Advertisement

Titanium for Hip and Knee Prostheses

  • Markus Windler
  • Ralf Klabunde
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The large-scale use of titanium and its alloys for orthopaedic applications began in the early 1970s in England (clinical use of the first low-stress implant application such as heart-valve parts made of pure titanium actually dates back to the mid 1950s). Due to an increasing number of clinical reports of fatigue fractures of the cast stem as well as proximal bone resorption due to the excessively stiff CoCr stems, interest in the more elastic and higher-strength titanium alloys grew rapidly in Europe and North America in the second half of the 1970s. Corrosion and bio-compatibility tests have proved the excellent compatibility of titanium and its alloys with the body, showing that they can be recommended as materials for endoprostheses intended to remain permanently inside the human body [6,45,134, 156].

Keywords

Titanium Alloy Ultrahigh Molecular Weight Polyethylene Bone Ingrowth Knee Prosthesis Cement Mantle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. l.
    AESCULAP (1989) Die PLASMAPORE-Beschichtung für die zementlose Verankerung von Gelenkendoprothesen (AESCULAP Wissenschaftliche Informationen) AESCULAP (22)Google Scholar
  2. 2.
    Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD Jr, Pellicci PM, Bullough PG (1988) Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis J Bone Joint Surg Am 70(3):347–356Google Scholar
  3. 3.
    Amstutz HC, Grigoris P (1996) Metal on metal bearings in hip arthroplasty. Clin Orthop (329 Suppl):11–34CrossRefGoogle Scholar
  4. 4.
    Anthony PP, Gie GA, Howie CR, Ling RS (1990) Localised endosteal bone lysis in relation to the femoral components of cemented total hip arthroplasties. J Bone Joint Surg Br 72(6):971–979Google Scholar
  5. 5.
    Astion DJ, Saluan P, Stulberg BN, Rimnac CM, Li S (1996) The porous-coated anatomic total hip prosthesis: failure of the metal-backed acetabular component. J Bone Joint Surg Am 78(5):755–766Google Scholar
  6. 6.
    Bannon BP, Mild EE (1983) Titanium alloys for biomaterial application: an overview. Titanium Alloys in Surgical Implants. Symposium Phoenix (796):7–15Google Scholar
  7. 7.
    Bergmann G (1997) In vivo Messung der Belastung von Hüftimplantaten. Verlag Dr. Köster, BerlinGoogle Scholar
  8. 8.
    Böhm G, Lintner F, Brand G, Obenaus C, Kliemann S (1990) Morphometrische Befunde an einzelnen Titaniumschäften. In: Zweymüller K (ed) 10 Jahre Zweymüller-Hüftendoprothese. II. Wiener Symposium. Hans Huber Verlag, BernGoogle Scholar
  9. 9.
    Bläsius K (1995) Endoprothesen-Atlas Knie. Georg Thieme Verlag, StuttgartGoogle Scholar
  10. 10.
    Black J, Sherk H, Bonini J, Rostoker WR, Schajowicz F, Galante JO (1990) Metallosis associated with a stable titanium-alloy femoral component in total hip replacement. A case report. J Bone Joint Surg Am 72(1): 126–130Google Scholar
  11. 11.
    Blömer W (1997) Design aspects of modular inlay fixation. In: Puhl W (ed) Performance of the Wear Couple BIOLOX Forte in Hip Arthroplasty. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  12. 12.
    Bloebaum RD, Zou L, Bachus KN, Shea KG, Hofmann AA, Dunn HK (1997) Analysis of particles in acetabular components from patients with osteolysis. Clin Orthop (338): 109–118CrossRefGoogle Scholar
  13. 13.
    Bloebaum RD, Mihalopoulus NL, Jensen JW, Dorr LD (1997) Postmortem analysis of bone growth into porous-coated acetabular components. J Bone Joint Surg Am 79(7):1013–1022Google Scholar
  14. 14.
    Bloebaum RD, Bachus KN, Jensen JW, Scott DF, Hofmann AA (1998) Porous-coated metal-backed patellar components in total knee replacement. A postmortem retrieval analysis. J Bone Joint Surg Am 80(4):518–528Google Scholar
  15. 15.
    Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC, Kent GM (1980) The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth. Clin Orthop (149):291–298Google Scholar
  16. 16.
    Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop (150):263–270Google Scholar
  17. 17.
    Bobyn JD (1984) Human histology of the bone-porous metal implant interface. Orthopedics 7(9):1410–1421Google Scholar
  18. 18.
    Buchanan RA, Rigney ED, Jr, Williams JM (1987) Ion implantation of surgical Ti-6A1-4V for improved resistance to wear-accelerated corrosion. J Biomed Mater Res 21(3):355–366CrossRefGoogle Scholar
  19. 19.
    Buly RL, Huo MH, Salvati E, Brien W, Bansal M (1992) Titanium wear debris in failed cemented total hip arthroplasty. An analysis of 71 cases. J Arthroplasty 7(3):315–323CrossRefGoogle Scholar
  20. 20.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25(7):889–902CrossRefGoogle Scholar
  21. 21.
    Callaghan JJ, Forest EE, Olejniczak JP, Goetz DD, Johnston RC (1998) Charnley total hip arthroplasty in patients less than fifty years old. A twenty to twenty-five-year follow-up note. J Bone Joint Surg Am 80(5):704–714Google Scholar
  22. 22.
    Cameron HU, Pilliar RM, Macnab I (1976) The rate of bone ingrowth into porous metal. J Biomed Mater Res 10(2):295–302CrossRefGoogle Scholar
  23. 23.
    Charnley J (1975) Fracture of femoral prostheses in total hip replacement. A clinical study. Clin Orthop (111):105–120CrossRefGoogle Scholar
  24. 24.
    Charnley J (1979) Low Friction Arthroplasty of the Hip. Theory and Practice. Springer, BerlinGoogle Scholar
  25. 25.
    Chell J, Howard PW (1998) Migration and failure of the Mecron screw-in acetabular prosthesis. J Arthroplasty 13(6):638–641CrossRefGoogle Scholar
  26. 26.
    Clarke IC, Gruen TA, Gustilo RB, Harris LJ, Latta LL, Lynch MH, McKellop HA, Ranawat CS, Rostoker W, Sarmiento A, et al (1981) Titanium Ti-6A1–4V alloy - The use of titanium alloy in orthopaedic medicine. ZIMMER, pp 1–40Google Scholar
  27. 27.
    Clarke IC, McKellop H, McGuire P, Okuda R, Sarmiento A (1983) Wear of Ti-6A1-4V implant alloy and ultrahigh molecular weight polyethylene combinations. ASTM-STP 796:136–147Google Scholar
  28. 28.
    Coll BF, Jacquot P (1988) Surface modification of medical implants and surgical devices using TiN layers. Surf Coat Technol 36:867–878CrossRefGoogle Scholar
  29. 29.
    Collier JP, Sutula LC, Currier BH, Currier JH, Wooding RE, Williams IR, Farber KB, Mayor MB (1996) Overview of polyethylene as a bearing material: comparison of sterilization methods. Clin Orthop (333):76–86Google Scholar
  30. 30.
    Cook SD, Klawitter JJ, Weinstein AM (1980) The influence of design parameters on calcar stresses following femoral head arthroplasty. J Biomed Mater Res 14(2):133–144CrossRefGoogle Scholar
  31. 31.
    Cook SD, Walsh KA, Haddad RJJ (1985) Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants. Clin Orthop (193):271–280Google Scholar
  32. 32.
    Cook SD, Thongpreda N, Anderson RC, Haddad RJ, Jr (1988) The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy. J Biomed Mater Res 22(4):287–302CrossRefGoogle Scholar
  33. 33.
    Crowninshield RD, Brand RA, Johnston RC, Pedersen DR (1981) The Otto Aufranc Award Paper. An analysis of femoral prosthesis design: the effects on proximal femur loading. Hip pp 111–122Google Scholar
  34. 34.
    Dahm KL, Anderson IA, Dearnley PA (1995) Hard coatings for orthopedic implants. Surface Engineering 11(2):138–144Google Scholar
  35. 35.
    Dalton JE, Cook SD (1995) In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor. J Biomed Mater Res 29(2):239–245CrossRefGoogle Scholar
  36. 36.
    David A, Eitenmuller J, Muhr G, Pommer A, Bar HF, Ostermann PA, Schildhauer TA (1995) Mechanical and histological evaluation of hydroxyapatite-coated, titanium-coated and grit-blasted surfaces under weight-bearing conditions. Arch Orthop Trauma Surg 114(2):112–118CrossRefGoogle Scholar
  37. 37.
    Delaunay CP, Kapandji AI (1997) Acetabular screw rings and surface treatment. Clin Orthop (340): 130–141CrossRefGoogle Scholar
  38. 38.
    Dorr LD, Lewonowski K, Lucero M, Harris M, Wan Z (1997) Failure mechanisms of anatomic porous replacement I cementless total hip replacement. Clin Orthop (334):157–167Google Scholar
  39. 39.
    Dorr LD, Wan Z, Cohen J (1998) Hemispheric titanium porous coated acetabular component without screw fixation. Clin Orthop (351):158–168Google Scholar
  40. 40.
    Dowson D, Wright V (1981) Lubrication of joints. In: Dowson D, Wright V (eds) Introduction to the Biomechanics of Joints and Joint Replacement. Mechanical Engineering Publications, LondonGoogle Scholar
  41. 41.
    Engh CA, Bobyn JD (1985) Biological Fixation in Total Hip Arthroplasty. SLACK Incorporated, ThorofareGoogle Scholar
  42. 42.
    Engh CA, Hooten JP Jr, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Bobyn JD (1995) Evaluation of bone ingrowth in proximally and extensively porous-coated anatomic medullary locking prostheses retrieved at autopsy. J Bone Joint Surg Am 77(6):903–910Google Scholar
  43. 43.
    Feighan JE, Goldberg VM, Davy D, Parr JA, Stevenson S (1995) The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. J Bone Joint Surg Am 77(9):1380–1395Google Scholar
  44. 44.
    Finerman GA, Dorey FJ, Grigoris P, McKellop HA (1998) Total Hip Arthroplasty Outcomes. Churchill Livingstone, New YorkGoogle Scholar
  45. 45.
    Fraker AC, Ruff AW, Sung P, Van Orden AC, Speck KM (1983) Surface preparation and corrosion behavior of titanium alloys for surgical implants. Titanium Alloys in Surgical Implants Symposium, Phoenix (796):206–219CrossRefGoogle Scholar
  46. 46.
    Friedman RJ, Black J, Galante JO, Jacobs JJ, Skinner HB (1993) Current concepts in orthopaedic biomaterials and implant fixation. J Bone Joint Surg Am 75-A(7):1086–1109Google Scholar
  47. 47.
    Geesink RG, Hoefnagels NH (1995) Six-year results of hydroxyapatite-coated total hip replacement. J Bone Joint Surg Br 77(4):534–547Google Scholar
  48. 48.
    Gomez-Barrena E, Li S, Furman BS, Masri BA, Wright TM, Salvati EA (1998) Role of polyethylene oxidation and consolidation defects in cup performance. Clin Orthop (352):105–117Google Scholar
  49. 49.
    Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop (141):17–27Google Scholar
  50. 50.
    Hailey JL, Firkins P, Butter R, Lettington AH, Fischer J (1996) A tribological evaluation of amorphous diamond like carbon coating for use in total joint replacement. 5th World Biomaterials Congress, Toronto, Canada, pp 785–785Google Scholar
  51. 51.
    Harris WH (1998) Long-term results of cemented femoral stems with roughened precoated surfaces. Clin Orthop (355):137–143CrossRefGoogle Scholar
  52. 52.
    Herberts P, Malchau H (1997) How outcome studies have changed total hip arthroplasty practices in Sweden. Clin Orthop (344):44–60Google Scholar
  53. 53.
    Howie DW (1990) The effects of wear particles on periprosthetic tissues. In: Older MWJ (ed) Implant-Bone Interface. Springer, LondonGoogle Scholar
  54. 54.
    Howie DW, Middleton RG, Costi K (1998) Loosening of matt and polished cemented femoral stems. J Bone Joint Surg Br 80(4):573–576CrossRefGoogle Scholar
  55. 55.
    Hozack WJ, Rothman RH, Eng K, Mesa J (1996) Primary cementless hip arthroplasty with a titanium plasma sprayed prosthesis. Clin Orthop (333):217–225Google Scholar
  56. 56.
    Jacobsson SA, Djerf K, Gillquist J, Hammerby S, Ivarsson I (1993) A prospective comparison of Butel and PCA hip arthroplasty. J Bone Joint Surg Br 75(4):624–629Google Scholar
  57. 57.
    Jacobsson SA, Djerf K, Wahlstrom O (1996) Twenty-year results of McKee-Farrar versus Charnley prosthesis. Clin Orthop (329 Suppl):60–8CrossRefGoogle Scholar
  58. 58.
    Jasty M, Bragdon CR, Maloney WJ, Mulroy RJ, Haire T, Crowninshield RD, Harris WH (1992) Bone ingrowth into a low-modulus composite plastic porous-coated canine femoral component. J Arthroplasty 7(3):253–259CrossRefGoogle Scholar
  59. 59.
    Jasty M (1993) Clinical reviews: Particulate debris and failure of total hip replacements. J Appl Biomater 4:273–276CrossRefGoogle Scholar
  60. 60.
    Jones LC, Hungerford DS (1987) Cement disease. Clin Orthop (225):192–206Google Scholar
  61. 61.
    Joshi AB, Porter ML, Trail IA, Hunt LP, Murphy JC, Hardinge K (1993) Long-term results of Charnley low-friction arthroplasty in young patients. J Bone Joint Surg Br 75(4):616–623Google Scholar
  62. 62.
    Küsswetter W (1991) Noncemented total hip replacement. Georg Thieme Verlag, StuttgartGoogle Scholar
  63. 63.
    Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone ingrowth. J Arthroplasty 14(3):355–368CrossRefGoogle Scholar
  64. 64.
    Kobayashi A, Freeman MA, Bonfield W, Kadoya Y, Yamac T, Al-Saffar N, Scott G, Revell PA (1997) Number of polyethylene particles and osteolysis in total joint replacements. A quantitative study using a tissue-digestion method. J Bone Joint Surg Br 79(5):844–848CrossRefGoogle Scholar
  65. 65.
    Kohn DH, Ducheyne P (1990) A parametric study of the factors affecting the fatigue strength of porous coated Ti-6Al-4V implant alloy. J Biomed Mater Res 24(11):1483–1501CrossRefGoogle Scholar
  66. 66.
    Kral MV, Davidson JL, Wert JJ (1993) Erosion resistance of diamond coatings. Wear 166(7):7–16CrossRefGoogle Scholar
  67. 67.
    Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE (1996) Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17(6):605–616CrossRefGoogle Scholar
  68. 68.
    Lawrence JM, Engh CA, Macalino GE, Lauro GR (1994) Outcome of revision hip arthro-plasty done without cement. J Bone Joint Surg Am 76(7):965–973Google Scholar
  69. 69.
    Lemaire R (1998) Prothéses de genou á surface d’ appui mobile - Mobile bearing knee proshteses. Cahier d’Enseignement de la SOFCOT Conferences d’Enseignement 1998, pp 17–34Google Scholar
  70. 70.
    Lerouge S, L’Hochine Y, Sedel L (1998) Alumina ceramic in total joint replacement. In: Sedel L, Cabanela ME (eds) Hip Surgery - Materials and Developments. Martin Dunitz Ltd, LondonGoogle Scholar
  71. 71.
    Lester DK, Campbell P (1996) 100-year-old patient with pressfit prosthesis: a postmortem retrieval study. Am J Orthop 25(l):30–34Google Scholar
  72. 72.
    Li S, Furman BD, Gillis AM (1998) Polyethylene: Can it be made better?. Seminars in Arthroplasty 9(2):105–113Google Scholar
  73. 73.
    Lichtinger TK, Schürmann N, Müller RT (1999) Aussergewöhnlich hohe Lockerungsrate eines zementierten Titanstiels (Hüftendoprothesensystem Trios). 47. Jahrestagung der Vereinigung Süddeutscher Orthopäden e.V., p 67Google Scholar
  74. 74.
    Lindgren U, Seireg A (1989) The influence of mediolateral deformity, tibial torsion, and foot position on femorotibial load. Prediction of a musculoskeletal computer model. Arch Orthop Trauma Surg 108(l):22–26CrossRefGoogle Scholar
  75. 75.
    Lintner F, Zweymüller K, Brand G (1987) Histomorphologische Befunde bei zementlos implantierten Titanium-Schäften nach mehrjähriger Implantation. In: Refior HJ (ed) Zement-freie Implantation von Hüftgelenksendoprothesen - Standortbestimmung und Tendenzen.Georg Thieme Verlag, StuttgartGoogle Scholar
  76. 76.
    Lintner F, Zweymüller K, Bohm G, Brand G (1988) Reactions of surrounding tissue to the cementless hip implant Ti-6A1-4V after an implantation period of several years. Autopsy studies in three cases. Arch Orthop Trauma Surg 107(6):357–363CrossRefGoogle Scholar
  77. 77.
    Lintner F, Böhm G, Brand G, Obenaus C, Kliemann S (1990) Gewebliche Reaktionsformen des Titaniumschaftes. In: Zweymüller K (ed) 10 Jahre Zweymüller-Hüftendoprothese. II. Wiener Symposium. Hans Huber Verlag, BernGoogle Scholar
  78. 78.
    Löhr J, Munzinger U, Guggi T, Kramers I, Gschwend N (1999) Lockerungsverhalten von zementierten Titanschaftprothesen der Hüfte. 47 Jahrestagung der Vereinigung Süddeutscher Orthopäden e.V., p 67Google Scholar
  79. 79.
    Lombardi AV Jr, Mallory TH, Vaughn BK, Drouillard P (1989) Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J Bone Joint Surg Am 71(9):1337–1342Google Scholar
  80. 80.
    Luckey HA, Kubli F (1983) Titanium Alloys in Surgical Implants. Symposium Phoenix. ASTM, PhiladelphiaGoogle Scholar
  81. 81.
    Zweymüller K (1995) The development of the cementless hip endoprosthesis: 1979–1994. In: Morscher EW (ed) Endoprosthetics. Springer, BerlinGoogle Scholar
  82. 82.
    Malchau H, Herberts P, Wang YX, Karrholm J, Romanus B (1996) Long-term clinical and radiological results of the Lord total hip prosthesis. A prospective study. J Bone Joint Surg Br 78(6) 884–891CrossRefGoogle Scholar
  83. 83.
    Malchau H, Herberts P (1998) Prognosis of Total Hip Replacement. Revision and re-revision rate in THR: A revision-risk study of 148’359 primary operations. 65th Annual Meeting American Academy of Orthopaedic Surgeons 65th Annual Meeting, pp 1–16Google Scholar
  84. 84.
    Martell JM, Pierson RH3, Jacobs JJ, Rosenberg AG, Maley M, Galante JO (1993) Primary total hip reconstruction with a titanium fiber-coated prosthesis inserted without cement. J Bone Joint Surg Am 75(4):554–571Google Scholar
  85. 85.
    Massoud SN, Hunter JB, Holdsworth BJ, Wallace WA, Juliusson R (1997) Early femoral loosening in one design of cemented hip replacement. J Bone Joint Surg Br 79(4):603–608CrossRefGoogle Scholar
  86. 86.
    Matsuda S, Whiteside LA, White SE, McCarthy DS (1999) Knee stability in meniscal bearing total knee arthroplasty. J Arthroplasty 14(l):82–90CrossRefGoogle Scholar
  87. 87.
    Matsui M, Nakata K, Masuhara K, Ohzono K, Sugano N, Ochi T (1998) The metal-cancel-lous cementless Lubeck total hip arthroplasty. Five-to-nine-year results. J Bone Joint Surg Br 80(3):404–410CrossRefGoogle Scholar
  88. 88.
    McKellop H, Park SH, Chiesa R, Doorn P, Lu B, Normand P, Grigoris P, Amstutz H (1996) In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin Orthop (329 Suppl):128–40CrossRefGoogle Scholar
  89. 89.
    McLaughlin JR, Lee KR (1997) Total hip arthroplasty with an uncemented femoral component. Excellent results at ten-year follow-up. J Bone Joint Surg Br 79(6):900–907CrossRefGoogle Scholar
  90. 90.
    Merget M, Aldinger F (1985) Influence of technological parameters on the fatigue strength of Ti5A12.5Fe - a new material for endoprostheses. In: Titanium - Science and Technology (2). Proceedings of the Fifth International Conference on Titanium, Munich, pp 1393–1400Google Scholar
  91. 91.
    Middleton RG, Howie DW, Costi K, Sharpe P (1998) Effects of design changes on cemented tapered femoral stem fixation. Clin Orthop (355):47–56CrossRefGoogle Scholar
  92. 92.
    Mishra AK, Davidson JA, Poggie RA, Kovacs P, FitzGerald TJ (1995) Mechanical and tribo-logical properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr - A new titanium alloy for surgical implants. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. American Society for Testing and Materials (ASTM), PhiladelphiaGoogle Scholar
  93. 93.
    Mittelmeier H, Fritsch E, Heisel J, Siebel T, Deimel D (1996) Entwicklung und 20 Jahre kli-nische Erfahrung mit Keramik-Hüftendoprothesen (bei über 4000 Fällen). In: Puhl W (ed) Die Keramikpaarung BIOLOX in der Hüftendoprothetik. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  94. 94.
    Moreland JR (1988) Mechanisms of failure in total knee arthroplasty. Clinical Orthopaedics (226):49–64Google Scholar
  95. 95.
    Morscher E (1995) Rationale of the press-fit cup. In: Morscher EW (ed) Endoprosthetics. Springer, BerlinGoogle Scholar
  96. 96.
    Morscher E, Berli B, Jockers W, Schenk R (1997) Rationale of a flexible press fit cup in total hip replacement. 5-year follow-up in 280 procedures. Clin Orthop (341):42–50Google Scholar
  97. 97.
    Morscher EW (1995) Endoprosthetics. Springer, BerlinCrossRefGoogle Scholar
  98. 98.
    Muratoglu O, Bragdon CR, O’Connor DO, Jasty M, Harris WH (1999) A comparison of 5 different types of highly crosslinked UHMWPE: Physical properties and wear behaviour. 45th Annual Meeting Orthopaedic Research Society, pp 77–77Google Scholar
  99. 99.
    Narutaki N, Usuki H, Itoh T, Yamane Y (1991) Wear characteristics and cutting performance of diamond coated ceramic tools. Surface Engineering 7(4):305Google Scholar
  100. 100.
    Neugebauer H (1988) Was gibt es Neues in der Medizin?. Springer, BerlinGoogle Scholar
  101. 101.
    O’Connor DO, Muratoglu O, Bragdon CR, Lowenstein J, Jasty M (1999) Wear and high cycle fatigue of a highly crosslinked UHMWPE. 45th Annual Meeting Orthopaedic Research Society 45th Annual Meeting, pp 816–816Google Scholar
  102. 102.
    Ito A, Tateishi T (1995) New titanium alloys to be considered for medical implants. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. American Society for Testing and Materials (ASTM), Philadelphia, pp 45–59Google Scholar
  103. 103.
    Bhambri SK, Shetty RH, Gilbertson LN (1995) Optimization of properties of Ti-15Mo-2.8Nb-3Al-0.2Si & Ti-15Mo-2.8Nb-0.2Si-.260 beta titanium alloys for application in prosthetic implants. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. American Society for Testing and Materials (ASTM), Philadelphia, pp 88–94Google Scholar
  104. 104.
    Oonishi H, Amino H, Ueno M, Yunoki H (1999) Concepts and designs with ceramics for total hip and knee replacement. In: Sedel L, Willmann G (eds) Reliability and Long-term Results of Ceramics in Orthopaedics. Georg Thieme Verlag, Stuttgart, pp 7–28Google Scholar
  105. 105.
    Owen TD, Moran CG, Smith SR, Pinder IM (1994) Results of uncemented porous-coated anatomic total hip replacement. J Bone Joint Surg Br 76(2):258–262Google Scholar
  106. 106.
    Pappas MJ, Makris G, Buechel FF (1995) Titanium nitride ceramic film against polyethylene. A 48 million cycle wear test. Clin Orthop (317):64–70Google Scholar
  107. 107.
    Perren SM, Geret V, Meier D, Rahn BA (1986) Quantitative evaluation of biocompatibility of vanadium free titanium alloys. In: Christel P, Meunier A, Lee AJC (eds) Advances in Biomaterials. Elsevier, Amsterdam, pp 397–402Google Scholar
  108. 108.
    Pidhorz LE, Urban RM, Jacobs JJ, Sumner DR, Galante JO (1993) A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy. J Arthroplasty 8(2):213–225CrossRefGoogle Scholar
  109. 109.
    Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop (208): 108–113Google Scholar
  110. 110.
    Raveh A, Martinu L, Hawthorne HM, Wertheimer MR (1993) Mechanical and tribological properties of dual-frequency plasma-deposited diamond-like carbon. Surface Coatings Technology 58:45–55CrossRefGoogle Scholar
  111. 111.
    Rieker CB, Köttig P, Schön R, Windier M, Wyss UP (1998) Clinical wear performance of metal-on-metal hip arthroplasties. In: Jacobs JJ, Graig TL (eds) Alternative Bearing Surfaces in Total Joint Replacement. American Society for Testing and Materials (ASTM), Philadelphia, pp 144–156CrossRefGoogle Scholar
  112. 112.
    Rieu J, Pichat A, Rabbe LM, Chabrol C, Robelet M (1990) Deterioration mechanisms of joint prosthesis materials. Several solutions by ion implantation surface treatments. Biomaterials 11:51–54Google Scholar
  113. 113.
    Robinson AH, Ayllon-Garcia A, Hallett JP (1996) Five year results of 113 bipolar, cementless “Bateman” hip replacements for degenerative hip disease. Hip International 6(2):7–12Google Scholar
  114. 114.
    Robinson RP, Lovell TP, Green TM, Bailey GA (1989) Early femoral component loosening in DF-80 total hip arthroplasty. J Arthroplasty 4(l):55–64CrossRefGoogle Scholar
  115. 115.
    Robinson RP, Deysine GR, Green TM (1996) Uncemented total hip arthroplasty using the CLS stem: a titanium alloy implant with a corundum blast finish. Results at a mean 6 years in a prospective study. J Arthroplasty 11(3):286–292CrossRefGoogle Scholar
  116. 116.
    Rohlmann A, Mossner U, Hees G, Bergmann G, Kolbel R (1982) The stress on the femur, cement and implant following implantation of a hip prosthesis. Biomed Tech (Berlin) 27(12):291–302CrossRefGoogle Scholar
  117. 117.
    Rosecrans L (1987) Conference: The changing frontiers of laser materials processing. Bedford, UK IFS Publications, pp 223–230Google Scholar
  118. 118.
    Salvati EA, Betts F, Doty SB (1993) Particulate metallic debris in cemented total hip arthroplasty. Clin Orthop (293):160–173Google Scholar
  119. 119.
    Sarmiento A, Zych GA, Latta LL, Tarr RR (1979) Clinical experiences with a titanium alloy total hip prosthesis: a posterior approach. Clin Orthop (144):166–173Google Scholar
  120. 120.
    Sarmiento A, Ebramzadeh E, Normand P, Llinas A, McKellop HA (1998) The stainless steel and titanium alloy femoral prostheses. In: Finerman GA, Dorey FJ, Grigoris P, McKellop H (eds) Total Hip Arthroplasty Outcomes. Churchill Livingstone, New York, pp 41–53Google Scholar
  121. 121.
    Savilahti S, Myllyneva I, Lindholm TS, Pajamaki KJ, Nevalainen J, Laippala P (1995) Clinical outcome and survival of Link RS total hip prosthesis. J Bone Joint Surg Br 77(3):369–373Google Scholar
  122. 122.
    Schenk RK, Wehrli U (1989) Zur Reaktion des Knochens auf eine zementfreie SL-Femur-Revisionsprothese. Histologische Befunde an einem fünfeinhalb Monate post operationem gewonnenen Autopsiepräparat [Reaction of the bone to a cement-free SL femur revision prosthesis. Histologic findings in an autopsy specimen 5 1/2 months after surgery] Ortho-pädie 18(5):454–462Google Scholar
  123. 123.
    Schenk RK (1995) Osseointegration of sulmesh coatings. In: Morscher EW (ed) Endopros-thetics. Springer, BerlinGoogle Scholar
  124. 124.
    Schepp PP (1989) Isothermes Umformen. Sulzer Technische Rundschau (1):13–20Google Scholar
  125. 125.
    Schepp PP (1990) Isothermal forging of titanium alloy surgical implants. In: Titanium 1990 - Products and Applications (2). Proceedings of the Technical Program from the 1990 International Conference, pp 646–652Google Scholar
  126. 126.
    Schmalzried TP, Harris WH (1992) The Harris-Galante porous-coated acetabular component with screw fixation. Radiographic analysis of eighty-three primary hip replacements at a minimum of five years. J Bone Joint Surg Am 74(8):1130–1139Google Scholar
  127. 127.
    Semlitsch M, Panic B (1983) [10 Years experience of test criteria for fracture-resistant stems in hip joint prostheses] 10 Jahre Erfahrung mit Prüfkriterien für bruchsichere Verankerungs-schäfte von künstlichen Hüftgelenken. Biomed Tech (Berlin) 28(4):66–78CrossRefGoogle Scholar
  128. 128.
    Semlitsch M, Staub F, Weber H (1986) Development of a vital, high-strength titanium-aluminium-niobium alloy for surgical implants. In: Christel P, Meunier A, Lee AJC (eds) Biological and Biomechanical Performance of Biomaterials. Elsevier, AmsterdamGoogle Scholar
  129. 129.
    Semlitsch M, Weber H, Steger R (1995) [15 years experience with the Ti-6Al-7Nb alloy for joint prostheses] 15 Jahre Erfahrung mit Ti-6Al-7Nb-Legierung für Gelenkprothesen. Biomed Tech (Berlin) 40(12):347–355CrossRefGoogle Scholar
  130. 130.
    Semlitsch M, Willert HG (1997) Clinical wear behaviour of ultra-high molecular weight polyethylene cups paired with metal and ceramic ball heads in comparison to metal-on-metal pairings of hip joint replacements. Journal of Engineering in Medicine (Part H) 211(1):73–88CrossRefGoogle Scholar
  131. 131.
    Sioshansi P (1987) Medical applications of ion beam processes. Nuclear Instruments and Methods in Physics Research B19/20:204–208CrossRefGoogle Scholar
  132. 132.
    Sochart DH, Porter ML (1997) The long-term results of Charnley low-friction arthroplasty in young patients who have congenital dislocation, degenerative osteoarthrosis, or rheumatoid arthritis. J Bone Joint Surg Am 79(11):1599–1617Google Scholar
  133. 133.
    Sousa SR, Barbosa MA (1996) Effect of hydroxyapatite thickness on metal ion release from Ti6A14V substrates. Biomaterials 17(4):397–404CrossRefGoogle Scholar
  134. 134.
    Steinemann SG (1980) Corrosion of surgical implants - in vivo and in vitro tests. In: Winter GD, Leray JL, de Groot K (eds) Evaluation of Biomaterials. John Wiley & Sons, Chichester, pp 1–34Google Scholar
  135. 135.
    Streicher RM, Weber H, Schön R, Semlitsch M (1991) Wear behaviour of different ceramic surfaces in comparison to TiN and ODH-treated Ti-6Al-7Nb alloy paired with polyethylene. In: Vincenzini P (ed) Ceramics in Substitutive and Reconstructive Surgery. Proceedings of the satellite symposium 3 of the 7th Int Meeting on Modern Ceramics Technologies, Montecatini Terme, Italy. Elsevier Science Publishers, Amsterdam, pp 197–205Google Scholar
  136. 136.
    Streicher RM (1995) Tribologie künstlicher Gelenke. In: Morscher EW (ed) Endoprothetik. Springer, Berlin, pp 38–53CrossRefGoogle Scholar
  137. 137.
    Swanson SAV, Freeman MA, Vernon-Roberts B, Weightman B (1979) Die wissenschaftli-chen Grundlagen des Gelenkersatzes. Springer, BerlinCrossRefGoogle Scholar
  138. 138.
    Tateishi T, Ushida T, Ito A, Aoyagi J, Homma T, Ise H (1990) R & D of the nitrided titanium alloy for artificial joint. In: Heimke G (ed) Bioceramics. Proceedings of the 2nd International Symposium on Ceramics in Medicine, Heidelberg, September 1989. German Ceramic Society, Cologne, pp 193–197Google Scholar
  139. 139.
    Technischer Ausschuss Europäischer Titanhersteller (1999) Mikrogefüge-Richtreihen für Stäbe aus Titanlegierungen. Technischer Ausschuss Europäischer TitanherstellerGoogle Scholar
  140. 140.
    Tompkins GS, Lachiewicz PF, DeMasi R (1994) A prospective study of a titanium femoral component for cemented total hip arthroplasty. J Arthroplasty 9(6):623–630CrossRefGoogle Scholar
  141. 141.
    Tompkins GS, Jacobs JJ, Kull LR, Rosenberg AG, Galante JO (1997) Primary total hip arthroplasty with a porous-coated acetabular component. Seven-to-ten-year results. J Bone Joint Surg Am 79(2):169–176Google Scholar
  142. 142.
    Wagner M (1997) Vergleich der Ergebnisse von Hüftprothesenschäften aus Titan und Kobalt-Chrom-Legierungen. 45. Jahrestagung der Vereinigung Süddeutscher Orthopäden e.V., pp 24–24Google Scholar
  143. 143.
    Wang KK, Gustavson LJ, Dumbleton JH (1995) Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. American Society for Testing and Materials (ASTM), Philadelphia, pp 76–87Google Scholar
  144. 144.
    Waugh W (1990) John Charnley - The Man and the Hip. Springer, LondonCrossRefGoogle Scholar
  145. 145.
    Whiteside LA, White SE, Engh CA, Head W (1993) Mechanical evaluation of cadaver retrieval specimens of cementless bone-ingrown total hip arthroplasty femoral components. J Arthroplasty 8(2):147–155CrossRefGoogle Scholar
  146. 146.
    Willert HG, Buchhorn GH, Hess T (1989) [The significance of wear and material fatigue in loosening of hip prostheses] Die Bedeutung von Abrieb und Materialermüdung bei der Pro-thesenlockerung an der Hüfte. Orthopädie 18(5):350–369Google Scholar
  147. 147.
    Willert HG, Broback LG, Buchhorn GH, Ing D, Jensen PH, Koster G, Lang I, Ochsner P, Schenk R (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop (333):51–75Google Scholar
  148. 148.
    Willert HG, Kouladis D, Windier M (1999) Oberflächenhärtung von Titan-Hüftgelenkskugeln (TRIBOSUL-ODH) verringert den Verschleiss von Polyethylenpfannen. Z Orthop Ihre Grenzgeb 137 Suppl:A 24Google Scholar
  149. 149.
    Williams BE, Glass JT (1989) Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures. J Mater Res 4(2):373–384CrossRefGoogle Scholar
  150. 150.
    Witt JD, Swann M (1991) Metal wear and tissue response in failed titanium alloy total hip replacements. J Bone Joint Surg Br 73(4):559–563Google Scholar
  151. 151.
    Wong M, Eulenberger J, Schenk R, Hunziker E (1995) Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 29(12):1567–1575CrossRefGoogle Scholar
  152. 152.
    Yue S, Pilliar RM, Weatherly GC (1984) The fatigue strength of porous-coated Ti-6Al-4V implant alloy. J Biomed Mater Res 18(9):1043–1058CrossRefGoogle Scholar
  153. 153.
    Zardiackas LD, Mitchell DW, Disegi JA (1995) Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications. In: Brown SA, Lemon JE (eds) Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. American Society for Testing and Materials (ASTM), Philadelphia, pp 60–75Google Scholar
  154. 154.
    Zenz P, Pospisil C, Fertschak W, Schwagerl W (1995) [10 years of cementless implantation of total hip endoprosthesis using Zweymuller’s stem] 10 Jahre zementfreie Implantation von Hüfttotalendoprothesen unter Verwendung des Zweymüller-Schaftes. Z Orthop Ihre Grenzgeb 133(6):558–561CrossRefGoogle Scholar
  155. 155.
    ZIMMER (1984) The Total System. ZIMMERGoogle Scholar
  156. 156.
    Zitter H (1988) [Corrosion behaviour and biocompatibility of titanium alloys for implants] Korrosionsverhalten und Biokompatibilität von Titanlegierungen für Implantate. Werkstoffe und Korrosion (39):574–582CrossRefGoogle Scholar
  157. 157.
    Zweymüller K, Samek V (1990) Radiologische Erkenntnisse der Titaniumpfanne. In: Zweymüller K (ed) 10 Jahre Zweymüller-Hüftendoprothese. II. Wiener Symposium. Hans Huber Verlag, Bern, pp 23–34Google Scholar
  158. 158.
    Zwicker U, Bühler K, Müller R (1980) Mechanical properties and tissue reactions of a titanium alloy for implant material. Titanium 80, Science and Technology, Proc 4th Int Conf on Titanium, Kyoto, pp 505–514Google Scholar
  159. 159.
    Zwicker U, Etzold U, Moser T (1984) Abrasive properties of oxide layers on TiA15Fe2.5 in contact with high density polyethylene. In: Lütjering G, Zwicker U, Bunk W (eds) Titanium - Science and Technology (2). Proceedings of the Fifth International Conference on Titanium, Munich. DGM Deutsche Gesellschaft für Metallkunde EV, OberurselGoogle Scholar
  160. 160.
    Ploeg HL (2000) Fatigue Test Prediction: An Evaluation of Methods Applied to the Standard Fatigue Testing of Orthopedic Hip Stems. Ph.D. thesis, Queens University, Kingston, CanadaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Markus Windler
    • 1
  • Ralf Klabunde
    • 1
  1. 1.Sulzer Orthopedics Ltd.WinterthurSwitzerland

Personalised recommendations