Skip to main content

Design and Engineering Criteria for Titanium Devices

  • Chapter
Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Pure titanium and titanium alloys are considered the best biocompatible metallic implant materials. This assessment, generally accepted as valid with respect to applications in medical technology, can be explained mainly by titanium’s surface properties resulting from the spontaneous building up of a stable and inert oxide layer (Chaps. 5 and 6); this leads to exceptional behavior with regard to biological safety (Part IV). However, the clinical successes of temporary or permanent implants and prostheses made of titanium used in traumatology, orthopedics and dental surgery do not rely only on favorable tissue reactions and excellent corrosion resistance but also on their functional design. Thanks to its good weight-specific strength titanium is among the most interesting of construction materials, and it is also used in non-medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avallone E, Baumeister III T (1996) Mark’s Standard Handbook for Mechanical Engineers. 10th Edition, American Technical Publishers LTD

    Google Scholar 

  2. Bathe KJ (1982) Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  3. Beitz W, Küttner KH (eds) (1994) Dubbel - Handbook of Mechanical Engineering. Springer, Hong Kong

    Google Scholar 

  4. Bergmann G, Graichen F, Rohlmann A, Linke H (1997) Hip joint forces during load carrying. Clin Orthop Rel Res 335:190–201

    Google Scholar 

  5. Bobyn JD, Mortimer ES, Glassmann AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Clin Orthop Rel Res 274:79–96

    Google Scholar 

  6. Boyer R (1994) Materials Properties Handbook: Titanium Alloys. ASM International

    Google Scholar 

  7. Davis JR (ed) (1998) Metals Handbook. Desk edition, ASM International

    Google Scholar 

  8. Disegi J (1990) AO/ASIF unalloyed titanium implant material. AO/ASIF Materials Technical Commission

    Google Scholar 

  9. Disegi J (1993) AO/ASIF titanium-aluminum-niobium implant material. AO/ASIF Materials Technical Commission

    Google Scholar 

  10. Donachie MJ Jr (ed) (1982) Titanium and Titanium Alloys. Source Book, American Society for Metals, Ohio

    Google Scholar 

  11. Doom PF, Campbell PA, Amstutz HC (1996) Metal versus polyethylene wear particles in total hip replacement. Clin Orthop Rel Res 329S:S206–S216

    Google Scholar 

  12. Duerig TW, Williams JC (1983) Overview: microstructure and properties of beta titanium alloys. In: Boyer RR, Rosenberg HW (eds) Beta Titanium Alloys in the 80‘s. Annual Meeting Metallurgical Society, Atlanta

    Google Scholar 

  13. Eschbach L, Gasser B, Meier D (1999) Comparison of magnetic resonance imaging artifacts produced by nitrogen stainless steels and titanium alloy. 9TH Transactions of the EORS, Brussels, p 124

    Google Scholar 

  14. Fankhauser C, Frenk A, Marti A (1999) A comparative biomechanical evaluation of three systems for the internal fixation of distal femur fractures. Transactions 45TH Orthop. Res. Soc. Meeting, Annaheim, p 498

    Google Scholar 

  15. Fels M, Gasser B, Perren SM (1987) The deformation of bone plates as possible cause for corrosion. ASME Biomechanics Symposium, AMD-Vol. 84:117–119

    Google Scholar 

  16. Frenk A, Berger M, Gasser B (1997) Fretting corrosion of internal fixation plates and screws: considerations on material and design. Abstracts, 13th European Conference on Biomaterials, p 131

    Google Scholar 

  17. Froes FH, Smugeresky JE (eds) (1980) Powder metallurgy of titanium alloys. Proceedings of the 109th AIME Symposium, Las Vegas

    Google Scholar 

  18. Galante JO, Lemons J, Spector M, Wilson PD Jr., Wright TM (1991) The biologic effect of implant materials. J Orthop Res 9(5):760–775

    Article  CAS  Google Scholar 

  19. Gasser B, Russenberger ME, Berchtold R, Wyder D, Perren SM (1991) Value of coining on the improvement of endurance in slotted intramedullary nails. J Biomed Eng 13:287–292

    Article  CAS  Google Scholar 

  20. Haas NR, Schuetz M, Hoffmann R (1997) Less invasive stabilization system - ein neuer Fixateur Interne für distale Femurfrakturen. OP Journal 13:340–344

    Google Scholar 

  21. Heimke G (ed) (1978) Dental Implants - Materials and Systems. Carl Hanser Verlag, München Wien

    Google Scholar 

  22. Hierholzer S, Hierholzer G (1992) Internal Fixation and Metal Allergy. Georg Thieme Verlag, Stuttgart New York

    Google Scholar 

  23. Höhl F, Berndt H, Mayr P, Stock HR (1995) Implantation of N2 +, O+ and CO+ ions into titanium and Ti-6Al-4V. Surf Coat Technol 74–75: 765–769

    Article  Google Scholar 

  24. Hutchings R (1994) A review of recent developments in ion implantation for metallurgical application. Mater Sci Eng Al84:87–96

    Google Scholar 

  25. Kasemo B, Lausmaa J (1986) Surface science aspects on inorganic biomaterials. CRC Critical Reviews in Biocompatibility 2(4):335–380

    Google Scholar 

  26. Klar E (ed) (1990) ASM Handbook - Vol 7: Powder Metallurgy. American Society for Metals

    Google Scholar 

  27. Kustas FM, Misra MS, Wie R, Wilbur PJ (1992) High temperature nitrogen implantation of Ti-6A1-4V - II: tribological properties. Surf Coat Technol 51:106–111

    Article  CAS  Google Scholar 

  28. Lampman SR et al (1996) ASM Handbook - Vol 19: Fatigue and Fracture. ASM International

    Google Scholar 

  29. Ledermann PD, Hassell TM, Hefti AF (1993) Osseointegrated dental implant as alternative therapy to bridge construction or orthodontics in young patients: seven years of clinical experience. Pediatric Dentistry 15:327–333

    CAS  Google Scholar 

  30. Mathys R Jr, Gasser B, Bigolin F, Herzig P (1994) Comparison of wear of different materials for prosthetic articulations. 2nd World Congress Biomechanics, Amsterdam, p 102

    Google Scholar 

  31. McKellop H, Clarke I, Markolf K, Amstutz H (1981) Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device. J Biomed Mater Res 15:619–653

    Article  CAS  Google Scholar 

  32. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomechanics 3:51–61

    Article  CAS  Google Scholar 

  33. Morscher E (ed) (1984) The Cementless Fixation of Hip Endoprostheses. Springer, Berlin Heidelberg

    Google Scholar 

  34. Müller ME, Allgöwer M, Schneider R, Willenegger H (1991) Manual of Internal Fixation, 3rd Edition. Springer, Berlin Heidelberg

    Book  Google Scholar 

  35. Newby JR et al (1992) ASM Handbook - Vol. 8: Mechanical Testing. ASM International

    Google Scholar 

  36. Perren SM (ed) (1991) The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Injury - the British J Acc Surg 22 ( Suppl 1):1–41

    Google Scholar 

  37. Poggie RA, Mishra AK, Davidson JA (1994) Three-body abrasive wear behavior of orthopedic implant bearing surfaces from titanium debris. J Mater Sci: Mater Med 5:387–392

    Article  Google Scholar 

  38. Rieu J, Pichat A, Rabbe LM, Chabrol C, Robelet M (1990) Deterioration mechanisms of joint prosthesis materials. Several solutions by ion implantation surface treatments. Biomaterials 11:51–54

    CAS  Google Scholar 

  39. Sioshansi P, Oliver RW, Matthews FD (1985) Wear improvement of surgical titanium alloys by ion implantation. J Vac Sci Technol A 3:2670–2674

    Article  CAS  Google Scholar 

  40. Smith EH (1998) Mechanical Engineer’s Reference Book. 12th Edition, American Technical Publishers LTD

    Google Scholar 

  41. Steinemann SG (1980) Corrosion of surgical implants - in vivo and in vitro tests. In: Winter GD et al (eds) Evaluation of Biomaterials. John Wiley & Sons, New York, pp 1–34

    Google Scholar 

  42. Steinemann SG, Mäusli P-A (1988) Titanium alloys for surgical implants - biocompatibility from physicochemical principles. In: Lacombe P et al (eds) Proceedings of the 6th World Conference on Titanium, pp 535–540

    Google Scholar 

  43. Steinemann SG, Mäusli PA, Szmukler-Moncler S, Semlitsch M, Pohler O, Hintermann HE, Perren SM (1992) Beta-titanium alloy for surgical implants. Abstracts, 7th World Conference on Titanium, San Diego, California

    Google Scholar 

  44. Strafford KN, Smart RSC, Sare I, Subramanian C (1995) Surface Engineering - Processes and Applications. Technomic Publishing Company, Lancaster, USA

    Google Scholar 

  45. Tetsch P (1991) Enossale Implantationen in der Zahnheilkunde. 2nd Edition, Hanser Verlag, München

    Google Scholar 

  46. Tipnis VA, Patton EM (1988) Computer-aided design, computer-aided manufacturing, computer-aided engineering. The American Society of Mechanical Engineers, New York, USA

    Google Scholar 

  47. Valliere D (1990) Computer-aided Design in Manufacturing. Prentice Hall, Englewood Cliffs, NJ,USA

    Google Scholar 

  48. Willert HG, Brobäck LG, Buchhorn GH, Jensen PH, Köster G, Lang I, Ochsner P, Schenk R (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Rel Res 333:51–75

    Google Scholar 

  49. Willert H-G, Semlitsch M (1996) Tissue reactions to plastic and metallic wear products of joint endoprostheses. Clin Orthop Rel Res 333:4–14

    Google Scholar 

  50. Zienkiewicz OC (1977) The Finite Element Method. McGraw-Hill, London

    Google Scholar 

  51. Zwicker U (1974) Titan und Titanlegierungen. Köster W (ed). Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gasser, B. (2001). Design and Engineering Criteria for Titanium Devices. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics