Advertisement

Design and Engineering Criteria for Titanium Devices

  • Beat Gasser
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Pure titanium and titanium alloys are considered the best biocompatible metallic implant materials. This assessment, generally accepted as valid with respect to applications in medical technology, can be explained mainly by titanium’s surface properties resulting from the spontaneous building up of a stable and inert oxide layer (Chaps. 5 and 6); this leads to exceptional behavior with regard to biological safety (Part IV). However, the clinical successes of temporary or permanent implants and prostheses made of titanium used in traumatology, orthopedics and dental surgery do not rely only on favorable tissue reactions and excellent corrosion resistance but also on their functional design. Thanks to its good weight-specific strength titanium is among the most interesting of construction materials, and it is also used in non-medical applications.

Keywords

Titanium Alloy Pure Titanium Osteosynthesis Plate Corrosive Wear Titanium Screw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avallone E, Baumeister III T (1996) Mark’s Standard Handbook for Mechanical Engineers. 10th Edition, American Technical Publishers LTDGoogle Scholar
  2. 2.
    Bathe KJ (1982) Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs, NJ, USAGoogle Scholar
  3. 3.
    Beitz W, Küttner KH (eds) (1994) Dubbel - Handbook of Mechanical Engineering. Springer, Hong KongGoogle Scholar
  4. 4.
    Bergmann G, Graichen F, Rohlmann A, Linke H (1997) Hip joint forces during load carrying. Clin Orthop Rel Res 335:190–201Google Scholar
  5. 5.
    Bobyn JD, Mortimer ES, Glassmann AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Clin Orthop Rel Res 274:79–96Google Scholar
  6. 6.
    Boyer R (1994) Materials Properties Handbook: Titanium Alloys. ASM InternationalGoogle Scholar
  7. 7.
    Davis JR (ed) (1998) Metals Handbook. Desk edition, ASM InternationalGoogle Scholar
  8. 8.
    Disegi J (1990) AO/ASIF unalloyed titanium implant material. AO/ASIF Materials Technical CommissionGoogle Scholar
  9. 9.
    Disegi J (1993) AO/ASIF titanium-aluminum-niobium implant material. AO/ASIF Materials Technical CommissionGoogle Scholar
  10. 10.
    Donachie MJ Jr (ed) (1982) Titanium and Titanium Alloys. Source Book, American Society for Metals, OhioGoogle Scholar
  11. 11.
    Doom PF, Campbell PA, Amstutz HC (1996) Metal versus polyethylene wear particles in total hip replacement. Clin Orthop Rel Res 329S:S206–S216Google Scholar
  12. 12.
    Duerig TW, Williams JC (1983) Overview: microstructure and properties of beta titanium alloys. In: Boyer RR, Rosenberg HW (eds) Beta Titanium Alloys in the 80‘s. Annual Meeting Metallurgical Society, AtlantaGoogle Scholar
  13. 13.
    Eschbach L, Gasser B, Meier D (1999) Comparison of magnetic resonance imaging artifacts produced by nitrogen stainless steels and titanium alloy. 9TH Transactions of the EORS, Brussels, p 124Google Scholar
  14. 14.
    Fankhauser C, Frenk A, Marti A (1999) A comparative biomechanical evaluation of three systems for the internal fixation of distal femur fractures. Transactions 45TH Orthop. Res. Soc. Meeting, Annaheim, p 498Google Scholar
  15. 15.
    Fels M, Gasser B, Perren SM (1987) The deformation of bone plates as possible cause for corrosion. ASME Biomechanics Symposium, AMD-Vol. 84:117–119Google Scholar
  16. 16.
    Frenk A, Berger M, Gasser B (1997) Fretting corrosion of internal fixation plates and screws: considerations on material and design. Abstracts, 13th European Conference on Biomaterials, p 131Google Scholar
  17. 17.
    Froes FH, Smugeresky JE (eds) (1980) Powder metallurgy of titanium alloys. Proceedings of the 109th AIME Symposium, Las VegasGoogle Scholar
  18. 18.
    Galante JO, Lemons J, Spector M, Wilson PD Jr., Wright TM (1991) The biologic effect of implant materials. J Orthop Res 9(5):760–775CrossRefGoogle Scholar
  19. 19.
    Gasser B, Russenberger ME, Berchtold R, Wyder D, Perren SM (1991) Value of coining on the improvement of endurance in slotted intramedullary nails. J Biomed Eng 13:287–292CrossRefGoogle Scholar
  20. 20.
    Haas NR, Schuetz M, Hoffmann R (1997) Less invasive stabilization system - ein neuer Fixateur Interne für distale Femurfrakturen. OP Journal 13:340–344Google Scholar
  21. 21.
    Heimke G (ed) (1978) Dental Implants - Materials and Systems. Carl Hanser Verlag, München WienGoogle Scholar
  22. 22.
    Hierholzer S, Hierholzer G (1992) Internal Fixation and Metal Allergy. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  23. 23.
    Höhl F, Berndt H, Mayr P, Stock HR (1995) Implantation of N2 +, O+ and CO+ ions into titanium and Ti-6Al-4V. Surf Coat Technol 74–75: 765–769CrossRefGoogle Scholar
  24. 24.
    Hutchings R (1994) A review of recent developments in ion implantation for metallurgical application. Mater Sci Eng Al84:87–96Google Scholar
  25. 25.
    Kasemo B, Lausmaa J (1986) Surface science aspects on inorganic biomaterials. CRC Critical Reviews in Biocompatibility 2(4):335–380Google Scholar
  26. 26.
    Klar E (ed) (1990) ASM Handbook - Vol 7: Powder Metallurgy. American Society for MetalsGoogle Scholar
  27. 27.
    Kustas FM, Misra MS, Wie R, Wilbur PJ (1992) High temperature nitrogen implantation of Ti-6A1-4V - II: tribological properties. Surf Coat Technol 51:106–111CrossRefGoogle Scholar
  28. 28.
    Lampman SR et al (1996) ASM Handbook - Vol 19: Fatigue and Fracture. ASM InternationalGoogle Scholar
  29. 29.
    Ledermann PD, Hassell TM, Hefti AF (1993) Osseointegrated dental implant as alternative therapy to bridge construction or orthodontics in young patients: seven years of clinical experience. Pediatric Dentistry 15:327–333Google Scholar
  30. 30.
    Mathys R Jr, Gasser B, Bigolin F, Herzig P (1994) Comparison of wear of different materials for prosthetic articulations. 2nd World Congress Biomechanics, Amsterdam, p 102Google Scholar
  31. 31.
    McKellop H, Clarke I, Markolf K, Amstutz H (1981) Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device. J Biomed Mater Res 15:619–653CrossRefGoogle Scholar
  32. 32.
    Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomechanics 3:51–61CrossRefGoogle Scholar
  33. 33.
    Morscher E (ed) (1984) The Cementless Fixation of Hip Endoprostheses. Springer, Berlin HeidelbergGoogle Scholar
  34. 34.
    Müller ME, Allgöwer M, Schneider R, Willenegger H (1991) Manual of Internal Fixation, 3rd Edition. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  35. 35.
    Newby JR et al (1992) ASM Handbook - Vol. 8: Mechanical Testing. ASM InternationalGoogle Scholar
  36. 36.
    Perren SM (ed) (1991) The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Injury - the British J Acc Surg 22 ( Suppl 1):1–41Google Scholar
  37. 37.
    Poggie RA, Mishra AK, Davidson JA (1994) Three-body abrasive wear behavior of orthopedic implant bearing surfaces from titanium debris. J Mater Sci: Mater Med 5:387–392CrossRefGoogle Scholar
  38. 38.
    Rieu J, Pichat A, Rabbe LM, Chabrol C, Robelet M (1990) Deterioration mechanisms of joint prosthesis materials. Several solutions by ion implantation surface treatments. Biomaterials 11:51–54Google Scholar
  39. 39.
    Sioshansi P, Oliver RW, Matthews FD (1985) Wear improvement of surgical titanium alloys by ion implantation. J Vac Sci Technol A 3:2670–2674CrossRefGoogle Scholar
  40. 40.
    Smith EH (1998) Mechanical Engineer’s Reference Book. 12th Edition, American Technical Publishers LTDGoogle Scholar
  41. 41.
    Steinemann SG (1980) Corrosion of surgical implants - in vivo and in vitro tests. In: Winter GD et al (eds) Evaluation of Biomaterials. John Wiley & Sons, New York, pp 1–34Google Scholar
  42. 42.
    Steinemann SG, Mäusli P-A (1988) Titanium alloys for surgical implants - biocompatibility from physicochemical principles. In: Lacombe P et al (eds) Proceedings of the 6th World Conference on Titanium, pp 535–540Google Scholar
  43. 43.
    Steinemann SG, Mäusli PA, Szmukler-Moncler S, Semlitsch M, Pohler O, Hintermann HE, Perren SM (1992) Beta-titanium alloy for surgical implants. Abstracts, 7th World Conference on Titanium, San Diego, CaliforniaGoogle Scholar
  44. 44.
    Strafford KN, Smart RSC, Sare I, Subramanian C (1995) Surface Engineering - Processes and Applications. Technomic Publishing Company, Lancaster, USAGoogle Scholar
  45. 45.
    Tetsch P (1991) Enossale Implantationen in der Zahnheilkunde. 2nd Edition, Hanser Verlag, MünchenGoogle Scholar
  46. 46.
    Tipnis VA, Patton EM (1988) Computer-aided design, computer-aided manufacturing, computer-aided engineering. The American Society of Mechanical Engineers, New York, USAGoogle Scholar
  47. 47.
    Valliere D (1990) Computer-aided Design in Manufacturing. Prentice Hall, Englewood Cliffs, NJ,USAGoogle Scholar
  48. 48.
    Willert HG, Brobäck LG, Buchhorn GH, Jensen PH, Köster G, Lang I, Ochsner P, Schenk R (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Rel Res 333:51–75Google Scholar
  49. 49.
    Willert H-G, Semlitsch M (1996) Tissue reactions to plastic and metallic wear products of joint endoprostheses. Clin Orthop Rel Res 333:4–14Google Scholar
  50. 50.
    Zienkiewicz OC (1977) The Finite Element Method. McGraw-Hill, LondonGoogle Scholar
  51. 51.
    Zwicker U (1974) Titan und Titanlegierungen. Köster W (ed). Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Beat Gasser
    • 1
  1. 1.Robert Mathys FoundationBettlachSwitzerland

Personalised recommendations