Huber, Toronto , Lewiston NY, Bern, StuttgartGoogle Scholar
  26. 26.
    Aebi M, Thalgott JS, Webb JK (1998) AO ASIF Principles in Spine Surgery. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  27. 27.
    Hierholzer G, Allgöwer M, Rüedi Th (1985) Fixateur-Externe-Osteosynthese. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  28. 28.
    Pohler OEM (1983) Degradation of metallic orthopedic implants. In: Rubin LR (ed) Biomaterials in Reconstructive Surgery. The C V Mosby Comp, St. Louis Toronto London, Chap. 15, pp 158–228Google Scholar
  29. 29.
    Gerber H, Perren SM (1980) Evaluation of tissue compatibility of in vitro cultures of embryonic bone. In: Winter GD et al (eds) Evaluation of Biomaterials. John Wiley & Sons, Chiches-ter New York Brisbane Toronto SingaporeGoogle Scholar
  30. 30.
    Geret V, Rahn BA, Mathys R, Straumann F, Perren SM (1980) A Method for testing tissue tolerance for improved quantitative evaluation through reduction of relative motion at the implant-tissue interface. In: Winter GD, Lcray JL, de Groot K (eds) Evaluation of Biomaterials. John Wiley & Sons, Chichester New York Brisbane Toronto SingaporeGoogle Scholar
  31. 31.
    Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W (1995) Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci: Mater Med 6:223–229CrossRefGoogle Scholar
  32. 32.
    Yamage M, Perren SM (1984) Influences of metal salts on immune responses in vitro. In: Ducheyne P, Van der Perre G, Aubert AE (eds) Biomaterials and Biomechanics 1983. Elsevier, Amsterdam, pp 227–232Google Scholar
  33. 33.
    Rhodes NP, Hunt JA, Williams DF (1994) Quantification of the host response to implanted polymers in vivo by flow cytometry. J Mater Sci: Mater Med 5:666–670CrossRefGoogle Scholar
  34. 34.
    Rhodes NP, Hunt JA, Williams DF (1997) Macrophage subpopulation differentiation by stimulation with biomaterials. J Biomed Mater Res 37:481–488CrossRefGoogle Scholar
  35. 35.
    Hunt JA, Rhodes NP, Williams DF (1995) Analysis of the inflammatory exudates surrounding implanted polymers by using flow cytometry. J Mater Sci: Mater Med 6:839–843CrossRefGoogle Scholar
  36. 36.
    Ungersböck A, Hunt J, Krähenbühl U, Perren SM (1995) Soft tissue reactions to stainless steel/titanium LC-DCP’s. A multicenter prospective clinical study. Transactions of the 41st Annual meeting of Orthopaedic Research Society, Orlando, FL, p 577Google Scholar
  37. 37.
    Richards RG, Qwen GR, Rahn BA, ap Gwynn I (1997) A quantitative method of measuring cell adhesion areas (review). Cells and Materials 7 (1):15–30Google Scholar
  38. 38.
    Hauke C, Schlegel U, Melcher GA, Printzen G, Perren SM (1997) Local infection in relation to different implant materials. An experimental study using stainless steel and titanium solid, unlocked, intramedullary nails in rabbit. Orthop Trans 21:835–83Google Scholar
  39. 39.
    Arens St, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M (1996) Influence of the materials for fixation implants on local infection. An experimental study of steel versus titanium DC-Plates in rabbits. J Bone Joint Surg (Br) 78-B:647–51Google Scholar
  40. 40.
    Rüedi TP, Murphy WM, et al (2000) AO Principles of Fracture Management. Thieme, Stuttgart New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stephan M. Perren
    • 1
  • Ortrun E. M. Pohler
    • 2
  • Erich Schneider
    • 3
  1. 1.AO CenterDavosSwitzerland
  2. 2.STRATEC MedicalOberdorfSwitzerland
  3. 3.AO Research InstituteDavosSwitzerland

Personalised recommendations