The Titanium-Bone Interface In Vivo

  • Cecilia Larsson
  • Marco Esposito
  • Haihong Liao
  • Peter Thomsen
Part of the Engineering Materials book series (ENG.MAT.)


Biomaterials are selected to perform a specific function in a specific clinical application. Titanium is a material with interesting biological properties. The most convincing evidence of the biocompatibility of titanium is the long-term clinical experience with titanium oral implants. A predictable and successful treatment of partial and total edentulism with threaded titanium implants has been documented [1, 2, 3, 4, 5, 6]. Implant success rates within the range of 86–99% after 5–15 years have been reported using a two-stage surgical procedure [1,7,8].


Dental Implant Titanium Surface Titanium Implant Biomed Mater Bone Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adell R, Eriksson B, Lekholm U, Brånemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5:347–359Google Scholar
  2. 2.
    Henry P, Laney W, Jemt T, et al (1996) Osseointegrated implants for single-tooth replacement: A prospective 5-year multicenter study. Int J Oral Maxillofac Implants 11:450–455Google Scholar
  3. 3.
    Jemt T, Chai J, Harnett J, et al (1996) A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants 11:291–298Google Scholar
  4. 4.
    Lekholm U, van Steenberghe D, Herrmann I, et al (1994) Osseointegrated implants in the treatment of partially edentulous jaws: A prospective 5-year multicenter study. Int J Oral Maxillofac Implants 9: 627–635Google Scholar
  5. 5.
    Nevins M, Langer B (1993) The successful application of osseointegrated implants to the posterior jaw: A long-term retrospective study. Int J Oral Maxillofac Implants 8:428–432Google Scholar
  6. 6.
    Roos J, Sennerby L, Lekholm U, Jemt T, Gröndahl K, Albrektsson T (1997) A qualitative and quantitative method for evaluating implant success: A 5-year retrospective analysis of the Brånemark implant. Int J Oral Maxillofac Implants 12:504–514Google Scholar
  7. 7.
    Friberg B, Nilsson H, Olsson M, Palmquist C (1997) Mk II: the self-tapping Brånemark implant: 5-year results of a prospective 3-center study. Clin Oral Implants Res 8:279–285CrossRefGoogle Scholar
  8. 8.
    Lindqvist L, Carlsson G, Jemt T (1996) A prospective 15-year follow-up study of mandibu-lar fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 7:329–336CrossRefGoogle Scholar
  9. 9.
    Yung M (1999) The Yung percutaneous mastoid vent: a medium-term follow-up study. Archives of Otolaryngology - Head & Neck Surgery 125:964–968Google Scholar
  10. 10.
    Granström G, Tjellström A (1999) Guided tissue generation in the temporal bone. Annals of Otology, Rhinology & Laryngology 108:349–354Google Scholar
  11. 11.
    Wazen J, Caruso M, Tjellström A (1998) Long-term results with the titanium bone-anchored hearing aid: the U.S. experience. American Journal of Otology 19:737–741Google Scholar
  12. 12.
    van der Pouw C, Johansson C, Mylanus E, Albrektsson T, and Cremers C (1998) Removal of titanium implants from the temporal bone: histologic findings. American Journal of Otology 19:46–51Google Scholar
  13. 13.
    Portmann D, Boudard P, Herman D (1997) Anatomical results with titanium implants in the mastoid region. Ear, Nose & Throat Journal 76:231–234Google Scholar
  14. 14.
    Tropiano P, Diop A, Dejou J, Bronsard J, Poitout D (1999) Interbody arthrodesis using a plasmapore titanium block. Mechanical and histological experimental study in sheep. Chirurgie 124:58–65CrossRefGoogle Scholar
  15. 15.
    Lee T, Haynes R, Longo J, Chu J (1996) Pin removal in slipped capital femoral epiphysis: the unsuitability of titanium devices. Journal of Pediatric Orthopaedics 16:49–52CrossRefGoogle Scholar
  16. 16.
    Topoleski L, Ducheyne P, Cuckler J (1998) Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement. Biomaterials 19:1569–1577CrossRefGoogle Scholar
  17. 17.
    Möller K, Sollerman C, Geijer M, Brånemark P-I (1999) Osseointegrated silicone implants. 18 patients with 57 MCP joints followed for 2 years. Acta Orthopaedica Scandinavica 70:109–115CrossRefGoogle Scholar
  18. 18.
    Lundborg G, Brånemark P-I, Rosen B (1996) Osseointegrated thumb prostheses: a concept for fixation of digit prosthetic devices. Journal of Hand Surgery (Am) 21:216–221CrossRefGoogle Scholar
  19. 19.
    Lundborg G, Brånemark P-I (1997) Anchorage of wrist joint prostheses to bone using the osseointegration principle. Journal of Hand Surgery (Br) 22:84–89CrossRefGoogle Scholar
  20. 20.
    Baldwin J, El-Saied M, Rubinstein RJ (1996) Uncemented total knee arthroplasty: report of 109 titanium knees with cancellous-structured porous coating. Orthopedics 19:123–130Google Scholar
  21. 21.
    Brånemark PI, Hansson B, Adell R, et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 16(1):7–127Google Scholar
  22. 22.
    Brånemark PI, Lausmaa J, Thomsen P, Ericson L, Brånemark R, Skalak R (1995) Anatomy of osseointegration and the transfer of load. In: Fonseca R, Davis W (eds) Reconstructive Preprosthetic Oral and Maxillofacial Surgery. Philadelphia: WB Saunders, pp 161–224Google Scholar
  23. 23.
    Roach H, Shearer J, Archer C (1989) The choice of an experimental model. J Bone Joint Surg (Br) 71-B:549–553Google Scholar
  24. 24.
    Brunski J, Puleo D, Nanci A (2000) Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments. Int J Oral Maxillofac Implants 15 (1):15–46Google Scholar
  25. 25.
    Brunette D, Chehroudi B (1999) The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng 121(l):49–57CrossRefGoogle Scholar
  26. 26.
    Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone ingrowth. The Journal of Arthroplasty 14:355–368CrossRefGoogle Scholar
  27. 27.
    Cooper L (1998) Biologic determinants of bone formation for osseointegration: Clues for future clinical improvements. J Prosthet Dent 80:439–449CrossRefGoogle Scholar
  28. 28.
    Klinger M, Rahemtulla F, Prince C, Lucas L, Lemons J (1998) Proteoglycans at the bone-implant interface. Crit Rev Oral Biol Med 9(4):449–463CrossRefGoogle Scholar
  29. 29.
    Pilliar R (1998) Overview of surface variability of metallic endosseous dental implants: textures and porous surface-structured designs. Implant Dentistry 7:305–314CrossRefGoogle Scholar
  30. 30.
    Steinemann S (1998) Titanium - the material of choice? Periodontology 2000 17:7–21CrossRefGoogle Scholar
  31. 31.
    Wen X, Wang X, Zhang N (1996) Microrough surface of metallic biomaterials: a literature review. Bio-Medical materials and Engineering 6:173–189Google Scholar
  32. 32.
    Schwartz Z, Boyan B (1994) Underlying mechanisms at the bone-biomaterial interface. Journal of Cellular Biochemistry 56:340–347CrossRefGoogle Scholar
  33. 33.
    Linder L (1992) Ultrastructure of the bone-cement and the bone-metal interface. Clin Orthop Mar (276): 147–156Google Scholar
  34. 34.
    Roberts W, Garetto L (1992) Physiology of osseous and fibrous integration. Alpha Omegan 85(4):57–60Google Scholar
  35. 35.
    Keller J (1999) Oral biology and dental implants. Adv Dent Res 13:1–190CrossRefGoogle Scholar
  36. 36.
    Davies J (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401Google Scholar
  37. 37.
    Arnett T (1990) Update on bone cell biology. Eur J Orthod 12(l):81–90CrossRefGoogle Scholar
  38. 38.
    Formigli L, Zecchi S, Benvenuti S, Brandi M (1992) Cell-to-cell interactions in bone tissue. Ann N Y Acad Sci 673:120–125CrossRefGoogle Scholar
  39. 39.
    Mundy G, Boyce B, Hughes D, et al (1995) The effects of cytokines and growth factors on osteoblastic cells. Bone 17(2 Suppl):71S–p75SCrossRefGoogle Scholar
  40. 40.
    Athanasou N (1996) Cellular biology of bone-resorbing cells. J Bone Joint Surg Am 78(7):1096–1112Google Scholar
  41. 41.
    Buckwalter J, Glimcher M, Cooper R, Recker R (1996a) Bone Biology I: Structure, Blood Supply, Cells, Matrix, and Mineralization. Instr Course Lect 45:371–386Google Scholar
  42. 42.
    Buckwalter J, Glimcher M, Cooper R, Recker R (1996b) Bone Biology II: Formation, Form, Modeling, Remodeling, and Regulation of Cell Function. Instr Course Lect 45:387–399Google Scholar
  43. 43.
    Hill P (1998) Bone remodelling. Br J Orthod 25(2): 101–107CrossRefGoogle Scholar
  44. 44.
    Bernard de B (1992) Calcium metabolism and bone mineralization. In: Hall B (ed) Bone Metabolism and Mineralization, vol. 4. CRC Press, Boca Raton, FA, USA, pp 73–98Google Scholar
  45. 45.
    McKee MD, Nanci A (1993) Ultrastructural, cytochemical and immunocytochemical studies on bone and its interfaces. Cells and Materials 3:219–243Google Scholar
  46. 46.
    Nanci A, McCarthy G, Zalzal S, Clokie C, Warshawsky H, McKee M (1994) Tissue response to titanium implants in the rat tibia: Ultrastructural, immunocytochemical, and lectin-cytochemical characterization of the bone-titanium interface. Cells and Materials 4:1–30Google Scholar
  47. 47.
    Scherft J (1978) The lamina limitans of the organic bone matrix: Formation in vitro. Journal of Ultrastructural Research 64:173–181CrossRefGoogle Scholar
  48. 48.
    Buckwalter J, Cruess R (1991) Fractures in Adults, Vol. 1. In: Rockwood CJ, Green D, Bucholz R (eds) Philadelphia, PA. JB Lippincott:181–222Google Scholar
  49. 49.
    Williams D, Frolik C (1991) Physiological and pharmacological regulation of biological calcification. Int Rev Cytol 126:195–292CrossRefGoogle Scholar
  50. 50.
    Roberts W, Smith R, Zilberman Y, Mozsary P, Smith R (1984) Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 86(2):95–111CrossRefGoogle Scholar
  51. 51.
    Sennerby L, Thomsen P, Ericson L (1993) Early tissue response to titanium implants inserted in rabbit cortical bone. Part I, Light microscopic observations. J Mater Sci: Mater Med 4:240–250CrossRefGoogle Scholar
  52. 52.
    Sennerby L, Thomsen P, Ericson L (1993) Early tissue response to titanium implants inserted in rabbit cortical bone. Part II, Ultrastructural observations. J Mater Sci: Mater Med 4:494–502CrossRefGoogle Scholar
  53. 53.
    Donath K, Kirsch A, Filderstadt, Osborn J-F (1984) Zelluläre Dynamik um enossale Titanimplantate. Fortschr Zahnärztl Implantol 1:55–58Google Scholar
  54. 54.
    Linder L, Carlsson A, Marsal L, Bjursten L, Brånemark P (1988) Clinical aspects of osseoin-tegration in joint replacement. A histological study of titanium implants. J Bone Joint Surg (Br) 70(4):550–555Google Scholar
  55. 55.
    Muller-Mai C, Voigt C, Knarse W, Sela J, Gross U (1991) The early host and material response of bone-bonding and non-bonding glass-ceramic implants as revealed by scanning electron microscopy and histochemistry. Biomaterials 12(9):865–871CrossRefGoogle Scholar
  56. 56.
    Lopez-Sastre S, Gonzalo-Orden J, Altonaga J, Altonaga J, Orden M (1998) Coating titanium implants with bioglass and with hydroxyapatite. A comparative study in sheep. International Orthopaedics 22:380–383CrossRefGoogle Scholar
  57. 57.
    Müller-Mai C, Voigt C, Gross U (1990) Incorporation and degradation of hydroxyapatite implants of different surface roughness and surface structure in bone. Scanning Microscopy 4 (3):613–624Google Scholar
  58. 58.
    van Blitterswijk C, Kuijpers W, Daems W, de Groot K (1986) Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. Biomaterials 7:137–143CrossRefGoogle Scholar
  59. 59.
    Gross U, Brandes J, Strunz V, Bab I, Sela J (1981) The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res 15:291–305CrossRefGoogle Scholar
  60. 60.
    Ducheyne P, Kokubo T, van Blitterswijk C (1992) Panel discussion workshop “Bioactive Materials” - Berlin 1992. Bone-Bonding Biomaterials. Leiderdrop, The Netherlands. Reed Healthcare Communications, pp 236–238Google Scholar
  61. 61.
    Nygren H, Tengvall P, Lundstrom I (1997) The initial reactions of TiO2 with blood. J Biomed Mater Res 34(4):487–492CrossRefGoogle Scholar
  62. 62.
    Nygren H, Eriksson C, Lausmaa J (1997) Adhesion and activation of platelets and polymor-phonuclear granulocyte cells at TiO2 surfaces. J Lab Clin Med 129(l):35–46CrossRefGoogle Scholar
  63. 63.
    Wälivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P (1994) Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials 15:827–834CrossRefGoogle Scholar
  64. 64.
    Hong J, Andersson J, Ekdahl K, et al (1999) Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost 82(l):58–64Google Scholar
  65. 65.
    Gemmell C, Park J (2000) Initial blood interactions with endosseous implant materials. In: Davies JE (ed) Bone Engineering. em2, Toronto, pp l08–p117Google Scholar
  66. 66.
    Dhert W, Thomsen P, Blomgren A, Esposito M, Ericson L, Verbout A (1998) Integration of press-fit implants in cortical bone: A study on interface kinetics. J Biomed Mater Res 41:574–583CrossRefGoogle Scholar
  67. 67.
    Brånemark R, Öhrnell L, Nilsson P, Thomsen P (1997) Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials 18:969–978CrossRefGoogle Scholar
  68. 68.
    Chappard D, Aguado E, Huré G, Grizon F, Basle M (1999) The early remodeling phases around titanium implants: A histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int J Oral Maxillofac Implants 14:189–196Google Scholar
  69. 69.
    Simmons C, Valiquette N, Pilliar R (1999) Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early postimplantation healing response and mechanical stability. J Biomed Mater Res 47:127–p138CrossRefGoogle Scholar
  70. 70.
    Hofmann A, Bloebaum R, Bachus K (1997) Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand 68(2): 161–166CrossRefGoogle Scholar
  71. 71.
    Boyan B, Hummert T, Kieswetter K, Schraub D, Dean D, Schwartz Z (1995) Effect of titanium surface characteristics on chondrocytes and osteoblasts in vitro. Cells and Materials 5:323–335Google Scholar
  72. 72.
    Martin J, Schwartz Z, Hummert T, et al (1995) Effect of titanium surface roughness on proliferation, differentiation and protein synthesis of human osteoblast-like cells. J Biomed Mater Res 29:389–401CrossRefGoogle Scholar
  73. 73.
    Schwartz Z, Martin J, Dean D, Simpson J, Cochran D, Boyan B (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30:145–155CrossRefGoogle Scholar
  74. 74.
    Clokie C, Warshawsky H (1995) Morphologic and radioautographic studies of bone formation in relation to titanium implants using the rat tibia as a model. Int J Oral Maxillofac Implants 10(2):155–165Google Scholar
  75. 75.
    Masuda T, Salvi G, Offenbacher S, Felton D, Cooper L (1997) Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Int J Oral Maxillofac Implants 12:472–485Google Scholar
  76. 76.
    Hanawa T, Kamiura Y, Yamamoto S, et al (1997) Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 36(1):131–136CrossRefGoogle Scholar
  77. 77.
    Ohtsu A, Kusakari H, Maeda T, Takano Y (1997) A histological investigation on tissue response to titanium implants in cortical bone of the rat femur. J Periodontol 68(3):270–283CrossRefGoogle Scholar
  78. 78.
    Ogiso M, Tabata T, Ichijo T, Borgese D (1992) Bone calcification on the hydroxyapatite dental implant and the bone-hydroxyapatite interface. J Long-Term Effects Med Implants 2:137–148Google Scholar
  79. 79.
    Albrektsson T, Brånemark PI, Hansson H, Ivarsson B, Jönsson U (1982) Ultrastructural analysis of the interface zone of titanium and gold implants. Advances in Biomaterials 5:167–177Google Scholar
  80. 80.
    Linder L, Albrektsson T, Brånemark PI, et al (1983) Electron microscopic analysis of the bone-titanium interface. Acta Orthop Scand 54(l):45–52CrossRefGoogle Scholar
  81. 81.
    Hansson H-A, Albrektsson T, Brånemark PI (1983) Structural aspects of the interface between tissue and titanium implants. The Journal of Prosthetic Dentistry 50:108–113CrossRefGoogle Scholar
  82. 82.
    Linder L (1985) High resolution microscopy of the implant tissue interface. Acta Orthop Scand 56:269–272CrossRefGoogle Scholar
  83. 83.
    Thomsen P, Ericson L (1985) Light and transmission electron microscopy used to study the tissue morphology close to implants. Biomaterials 6:421–424CrossRefGoogle Scholar
  84. 84.
    Linder L, Obrant K, Boivin G (1989) Osseointegration of metallic implants. II. Transmission electron microscopy in the rabbit. Acta Orthop Scand 60(2):135–139CrossRefGoogle Scholar
  85. 85.
    Sennerby L, Thomsen P, Ericson L (1992) Ultrastructure of the bone-titanium interface in rabbits. J Mater Sci: Mater Med 3:262–271CrossRefGoogle Scholar
  86. 86.
    Nanci A, McKee M (1996) Secretion of osteopontin by macrophages and its accumulation at tissue surfaces during wound healing in mineralized tissues: A potential requirement for macrophage adhesion and phagocytosis. The Anatomical Record 245:394–409CrossRefGoogle Scholar
  87. 87.
    McKee M, Nanci A (1996) Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 35(1–p4):197–205CrossRefGoogle Scholar
  88. 88.
    Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278Google Scholar
  89. 89.
    LeGeros R, Orly I, Gregoire M, Daculsi G (1991) Substrate surface dissolution and interfacial biological mineralization. In: Davies JE (ed) The Bone-Biomaterial Interface. University Press, Toronto, pp 76–88Google Scholar
  90. 90.
    Ravaglioli A, Krajewski A, Biasini V, Martinetti R, Mangano C, Venini G (1992) Interface between hydroxyapatite and mandibular human bone tissue. Biomaterials 13:162–167CrossRefGoogle Scholar
  91. 91.
    van Blitterswijk C, Grote J, Kuypers W, Blok van Hoek C, Daems W (1985) Bioreactions at the tissue/hydroxyapatite interface. Biomaterials 6:243–251CrossRefGoogle Scholar
  92. 92.
    van Blitterswijk C, Hesseling S, van der Brink J, Leenders H, Bakker D (1991) Polymer reactions resulting in bone bonding: A review of the biocompatibility of polyactive. In: Davies J (ed) The Bone-Biomaterial Interface. Toronto University Press, Toronto, pp 295–307Google Scholar
  93. 93.
    De Lange G, De Putter C (1993) Structure of the bone interface to dental implants in vivo. J Oral Implantol 19(2):123–137Google Scholar
  94. 94.
    Larsson C, Thomsen P, Ericson L The ultrastructure of the interface zone between bone and surface modified titanium (submitted for publication)Google Scholar
  95. 95.
    Schüpbach P, Hürzeler M, Grunder U (1994) Implant-tissue interfaces following treatment of peri-implantitis using guided tissue regeneration. Clin Oral Implants Res 5:55–65CrossRefGoogle Scholar
  96. 96.
    Steflik D, Parr G, Sisk A, et al (1994) Osteoblast activity at the dental implant bone interface: Transmission electron microscopic and high-voltage electron microscopic observations. J Periodontol 65:404–413CrossRefGoogle Scholar
  97. 97.
    Steflik D, Corpe R, Young T, Buttle K (1998) In vivo evaluation of the biocompatibility of implanted biomaterials: morphology of the implant-tissue interactions. Implant Dentistry 7(4):338–350CrossRefGoogle Scholar
  98. 98.
    Ayukawa Y, Takeshita F,Yoshinari M, et al (1998) An immunocytochemical study for lysoso-mal cathepsins B and D related to the intracellular degradation of titanium at the bone-titanium interface. J Periodont 69(l):62–68CrossRefGoogle Scholar
  99. 99.
    Takeshita F, Ayukawa Y, Iyama S, Murai K, Suetsugu T (1997) Long-term evaluation of bone-titanium interface in rat tibiae using light microscopy, transmission electron microscopy, and image processing. J Biomed Mater Res 37(2):235–242CrossRefGoogle Scholar
  100. 100.
    Sennerby L, Ericson LE, Thomsen P, Lekholm U, Åstrand P (1991) Structure of the bone-titanium interface in retrieved clinical oral implants. Clin Oral Implants Res 2:103–111CrossRefGoogle Scholar
  101. 101.
    Ahmad M, McCarthy M, Gronowicz G (1999) An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials 20:211–p220CrossRefGoogle Scholar
  102. 102.
    Jinno T, Goldberg V, Davy D, Stevenson S (1998) Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model. J Biomed Mater Res 42(l):20–p29CrossRefGoogle Scholar
  103. 103.
    Woodman J, Jacobs J, Galante J, Urban R (1984) Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res 1:421–p430Google Scholar
  104. 104.
    Osborn J, Willich P, Meenen N (1989) The release of titanium into human bone from a titanium implant coated with plasma-sprayed titanium. Adv Biomater 9:75–p80Google Scholar
  105. 105.
    Deporter D, Watson P, Pilliar R, et al (1986) A histological assessment of the initial healing response adjacent to porous-surface, titanium alloy dental implants in dogs. J Dent Res 65:1064–p1070CrossRefGoogle Scholar
  106. 106.
    Blumenthal N, Posner A (1984) In vitro model of aluminum induced osteomalacia: Inhibition of hydroxyapatite formation and growth. Calcif Tissue Int 36:439–p441CrossRefGoogle Scholar
  107. 107.
    Blumenthal N, Cosma V (1989) Inhibition of apatite formation by titanium and vanadium ions. J Biomed Mater Res 23:13–p22CrossRefGoogle Scholar
  108. 108.
    Thompson G, Puleo D (1995) Effect of sublethal metal ion concentrations on osteogenic cells derived from bone marrow stromal cells. J Appl Biomater 6:249–p258CrossRefGoogle Scholar
  109. 109.
    Thompson G, Puleo D (1996) Ti-6Al-4V ion solution inhibition of osteogenic cell pheno-type as a function of differentiation time course in vitro. Biomaterials 17:1949–p1954CrossRefGoogle Scholar
  110. 110.
    Goodman W, Gilligan K, Horst R (1984) Short-term aluminium administration in the rat. Effects on bone formation and relationship to renal osteomalacia. J Clin Invest 73:171–p181CrossRefGoogle Scholar
  111. 111.
    Johansson C, Han C, Wennerberg A, Albrektsson T (1998) A quantitative comparison of machined commercially pure titanium and titanium-aluminum-vanadium implants in rabbit bone. Int J Oral Maxillofac Implants 13(3):315–p321Google Scholar
  112. 112.
    Johansson C, Albrektsson T, Thomsen P, Sennerby L, Lodding A, Odelius H (1992) Tissue reactions to titanium-6aluminum-4vanadium alloy. Eur J Exp Musculoskel Res 1:161169Google Scholar
  113. 113.
    Johansson C, Lausmaa J, Röstlund T, Thomsen P (1993) Commercially pure titanium and Ti6A14V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone. J Mater Sci: Mater Med 4:132–p141CrossRefGoogle Scholar
  114. 114.
    Michel R (1987) Trace metal analysis in biocompatibility testing. CRC Crit Rev Biocomp 3:235–p317Google Scholar
  115. 115.
    Thomsen P, Larsson C, Ericson L, Sennerby L, Lausmaa J, Kasemo B (1997) Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci: Mater Med 8:653–p665CrossRefGoogle Scholar
  116. 116.
    Lausmaa J (1988) Surface Preparation and Analysis of Titanium Implant Materials. Ph.D. thesis, Göteborg University, Göteborg, SwedenGoogle Scholar
  117. 117.
    Williams RL, Williams DF (1988) Albumin adsorption on metal surfaces. Biomaterials 9(2):206–p212CrossRefGoogle Scholar
  118. 118.
    Johansson C, Wennerberg A, Albrektsson T (1994) Quantitative comparison of screw-shaped commercially pure titanium and zirconium implants in rabbit tibia. J Mater Sci: Mater Med 5:340–p344CrossRefGoogle Scholar
  119. 119.
    Steflik D, Sisk A, Parr G, et al (1992) High-voltage electron microscopy and conventional transmission electron microscopy of the interface zone between bone and endosteal dental implants. J Biomed Mater Res 26:529–p545CrossRefGoogle Scholar
  120. 120.
    Steflik D, Hanes P, Sisk A, et al (1992) Transmission electron microscopic and high voltage electron microscopic observations of the bone and osteocyte activity adjacent to unloaded dental implants placed in dogs. J Periodontol 63:443–p452CrossRefGoogle Scholar
  121. 121.
    Alberius P (1983) Bone reactions to tantalum markers. A scanning electron microscopic study. Acta Anat (Basel) 115(4):310–p318CrossRefGoogle Scholar
  122. 122.
    Johansson C, Albrektsson T (1991) A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 2:24–p29CrossRefGoogle Scholar
  123. 123.
    Mohammadi S, Esposito M, Cucu M, Ericson L, Thomsen P (2001) Tissue response to hafnium. J Mater Sci: Mater Med (in press)Google Scholar
  124. 124.
    Ratner B (1996) Correlations of material surface properties with biological responses. In: Ratner B, Hoffman A, Schoen F, Lemons J (eds) Biomaterials Science. An Introduction to Materials in Medicine. Academic Press, San Diego, CA, pp 445–p451Google Scholar
  125. 125.
    Sunny M, Sharma C (1990) Fibrinogen-aluminium interaction: Changes with oxide layer thickness onto metal surface. J Biomed Mater Res 24:455–p462CrossRefGoogle Scholar
  126. 126.
    McAlarney M, Oshiro M, McAlarney C (1996) Effects of titanium dioxide passive film crystal structure, thickness, and crystallinity on C3 adsorption. Int J Oral Maxillofac Implants 11:73–p80Google Scholar
  127. 127.
    Hazan R, Brener R, Oron U (1993) Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 14:570–p574CrossRefGoogle Scholar
  128. 128.
    Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson L (1994) Bone response to surface modified titanium implants. Studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 15(13): 1062–p1074CrossRefGoogle Scholar
  129. 129.
    Larsson C, Thomsen P, Aronsson BO, et al (1996) Bone response to surface modified titanium implants. Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17(6):605–p616CrossRefGoogle Scholar
  130. 130.
    Larsson C, Thomsen P, Aronsson BO, et al (1997) Bone response to surface modified titanium implants. Studies on the tissue response after one year to machined and electropolished implants with different oxide thicknesses. J Mater Sci: Mater Med 8:721–p729CrossRefGoogle Scholar
  131. 131.
    Larsson C, Thomsen P, Lausmaa J (2001) Bone response to surface modified titanium implants. Studies on the early tissue response to different surface characteristics (submitted for publication)Google Scholar
  132. 132.
    Tzur I, Goodship A, Maltz L, Oron U, Steinman A (1998) Enhancement of bone apposition to stainless steel cortical screws by surface modification using heat treatment: An experimental study. Journal of Orthopaedic Trauma 12(7):504–p509CrossRefGoogle Scholar
  133. 133.
    Ishizawa H, Fujino M, Ogino M (1995) Mechanical and histological investigation of hydro-thermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29:1459–p1468CrossRefGoogle Scholar
  134. 134.
    Ishizawa H, Fujino M, Ogino M (1997) Histomorphometric evaluation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment. J Biomed Mater Res 35:199–p206CrossRefGoogle Scholar
  135. 135.
    Ishizawa H, Ogino M (1995) Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29:65–p72CrossRefGoogle Scholar
  136. 136.
    Vercaigne S, Wolke J, Naert I, Jansen J (2000) A mechanical evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of goat, part 1. Clin Oral Implants Res 11:305–p313CrossRefGoogle Scholar
  137. 137.
    Vercaigne S, Wolke J, Naert I, Jansen J (2000) A histological evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of goat, part 2. Clin Oral Implants Res 11:314–p324CrossRefGoogle Scholar
  138. 138.
    Jansen J, Vercaigne S, Hulshoff A, Corten F, ter Brugge P, Naert I (2000) Bone regenerative implant surfaces: the effect of surface roughness and Ca-P coatings. In: Davies JE (ed) Bone Engineering. em2, Toronto, pp 345–p357Google Scholar
  139. 139.
    Fini M, Cigada A, Rondelli G, et al (1999) In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials 20:1587–p1594CrossRefGoogle Scholar
  140. 140.
    Larsson C (1997) The Interface Between Bone and Metals with Different Surface Properties. Light Microscopical and Ultrastructural Studies. Ph.D. thesis, Göteborg University, Göteborg, SwedenGoogle Scholar
  141. 141.
    McQueen D, Sundgren JE, Ivarsson B, et al (1982) Auger electron spectroscopic studies of titanium implants. In: Lee AJC, Albrektsson T, Brånemark PI (eds) Clinical Applications of Biomaterials. Wiley, New York, pp 179–p185Google Scholar
  142. 142.
    Sundgren J-E, Bodö P, Lundström I (1986) Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci 110:9–p20CrossRefGoogle Scholar
  143. 143.
    Esposito M, Lausmaa J, Hirsch J, Thomsen P (1999) Surface analysis of failed oral titanium implants. J Biomed Mater Res 48(4):559–p568CrossRefGoogle Scholar
  144. 144.
    Buser D, Schenk R, Steinemann S, Fiorellini J, Fox C, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–p902CrossRefGoogle Scholar
  145. 145.
    Goldberg V, Stevenson S, Feighan J, Davy D (1995) Biology of grit-blasted titanium alloy implants. Clin Orthop Rel Res 319:122–p129Google Scholar
  146. 146.
    Gotfredsen K, Wennerberg A, Johansson C, Skovgaard L, Hjörting-Hansen E (1995) Anchorage of TiO2-blasted, HA-coated, and machined implants: An experimental study with rabbits. J Biomed Mater Res 29:1223–p1231CrossRefGoogle Scholar
  147. 147.
    Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B (1997) A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillo-fac Implants 12(4):486–p494Google Scholar
  148. 148.
    Lausmaa J, Kasemo B, Rolander U, Bjursten LM, Ericson LE, Rosander L, Thomsen P (1988) Preparation, surface spectroscopic and electron microscopic characterization of titanium implant materials. In: Ratner BD (ed) Surface Characterization of Biomaterials. Elsevier, New York, pp 161–p174Google Scholar
  149. 149.
    Hanawa T (1991) Titanium and its oxide film: A substrate for formation of apatite. In: Davies JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 49–p61Google Scholar
  150. 150.
    Ellingsen J (1991) A study of the mechanism of protein adsorption to TiO2. Biomaterials 12:593–p596CrossRefGoogle Scholar
  151. 151.
    Ellingsen J, Pinholt E (1995) Pretreatment of titanium implants with lanthanum ions alter the bone reaction. J Mater Sci: Mater Med 6:125–p129CrossRefGoogle Scholar
  152. 152.
    Ellingsen J (1995) Pre-treatment of titanium implants with fluoride improves their retention in bone. J Mater Sci: Mater Med 6:749–p753CrossRefGoogle Scholar
  153. 153.
    Johansson C, Wennerberg A, Holmén A, Ellingsen JE (2000) Enhanced fixation of bone to fluoride-modified implants, 6th World Biomaterials Congress, Kamuela, Hawaii, USAGoogle Scholar
  154. 154.
    Collis J, Embery G (1992) Adsorption of glycosaminoglycans to commercially pure titanium. Biomaterials 13:548–p552CrossRefGoogle Scholar
  155. 155.
    Flemming R, Murphy C, Abrams G, Goodman S, Nealy P (1999) Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 20:573–p588CrossRefGoogle Scholar
  156. 156.
    Singhvi R, Stephanopoulos G, Wang D (1994) Effects of substratum morphology on cell physiology. Biotechnol Bioeng 43:764–p771CrossRefGoogle Scholar
  157. 157.
    Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–p1583CrossRefGoogle Scholar
  158. 158.
    von Recum A, Shannon C, Long K, van Kooten T, Meyle J (1996) Surface roughness, porosity and texture as modifiers of cellular adhesion. Tissue Eng 2:241–p253CrossRefGoogle Scholar
  159. 159.
    Thomas K, Cook S (1985) An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 19:875–p901CrossRefGoogle Scholar
  160. 160.
    Thomas K, Kay F, Cook S, Jarcho M (1987) The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histological profiles of titanium implant materials. J Biomed Mater Res 21:1395–p1414CrossRefGoogle Scholar
  161. 161.
    Carlsson L, Röstlund T, Albrektsson B, Albrektsson T (1988) Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 3:21–p24Google Scholar
  162. 162.
    Wennerberg A, Albrektsson T, Andersson B, Krol J (1995) A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 6(l):24–p30CrossRefGoogle Scholar
  163. 163.
    Wennerberg A, Albrektsson T, Lausmaa J (1996) Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3. J Biomed Mater Res 30(2):251–p260CrossRefGoogle Scholar
  164. 164.
    Wennerberg A, Albrektsson T, Andersson B (1996) Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 11(1):38–p45Google Scholar
  165. 165.
    Gotfredsen K, Nimb L, Hjörting-Hansen E, Steen Jensen J, Holmén A (1992) Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs. Clin Oral Implants Res 3:77–p84CrossRefGoogle Scholar
  166. 166.
    Hayakawa T, Yoshinari M, Nemoto K, Wolke J, Jansen J (2000) Effect of surface roughness and calcium phosphate coating on the implant bone response. Clin Oral Implants Res 11:296–p304CrossRefGoogle Scholar
  167. 167.
    Vercaigne S, Wolke J, Naert I, Jansen J (1998) Histomorphometrical and mechanical evaluation of titanium plasma spray-coated implants placed in the cortical bone of goats. J Biomed Mater Res 41:41–p48CrossRefGoogle Scholar
  168. 168.
    Vercaigne S, Wolke J, Naert I, Jansen J (1998) The effect of titanium plasma sprayed implants on trabecular bone healing in the goat. Biomaterials 19:1093–p1099CrossRefGoogle Scholar
  169. 169.
    Hure G, Donath K, Lesourd M, Chappard D, Basle M (1996) Does titanium surface treatment influence the bone-implant interface? SEM and histomorphometry in a 6-month sheep study. Int J Oral Maxillofac Implants 11 (4):506–p511Google Scholar
  170. 170.
    Cochran D, Nummikoski P, Higginbottom F, Hermann J, Makins S, Buser D (1996) Evaluation of an endosseous titanium implant with a sandblasted and acid-petched surface in the canine mandible: radiographic results. Clin Oral Implants Res 7(3):240–p252CrossRefGoogle Scholar
  171. 171.
    Klokkevold P, Nishimura R, Adachi M, Caputo A (1997) Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Oral Implants Res 8:442–p447CrossRefGoogle Scholar
  172. 172.
    D’Lima D, Lemperle S, Chen P, Holmes R, Colwell CJ (1998) Bone response to implant surface morphology. J Arthroplasty 13(8):928–p934CrossRefGoogle Scholar
  173. 173.
    Vercaigne S, Wolke J, Naert I, Jansen J (1998) Bone healing capacity of titanium plasma sprayed and hydroxylapatite-coated oral implants. Clin Oral Implants Res 9:261–p271CrossRefGoogle Scholar
  174. 174.
    Chehroudi B, McDonnell D, Brunette D (1997) The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res 34(3):279–p290CrossRefGoogle Scholar
  175. 175.
    Okamoto K, Matsuura T, Hosokawa R, Akagawa Y (1998) RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium. J Dent Res 77:481–p487CrossRefGoogle Scholar
  176. 176.
    Vrouwenvelder W, Groot C, de Groot K (1993) Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res 27(4):465–p475CrossRefGoogle Scholar
  177. 177.
    Ozawa S, Kasugai S (1996) Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 17(l):23–p29CrossRefGoogle Scholar
  178. 178.
    Locci P, Becchetti E, Pugliese M, et al (1997) Phenotype expression of human bone cells cultured on implant substrates. Cell Biochem Funct 15(3):163–p170CrossRefGoogle Scholar
  179. 179.
    Massas R, Pitaru S, Weinreb M (1993) The effects of titanium and hydroxyapatite on osteo-blastic expression and proliferation in rat parietal bone cultures. J Dent Res 72(6):1005–p1008CrossRefGoogle Scholar
  180. 180.
    De Groot K, Geesink R, Klein C, Serekian P (1987) Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 21:1375–p1381CrossRefGoogle Scholar
  181. 181.
    Osborn J (1987) Biological behavior of the hydroxyapatite ceramic coating on the femur shaft of a titanium endoprosthesis - initial histologic evaluation of a human explant. Biomed Tech (Berl) 32(7–p8):177–p183CrossRefGoogle Scholar
  182. 182.
    Block M, Kent J, Kay J (1987) Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg 45(7):601–p607CrossRefGoogle Scholar
  183. 183.
    Block M, Finger I, Fontenot M, Kent J (1989) Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants 4(3):219–p225Google Scholar
  184. 184.
    de Lange G, Donath K (1989) Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 10(2):121–p125CrossRefGoogle Scholar
  185. 185.
    Denissen H, Kalk W, de Nieuport H, Maltha J, van de Hooff A (1990) Mandibular bone response to plasma-sprayed coatings of hydroxyapatite. Int J Prosthodont 3(l):53–p58Google Scholar
  186. 186.
    Cook S, Kay J, Thomas K, Jarcho M (1987) Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 2(1):15–p22Google Scholar
  187. 187.
    Meffert R, Block M, Kent J (1987) What is osseointegration? Int J Periodontics Restorative Dent 7(4):9–p21Google Scholar
  188. 188.
    Jansen J, van de Waerden J, Wolke J, de Groot K Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res 25(8):973–p989Google Scholar
  189. 189.
    Gottlander M, Johansson C, Albrektsson T (1997) Short- and long-term animal studies with a plasma-sprayed calcium phosphate-coated implant. Clin Oral Implants Res 8(5):345–p351CrossRefGoogle Scholar
  190. 190.
    Dhert W, Klein C, Wolke J, van der Velde E, de Groot K, Rozing P (1991) A mechanical investigation of fluorapatite, magnesiumwhitlockite, and hydroxylapatite plasma-sprayed coatings in goats. J Biomed Mater Res 25(10):1183–p1200CrossRefGoogle Scholar
  191. 191.
    Jansen J, van der Waerden J, Wolke J (1993) Histologic investigation of the biologic behavior of different hydroxyapatite plasma-sprayed coatings in rabbits. J Biomed Mater Res 27(5):603–p610CrossRefGoogle Scholar
  192. 192.
    Caulier H, van der Waerden J, Paquay Y, et al (1995) Effect of calcium phosphate (Ca-P) coatings on trabecular bone response: a histological study. J Biomed Mater Res 29(9):1061–p1069CrossRefGoogle Scholar
  193. 193.
    Caulier H, van der Waerden J, Wolke J, Kalk W, Naert I, Jansen J (1997) A histological and histomorphometrical evaluation of the application of screw-designed calcium phosphate (Ca-P)-coated implants in the cancellous maxillary bone of the goat. J Biomed Mater Res 35(1):19–p30CrossRefGoogle Scholar
  194. 194.
    Caulier H, Vercaigne S, Naert I, et al (1997) The effect of Ca-P plasma-sprayed coatings on the initial bone healing of oral implants: an experimental study in the goat. J Biomed Mater Res 34(l):121–p128CrossRefGoogle Scholar
  195. 195.
    Vidigal JG, Aragones L, Campos JA, Groisman M (1999) Histomorphometric analyses of hydroxyapatite-coated and uncoated titanium dental implants in rabbit cortical bone. Implant Dentistry 8:295–p300CrossRefGoogle Scholar
  196. 196.
    Wie H, Hero H, Solheim T (1998) Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations. Int J Oral Maxillofac Implants 13(6):837–p844Google Scholar
  197. 197.
    Story B, Wagner W, Gaisser D, Cook S, Rust-Dawicki A (1998) In vivo performance of a modified CSTi dental implant coating. Int J Oral Maxillofac Implants 13(6):749–p757Google Scholar
  198. 198.
    Pazzaglia U, Brossa F, Zatti G, Chiesa L (1998) The relevance of hydroxyapatite and spon-gious titanium coatings in fixation of cementless stems. An experimental comparative study in rat femur employing histological and microangiographic techniques. Arch Orthop Trauma Surg 117:279–p285CrossRefGoogle Scholar
  199. 199.
    Zhou P, Akao M (1997) Preparation and characterization of double layered coating composed of hydroxyapatite and perovskite by thermal decomposition. Biomed Mater Eng 7(1):67–p81Google Scholar
  200. 200.
    Ban S, Maruno S, Arimoto N, Harada A, Hasegawa J (1997) Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and titanium. J Biomed Mater Res 36(1):9–p15CrossRefGoogle Scholar
  201. 201.
    Yoshinari M, Klinge B, Derand T (1996) The biocompatibility (cell culture and histologic study) of hydroxy-apatite-coated implants created by ion beam dynamic mixing. Clin Oral Implants Res 7:96–100CrossRefGoogle Scholar
  202. 202.
    Evans G, Mendez A, Caudill R (1996) Loaded and unloaded titanium versus hydroxyapatite-coated threaded implants in the canine mandible. Int J Oral Maxillofac Implants 11:360–371Google Scholar
  203. 203.
    Wigianto R, Ichikawa T, Kanitani H, Kawamoto N, Matsumoto N, Ishizuka H (1999) Three-dimensional bone structure around hydroxyapatite and titanium implants in rabbits. Clin Oral Implants Res 10:219–225CrossRefGoogle Scholar
  204. 204.
    Hayashi K, Mashima T, Uenoyama K (1999) The effect of hydroxyapatite coating on bony ingrowth into grooved titanium implants. Biomaterials 20:111–119CrossRefGoogle Scholar
  205. 205.
    Finkelman R (1992) Growth factors in bones and teeth. J Calif Dent Assoc 20(12):23–29Google Scholar
  206. 206.
    Canalis E, Pash J, Varghese S (1993) Skeletal growth factors. Crit Rev Eukaryot Gene Expr 3(3):155–166Google Scholar
  207. 207.
    Lind M (1996) Growth factors: possible new clinical tools. A review. Acta Orthop Scand 67(4):407–417CrossRefGoogle Scholar
  208. 208.
    Urist M (1997) Bone morphogenetic protein: the molecularization of skeletal system development. J Bone Miner Res Mar 12(3):343–346CrossRefGoogle Scholar
  209. 209.
    Lind M (1998) Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Suppl 283:2–37Google Scholar
  210. 210.
    Khan S, Bostrom M, Lane J (2000) Bone growth factors. Orthop Clin North Am 31(3):375–388CrossRefGoogle Scholar
  211. 211.
    Groeneveld E, Burger E (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142(1):9–21CrossRefGoogle Scholar
  212. 212.
    Lind M, Overgaard S, Nguyen T, Ongpipattanakul B, Bunger C, Soballe K (1996) Transforming growth factor-beta stimulates bone ongrowth. Hydroxyapatite-coated implants studied in dogs. Acta Orthop Scand 67(6):611–616CrossRefGoogle Scholar
  213. 213.
    Lind M, Overgaard S, Ongpipattanakul B, Nguyen T, Bunger C, Söballe K (1996) Transforming growth factor-beta1 stimulates bone ongrowth to weight-loaded tricalcium phosphate coated implants. An experimental study in dogs. J Bone Joint Surg [Br] 78:377–382Google Scholar
  214. 214.
    Nociti FJ, Sallum E, Toledo S, Newman H, Sallum A (1999) Effect of calcitonin on bone healing following titanium implant insertion. J Oral Sci 41(2):77–80CrossRefGoogle Scholar
  215. 215.
    Morberg P, Isaksson O, Johansson C, Sandstedt J, Tornell J (1997) Improved long-term bone-implant integration. Experiments in transgenic mice overexpressing bovine growth hormone. Acta Orthop Scand 68(4):344–348CrossRefGoogle Scholar
  216. 216.
    Xiang W, Baolin L, Yan J, Yang X (1993) The effect of Bone Morphogenetic Protein on osseointegration of titanium implants. J Oral Maxillofac Surg 51:647–651CrossRefGoogle Scholar
  217. 217.
    Hanisch O, Tatakis D, Rohrer M, Wohrle P, Wozney J, Wikesjo U (1997) Bone formation and osseointegration stimulated by rhBMP-2 following subantral augmentation procedures in nonhuman primates. Int J Oral Maxillofac Implants 12(6):785–792Google Scholar
  218. 218.
    Ferris D, Moodie G, Dimond P, Gioranni C, Ehrlich M, Valentini R (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20:2323–2331CrossRefGoogle Scholar
  219. 219.
    Kienapfel H, Swain R, Hettel A, Wilke A, Koller M, Griss P (1997) Recombinant and nonre-combinant factor XIII and its effect on bone ingrowth and strength of fixation. Arch Orthop Trauma Surg 116(4):239–243CrossRefGoogle Scholar
  220. 220.
    Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille J (1998) Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 43(2):192–203CrossRefGoogle Scholar
  221. 221.
    Barzilay I, Graser G, Iranpour B, Proskin H (1996) Immediate implantation of pure titanium implants into extraction sockets of Macaca fascicularis. Part I: Clinical and radiographic assessment. Int J Oral Maxillofac Implants 11(3):299–310Google Scholar
  222. 222.
    Barzilay I, Graser G, Iranpour B, Natiella J, Proskin H (1996) Immediate implantation of pure titanium implants into extraction sockets of Macaca fascicularis. Part II: Histologic observations. Int J Oral Maxillofac Implants 11(4):489–497Google Scholar
  223. 223.
    Piattelli A, Corigliano M, Scarano A, Quaranta M (1997) Bone reactions to early occlusal loading of two-stage titanium plasma-sprayed implants: a pilot study in monkeys. Int J Peri-odontics Restorative Dent 17(2):162–169Google Scholar
  224. 224.
    Henry P, Tan A, Leavy J, Johansson C, Albrektsson T (1997) Tissue regeneration in bony defects adjacent to immediately loaded titanium implants placed into extraction sockets: A study in dogs. Int J Oral Maxillofac Implants 12:758–766Google Scholar
  225. 225.
    Piattelli A, Corigliano M, Scarano A, Costigliola G, Paolantonio M (1998) Immediate loading of titanium plasma-sprayed implants: an histologic analysis in monkeys. J Periodontol 69(3):321–327CrossRefGoogle Scholar
  226. 226.
    Ivanoff C, Sennerby L, Lekholm U (1996) Influence of mono- and bicortical anchorage on the integration of titanium implants. A study in the rabbit tibia. Int J Oral Maxillofac Surg 25(3):229–235CrossRefGoogle Scholar
  227. 227.
    Dhert W, Thomsen P, Klein C, Rozing P, de Groot K, Ericson L (1992) Models for the evaluation of bioactive implants. An example of fluorapatite-coated implants in an experimental arthritis model. In: Ducheyne P, Kokubo T, van Blitterswijk C (eds) Bone Bonding Biomaterials. Reed Healthcare Communications, Leiderdorp, pp 173–188Google Scholar
  228. 228.
    Brånemark R, Thomsen P (1997) Biomechanical and morphological studies on osseointegration in immunological arthritis in rabbits. Scand J Plast Reconstr Surg Hand Surg 31(3):185–195CrossRefGoogle Scholar
  229. 229.
    Takeshita F, Murai K, Iyama S, Ayukawa Y, Suetsugu T (1998) Uncontrolled diabetes hinders bone formation around titanium implants in rat tibiae. A light and fluorescence microscopy, and image processing study. J Periodontol 69(3):314–320CrossRefGoogle Scholar
  230. 230.
    Nevins M, Karimbux N, Weber H, Giannobile W, Fiorellini J (1998) Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 13:620–629Google Scholar
  231. 231.
    McCracken M, Lemons J, Rahemtulla F, Prince C, Feldman D (2000) Bone response to titanium alloy implants placed in diabetic rats. J Oral Maxillofac Implants 15:345–354Google Scholar
  232. 232.
    Fiorellini J, Nevins M, Norkin A, Weber H, Karimbux N (1999) The effect of insulin therapy on osseointegration in a diabetic rat model. Clin Oral Implants Res 10:362–368CrossRefGoogle Scholar
  233. 233.
    Fujimoto T, Niimi A, Sawai T, Ueda M (1998) Effects of steroid-induced osteoporosis on osseointegration of titanium implants. Int J Oral Maxillofac Implants 13(2):183–189Google Scholar
  234. 234.
    Ten Bruggenkate CM, Sutter F, van den Berg JPA, Oosterbeek HS (1994) Explantation procedure with special emphasis on the ITI implant system. Int J Oral Maxillofac Implants 9:223–229Google Scholar
  235. 235.
    Albrektsson T, Brånemark PI, Hansson H-A, Lindström J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica 52:155–170CrossRefGoogle Scholar
  236. 236.
    Albrektsson T, Eriksson AR, Friberg B, et al (1993) Histologic investigations on 33 retrieved Nobelpharma implants. Clinical Materials 12:1–9CrossRefGoogle Scholar
  237. 237.
    Bianchi AE, Gallini G, Fassina R, Sanfilippo F, Zaffe D (1997) Morphostructural relationships between bone and implant: comparative analyses by optical microscopy and microradiography. The International Journal of Periodontics and Restorative Dentistry 17:552–561Google Scholar
  238. 238.
    De Bruyn H, Collaert B, Lindén U, Johansson C, Albrektsson T (1999) Clinical outcome of Screw Vent implants. A 7-year prospective follow-up study. Clin Oral Implants Res 10:139–148CrossRefGoogle Scholar
  239. 239.
    Dominici JT, Olson JW, Rohrer MD, Morris HF, Group DICR (1997) Postmortem histologic evaluation of hydroxyapatite-coated cylinder and titanium alloy basket implants in situ for 37 months in the posterior mandible. Implant Dentistry 6:215–222CrossRefGoogle Scholar
  240. 240.
    Gores R, Hayes C, Unni K (1989) Postmortem examination of six maxillary Core-Vent implants: report of a case. J Oral Maxillofac Surg 47:302–306CrossRefGoogle Scholar
  241. 241.
    Gross HN, Holmes RE (1989) Surgical retrieval and histologic evaluation of an endosteal implant: A case report with clinical, radiographic, and microscopic observations. J Oral Implantol 15:104–113Google Scholar
  242. 242.
    Grätz KW, Zimmermann AP, Sailer HF (1994) Histological evidence of osseointegration 4 years after implantation. A case report. Clin Oral Implants Res 5:173–176CrossRefGoogle Scholar
  243. 243.
    Linkow LI, Donath K, Lemons JE (1992) Retrieval analyses of a blade implant after 231 months of clinical function. Implant Dentistry 1:37–43Google Scholar
  244. 244.
    Palmer RM, Smith BJ, Palmer PJ, Floyd PD, Johansson CB, Albrektsson T (1998) Effect of loading on bone regenerated at implant dehiscence sites in humans. Clin Oral Implants Res 9:283–291CrossRefGoogle Scholar
  245. 245.
    Piattelli A, Trisi P, Romasco N, Emanuelli M (1993) Histologic analysis of a screw implant retrieved from man: influence of early loading and primary stability. J Oral Implantol 19:303–306Google Scholar
  246. 246.
    Piattelli A, Emanuelli M, Scarano A, Trisi P (1996) A histologic study of nonsubmerged titanium plasma-sprayed screw implants retrieved from a patient: a case report. The International Journal of Periodontics and Restorative Dentistry 16:138–147Google Scholar
  247. 247.
    Piattelli A, Degidi M, Marchetti C, Scarano A (1997) Histologic analysis of the interface of a titanium implant retrieved from a nonvascularized mandibular block graft after a 10-month loading period. Int J Oral Maxillofac Implants 12:840–843Google Scholar
  248. 248.
    Piattelli A, Paolantonio M, Corigliano M, Scarano A (1997) Immediate loading of titanium plasma-sprayed screw-shaped implants in man: a clinical and histological report of two cases. J Periodontol 68:591–597CrossRefGoogle Scholar
  249. 249.
    Piattelli A, Scarano A, Piattelli M, Vaia E, Matarasso S (1998) Hollow implants retrieved for fracture: a light and scanning electron microscope analysis of 4 cases. J Periodontol 69:185–p189Google Scholar
  250. 250.
    Piattelli A, Scarano A, Paolantonio M (1998) Clinical and histologic features of a nonaxial load on the osseointegration of a posterior mandibular implant: report of a case. Int J Oral Maxillofac Implants 13:273–275Google Scholar
  251. 251.
    Piattelli A, Scarano A, Piattelli M (1998) Histologic observations on 230 retrieved dental implants: 8 years’ experience (1989–p1996). J Periodontol 69:178–184CrossRefGoogle Scholar
  252. 252.
    Piattelli A, Piattelli M, Scarano A, Montesani L (1998) Light and scanning electron microscopic report of four fractured implants. Int J Oral Maxillofac Implants 13:561–564Google Scholar
  253. 253.
    Rohrer MD, Bulard RA, Patterson MKJ (1995) Maxillary and mandibular titanium implants 1 year after surgery: histologic examination in a cadaver. Int J Oral Maxillofac Implants 10:466–473Google Scholar
  254. 254.
    Rohrer MD, Sobczak RR, Prasad HS, Morris HF (1999) Postmortem histologic evaluation of mandibular titanium and maxillary hydroxyapatite-coated implants from 1 patient. Int J Oral Maxillofac Implants 14:579–586Google Scholar
  255. 255.
    Steflik DE, McKinney RV, Sisk AL, Parr GR, Marshall BL (1991) Dental implants retrieved from humans: A diagnostic light microscopic review of the findings in seven cases of failure. Int J Oral Maxillofac Implants 6:147–153Google Scholar
  256. 256.
    Steflik DE, Parr GR, Singh BB, et al (1994) Light microscopic and scanning electron microscopic analyses of dental implants retrieved from humans. J Oral Implantol 20:8–24Google Scholar
  257. 257.
    Takeshita F, Ayukawa Y, Suetsugu T, et al (1996) Histologic investigation of hollow implants retrieved for psychological reasons. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:379–385CrossRefGoogle Scholar
  258. 258.
    Trisi P, Quaranta M, Emanuelli M, Piattelli A (1993) A light microscopy, scanning electron microscopy, and laser scanning microscopy analysis of retrieved blade implants after 7 to 20 years of clinical function. A report of 3 cases. J Periodontol 64:374–378CrossRefGoogle Scholar
  259. 259.
    Valentini P, Abensur D, Densari D, Graziani JN, Hämmerle C (1998) Histological evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implants Res 9:59–64CrossRefGoogle Scholar
  260. 260.
    Wilson TGJ, Schenk R, Buser D, Cochran D (1998) Implants placed in immediate extraction sites: a report of histologic and histometric analyses of human biopsies. Int J Oral Maxillofac Implants 13:333–341Google Scholar
  261. 261.
    Leize E-M, Hemmerlé J, Leize M (2000) Characterization, at the bone crystal level, of the titanium-coating/bone interfacial zone. Clin Oral Implants Res 11:279–288CrossRefGoogle Scholar
  262. 262.
    Wehrbein H, Merz BR, Hämmerle CHF, Lang NP (1998) Bone-to-implant contact of orthodontic implants in humans subjected to horizontal loading. Clin Oral Implants Res 9:348–353CrossRefGoogle Scholar
  263. 263.
    Friberg B, Jemt T, Lekholm U (1991) Early failures in 4,641 consecutively placed Bråne-mark dental Implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 6:142–146Google Scholar
  264. 264.
    Friberg B, Sennerby L, Roos J, Lekholm U (1995) Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens. Clin Oral Implants Res 6:213–219CrossRefGoogle Scholar
  265. 265.
    Johns RB, Jemt T, Heath MR, et al (1992) A multicenter study of overdentures supported by Brånemark implants. Int J Oral Maxillofac Implants 7:513–522Google Scholar
  266. 266.
    Orenstein IH, Synan WJ, Truhlar RS, Morris HF, Ochi S (1994) Bone quality in patients receiving endosseous dental implants: DICRG interim report No. 1. Implant Dentistry 3:90–94CrossRefGoogle Scholar
  267. 267.
    Truhlar RS, Orenstein IH, Morris HF, Ochi S (1997) Distribution of bone quality in patients receiving endosseous dental implants. J Oral Maxillofac Surg 55 (Suppl. 5):36–45Google Scholar
  268. 268.
    von Wowern N (1977) Variations in structure within the trabecular bone of the mandible. Scandinavian Journal of Dental Research 85:613–622Google Scholar
  269. 269.
    von Wowern N (1977) Variations in bone mass within the cortices of the mandible. Scandinavian Journal of Dental Research 85:444–455Google Scholar
  270. 270.
    Ulm CW, Kneissel M, Hahn M, Solar P, Matejka M, Donath K (1997) Characteristics of the cancellous bone of edentulous mandibles. Clin Oral Implants Res 8:125–130CrossRefGoogle Scholar
  271. 271.
    Esposito M, Hirsch J-M, Lekholm U, Thomsen P (1998) Biological factors contributing to failures of osseointegrated oral implants. (I) Success criteria and epidemiology. European Journal of Oral Sciences 106:527–551CrossRefGoogle Scholar
  272. 272.
    Esposito M, Hirsch J-M, Lekholm U, Thomsen P (1998) Biological factors contributing to failures of osseointegrated oral implants. (II) Etiopathogenesis. European Journal of Oral Sciences 106:721–764CrossRefGoogle Scholar
  273. 273.
    Iamoni F, Rasperini G, Trisi P, Simion M (1999) Histomorphometric analysis of a half hydroxyapatite-coated implant in humans: a pilot study. Int J Oral Maxillofac Implants 14:729–735Google Scholar
  274. 274.
    Lazzara RJ, Testori T, Trisi P, Porter SS, Weinstein RL (1999) A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. The International Journal of Periodontics and Restorative Dentistry 19:117–129Google Scholar
  275. 275.
    Trisi P, Rao W, Rebaudi A (1999) A histometric comparison of smooth and rough titanium implants in human low-density jawbone. Int J Oral Maxillofac Implants 14:689–698Google Scholar
  276. 276.
    GaRey DJ, Whittaker JM, James RA, Lozada JL (1991) The histologic evaluation of the implant interface with heterograft and allograft materials - An eight-month autopsy report, Part II. J Oral Implantol 17:404–408Google Scholar
  277. 277.
    Nyström E, Kahnberg K-E, Albrektsson T (1993) Treatment of the severely resorbed maxillae with bone graft and titanium implants: Histologic review of autopsy specimens. Int J Oral Maxillofac Implants 8:167–172Google Scholar
  278. 278.
    Jensen OT, Sennerby L (1998) Histologic analysis of clinically retrieved titanium microim-plants placed in conjunction with maxillary sinus floor augmentation. Int J Oral Maxillofac Implants 13:513–521Google Scholar
  279. 279.
    Lundgren S, Rasmusson L, Sjöström M, Sennerby L (1999) Simultaneous or delayed placement of titanium implants in free autogenous iliac bone grafts. Histological analysis of the bone graft- titanium interface in 10 consecutive patients. Int J Oral Maxillofac Surg 28:31–37CrossRefGoogle Scholar
  280. 280.
    Liljensten E (1999) On bone grafts and bone substitutes adjacent to titanium implants. Experimental and clinical studies. Institute of Anatomy and Cell Biology. Göteborg University, SwedenGoogle Scholar
  281. 281.
    Parks N, Engh G (1997) The Ranawat Award. Histology of nine structural bone grafts used in total knee arthroplasty. Clin Orthop (345): 17–23Google Scholar
  282. 282.
    Nakai H, Niimi A, Ueda M (1999) Histologic evaluation of clinically successful osseointegrated implants retrieved from irradiated bone: a report of 2 patients. Int J Oral Maxillofac Implants 14:442–446Google Scholar
  283. 283.
    Esposito M, Thomsen P, Mölne J, Gretzer C, Ericson L, Lekholm U (1997) Immunohis-tochemistry of soft tissues surrounding late failures of Brånemark implants. Clin Oral Implants Res 8(5):352–366CrossRefGoogle Scholar
  284. 284.
    Esposito M, Thomsen P, Ericson L, Lekholm U (1999) Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants 14(6):798–810Google Scholar
  285. 285.
    Esposito M, Thomsen P, Ericson L, Sennerby L, Lekholm U (2000) Histopathologic observations on late oral implant failures. Clin Implant Dent Rel Res 2:18–32CrossRefGoogle Scholar
  286. 286.
    Natiella J, Armitage J, Meenaghan M, Greene G (1974) Tissue response to dental implants protruding through mucous membrane. Oral Science Review 5:85–105Google Scholar
  287. 287.
    Sanz M, Alandez J, Lazaro P, Calvo J, Quirynen M, van Steenberghe D (1991) Histo-patho-logic characteristics of peri-implant soft tissues in Brånemark implants with 2 distinct clini-cal and radiological patterns. A histometric and ultrastructural study. Clinical Oral Implants Res 2:128–134 288.CrossRefGoogle Scholar
  288. 288.
    Mombelli A, van Oosten M, Schürch E, Lang N (1987) The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiology and Immunology 2:145–151.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Cecilia Larsson
    • 1
  • Marco Esposito
    • 1
  • Haihong Liao
    • 1
  • Peter Thomsen
    • 1
  1. 1.Institute of Anatomy & Cell BiologyGöteborg UniversityGöteborgSweden

Personalised recommendations