Titanium Ceramics for Cell-Carriers and for Medical Applications

  • Erich Wintermantel
  • Karl-Ludwig Eckert
  • Ning-Ping Huang
  • Marcus Textor
  • Donald M. Brunette
Part of the Engineering Materials book series (ENG.MAT.)


The high biocompatibility of titanium is useful not only in load-bearing implants, but also in implants which are intended to stimulate metabolic responses, such as implantable cell-carriers, and also in cell-culture substrates for in vitro culture and tissue engineering. A potential application is transplantation of liver cells. Implant-able cell-carriers which should serve to transplant liver cells into a diseased organism require the use of materials which do not induce the formation of a dense fibrous tissue capsule at the implantation site. Such a dense capsule formation would cut off transplanted cells from their nutrition supply with a fatal outcome for the cells. Moreover, as an implant can lead to neoformation of blood vessels [1] the carrier material should be of the highest biocompatibility to enable the ongrowth of vascularized, healthy tissue which can establish a long-term vascular supply for transplanted cells.


U937 Cell Grain Size Distribution Titania Powder Photogenerated Hole Shaping Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wintermantel E, Cima L, Schloo B, Langer R (1992) Angiopolarity of cell-carriers: directional angiogenesis in resorbable liver cell transplantation devices. In: Steiner R, Weisz PB, Langer R (eds) Angiogenesis: Key Principles Science-Technology-Medicine. Birkhaeuser, Basel, pp 331–334Google Scholar
  2. 2.
    Ratner BD (1993) New ideas in biomaterials science - a path to engineered biomaterials. J Biomed Mater Res 27:837–850CrossRefGoogle Scholar
  3. 3.
    Hirschfeld DA, Li TK, Liu DM (1995) Processing of porous oxide ceramics. In: Liu DM (ed) Porous Ceramic Materials. Trans Tech Publications, Switzerland, pp 65–80Google Scholar
  4. 4.
    Larbot A (1996) Ceramic processing techniques of support systems for membrane synthesis. In: Burggraaf AJ, Cot L (eds) Fundamentals of Inorganic Membrane Science and Technology. Elsevier, Amsterdam, pp 119–39CrossRefGoogle Scholar
  5. 5.
    Chao WJ, Chou KS (1995) Studies on the control of porous properties in the fabrication of porous supports. In: Liu DM (ed) Porous Ceramic Materials. Trans Tech Publications, Switzerland, pp 93–108Google Scholar
  6. 6.
    Lenk R (1995) Hot moulding - an interesting forming process, cfi/Ber. DKG 72:636–639Google Scholar
  7. 7.
    Maxwell B (1972) Miniature injection molder minimizes residence time. SPE Journal 28:24–27Google Scholar
  8. 8.
    Boelsterli UA, Zimmerli B, Meier PJ (1995) Am J Physiol, 268:G797–G805Google Scholar
  9. 9.
    Eckert KL, Stieger B, Meier PJ Gadow R, Wintermantel E (1999) Processing of titania ceramic surfaces as scaffolds for hepatocyte culture. In: Proceedings of the International Conference on Engineering Ceramics and Structures: Larry Hench Symposium on Surface-Active Processes in Materials, Cocoa Beach, USA, American Ceramic SocietyGoogle Scholar
  10. 10.
    Naughton BA, Sibanda B, Weitraub JP, San Roman J, Kamali V (1995) A stereotypic, trans-plantable liver tissue-culture system. In: Todd P. (ed) Frontiers in Bioprocessing. Humana Press, Totowa, N.J., pp 65–91Google Scholar
  11. 11.
    Elbel J, Polonchuk LO, Eckert KL, Eppenberger H, Wintermantel E (1998) Sol-gel derived titania coatings for cell-culture substrates. In: Bioceramics 11. World Scientific, New York, pp 305–309Google Scholar
  12. 12.
    Pelizzetti E, Minero C (1993) Mechanism of the photooxidative degradation of organic pollutants over TiO2 particles. Electrochim Acta 38(l):47–55CrossRefGoogle Scholar
  13. 13.
    Peral J, Munoz J, Domenech X (1990) Photosensitized CN- oxidation over TiO2. J Photochem Photobiol A 55(2):251–257CrossRefGoogle Scholar
  14. 14.
    Sabate J, Anderson MA, Kikkawa H, Xu Q, Cerveramarch S, Hill CG (1992) Nature and properties of pure and NB-doped TiO2 ceramic membranes affecting the photocatalytic degradation of 3-chlorosalicylic acid as a model of halogenated organic-compounds. J Catal 134(l):36–46CrossRefGoogle Scholar
  15. 15.
    Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101(19):3746–3752CrossRefGoogle Scholar
  16. 16.
    Serpone N, Pelizzetti E (1989) Photocatalysis: Fundamentals and Applications. Wiley Interscience, New YorkGoogle Scholar
  17. 17.
    Siegel RW (1996) Creating nanophase materials. Sci Am 275(6):74–79CrossRefGoogle Scholar
  18. 18.
    Barringer EA, Bowen HK (1985) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide.l. Synthesis and physical-properties. Langmuir 1(4):414–420CrossRefGoogle Scholar
  19. 19.
    Kormann C, Bahnemann DW, Hoffmann MR (1988) Preparation and characterization of quantum-size titanium-dioxide. J Phys Chem-US 92(18):5196–5201CrossRefGoogle Scholar
  20. 20.
    Selvaraj U, Prasadarao AV, Komarneni S, Roy R (1992) Sol-gel fabrication of epitaxial and oriented TiO2 thin-films. J Am Ceram Soc 75(5): 1167–1170CrossRefGoogle Scholar
  21. 21.
    Desu SB (1992) Ultra-thin TiO2 films by a novel method. Mat Sci Eng B-Solid 13(4):299–303CrossRefGoogle Scholar
  22. 22.
    Serpone N, Lawless D, Disdier J, Herrmann JM (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids - naked and with the lattice doped with Cr3+ , Fe3+ , and V5+ cations. Langmuir 10(3):643–652CrossRefGoogle Scholar
  23. 23.
    Oregan B, Moser J, Anderson M, Gratzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric-field effects on the dynamics of light-induced charge separation. J Phys Chem-US 94 (24):8720–8726CrossRefGoogle Scholar
  24. 24.
    Shen YC, Wang L, Lu ZH, Wei Y, Zhou QF, Mao HF, Xu HJ (1995) Fabrication, characterization and photovoltaic study of a TiO2 microporous electrode. Thin Solid Films 257(1):144–146CrossRefGoogle Scholar
  25. 25.
    Shin H, Collins RJ, Deguire MR, Heuer AH, Sukenik CN (1995) Synthesis and characterization of TiO2 thin-films on organic self-assembled monolayers.l. Film formation from aqueous-solutions. J Mater Res 10(3):692–698CrossRefGoogle Scholar
  26. 26.
    Huang D, Xiao ZD, Gu JH, Huang NP,Yuan CW (1997) TiO2 thin films formation on industrial glass through self-assembly processing. Thin Solid Films 305(1–2):110–115CrossRefGoogle Scholar
  27. 27.
    Cai R, Hashimoto K, Itoh K Kubota Y, Fujishima A (1991) Photokilling of malignant-cells with ultrafine TiO2 powder. B Chem Soc Jpn 64 (4):1268–1273CrossRefGoogle Scholar
  28. 28.
    Kubota Y, Shuin T, Kawasaki V, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994) Photokilling of T-24 human bladder-cancer cells with titanium-dioxide. Brit J Cancer 70 (6): 1107–1111CrossRefGoogle Scholar
  29. 29.
    Sharon M, Pal B, Mukhopadhayay K, Murugesan S, Noronha OPD, Samuel AM (1995) Sixteenth Annual Conference on Medical Physics. JodhpurGoogle Scholar
  30. 30.
    Huang NP, Xu MH, Yuan CW, Yu RR (1997) The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells. J Photochem Photobiol A 108(2–3):229–233CrossRefGoogle Scholar
  31. 31.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival - application to proliferation and cyto-toxicity assays. J Immunol Methods 65(l–2):55–63CrossRefGoogle Scholar
  32. 32.
    Gong JP, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel-electrophoresis and flow-cytometry. Anal Biochem 218(2):314–319CrossRefGoogle Scholar
  33. 33.
    Deng DX, Cai L, Chakrabarti S, Cherian MG (1999) Increased radiation-induced apoptosis in mouse thymus in the absence of metallothionein. Toxicology 134(l):39–49CrossRefGoogle Scholar
  34. 34.
    Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150(5):S60–S79(Suppl. S)CrossRefGoogle Scholar
  35. 35.
    Romero MP, Osuna C, Garcia-Perganeda A, Carrillo-Vico A, Guerrero JM (1999) The pineal secretory product melatonin reduces hydrogen peroxide-induced DNA damage in U-937 cells. J Pineal Res 26(4):227–235CrossRefGoogle Scholar
  36. 36.
    Fujishima A, Cai RX, Otsuki J, Hashimoto K, Itoh K, Yamashita T, Kubota Y (1993) Biochemical application of photoelectrochemistry - photokilling of malignant-cells with TiO2 powder. Electrochim Acta 38(1):153–157CrossRefGoogle Scholar
  37. 37.
    Lofgren LA, Hallgren S, Nilsson E, Westerborn A, Nilsson C, Reizenstein J (1995) Photodynamic therapy for recurrent nasopharyngeal cancer. Arch Otolaryngol 121(9):997–1002CrossRefGoogle Scholar
  38. 38.
    Stummer W, Stepp H, Moller G, Ehrhardt A, Leonhard M, Reulen HJ (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochirurgica 140(10):995CrossRefGoogle Scholar
  39. 39.
    Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microb 54(6):1330–1333Google Scholar
  40. 40.
    Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans Streptococci. J Photochem Photobiol B 14(4):369–379CrossRefGoogle Scholar
  41. 41.
    Matsunaga T, Okochi M (1995) TiO2-mediated photochemical disinfection of Escherichia-coli using optical fibers. Environ Sci Technol 29(2):501–505CrossRefGoogle Scholar
  42. 42.
    Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous-media: toward a solar-assisted water disinfection system. Environ Sci Technol 28(5):934–938CrossRefGoogle Scholar
  43. 43.
    Huang NP, Xiao ZD, Huang D, Yuan CW (1998) Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramol Sci 5(5–6):559–564CrossRefGoogle Scholar
  44. 44.
    Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32(5):726–728CrossRefGoogle Scholar
  45. 45.
    Jaeger CD, Bard AJ (1979) Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems. J Phys Chem-US 83(24):3146–3151CrossRefGoogle Scholar
  46. 46.
    Reland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia .coli by titanium-dioxide photocatalytic oxidation. Appl Environ Microb 59(5): 1668–1670Google Scholar
  47. 47.
    Pereira C, Ferreira C, Carvalho C, Oliveira C (1996) Contribution of plasma membrane and endoplasmic reticulum Ca2+-ATPases to the synaptosomal [Ca2+] increase during oxidative stress. Brain Res 713(l-2):269–277CrossRefGoogle Scholar
  48. 48.
    McCaughan JS (1999) Photodynamic therapy - A review. Drug Aging 15(l):49–68CrossRefGoogle Scholar
  49. 49.
    Bellnier DA, Wood LM, Potter WR, Weishaupt KR, Oseroff AR (1999) Design and construction of a light-delivery system for photodynamic therapy. Med Phys 26(8):1552–1558CrossRefGoogle Scholar
  50. 50.
    Xiao ZD, Huang NP, Xu MH, Lu ZH, Wei Y (1998) Novel preparation of asymmetric liposomes with inner and outer layer of different materials. Chem Lett (3):225–226CrossRefGoogle Scholar
  51. 51.
    Reddy R, Zhou F, Huang L, Carbone F, Bevan M, Rouse BT (1991) PH sensitive liposomes provide an efficient means of sensitizing target-cells to class-I restricted CTL recognition of a soluble-protein. J Immunol Methods 141(2):157–163CrossRefGoogle Scholar
  52. 52.
    Kostarelos K, Emfietzoglou D, Stamatelou M (1999) Liposome-mediated delivery of radionu-clides to tumor models for cancer radiotherapy: A quantitative analysis. J Liposome Res 9(3):407–424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Erich Wintermantel
    • 1
  • Karl-Ludwig Eckert
    • 2
  • Ning-Ping Huang
    • 3
  • Marcus Textor
    • 3
  • Donald M. Brunette
    • 4
  1. 1.Zentralinstitut für Medizintechnik der TU MünchenGarchingGermany
  2. 2.JOMED AGBeringenSwitzerland
  3. 3.Department of Materials, Laboratory for Surface Science and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  4. 4.Department of Oral Biological and Medical SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations