Skip to main content

The Titanium-Bone Cell Interface In Vitro: The Role of the Surface in Promoting Osteointegration

  • Chapter
Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

One of the major advances in the use of metals for long-term implants was the serendipitous use of titanium (Ti). The nonreactive properties of this metal [1] made it an ideal material for the aerospace industry. Many of these same properties made it equally ideal for use in the body. Unlike stainless steel, Ti forms a surface oxide that prevents leaching of ions [2]. The oxide is biocompatible in that there is little, if any, immune response [3]. Early literature noted the lack of an immune response and defined Ti as biologically inert [4]. While we now know that Ti is not inert, there is no question that it is exceptionally well-tolerated by the body. Consequently, Ti has become the material of choice for dental implants [5] (See Chaps. 24 and 25) and cardiovascular stents [6] (See Chap. 26), and its alloys are commonly used in orthopaedics where greater strength is needed [7] (See Chap. 21).

To whom correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Noort R (1987) Review titanium: the implant material of today. J Mater Sci 22:3801–3811

    Google Scholar 

  2. Lausmaa J, Mattson L, Rolander U, Kasemo B (1986) Chemical composition and morphology of titanium surface oxides. Mater Res Soc Symp Proc 55:351–359

    CAS  Google Scholar 

  3. Laing PG, Fergusson AB, Hodges ES (1967) Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res 1:135–149

    CAS  Google Scholar 

  4. Linder L, Lundskog J (1975) Incorporation of stainless steel, titanium and vitallium in bone. Injury 6:277–285

    CAS  Google Scholar 

  5. Albrektsson T, Brånemark PI, Hansson HA, Kasemo B, Larsson K, Lundstrom I, McQueen DH, Skalak R (1983) The interface zone of inorganic implants in vivo: Titanium implants in bone. Ann Biomed Eng 11:1–27

    CAS  Google Scholar 

  6. Eigler NL, Khorsandi MJ, Forrester JS, Fishbein MC, Litvack F (1993) Implantation and recovery of temporary metallic stents in canine coronary arteries. J Am Coll Cardiol 22:1207–1213

    CAS  Google Scholar 

  7. Keller JC, Lautenschlager EP (1986) Metals and alloys. In: Recum AF (ed) Handbook of Biomaterials Evaluation. Scientific, Technical, and Clinical Testing of Implantable Material. MacMillan, New York, pp 3–21

    Google Scholar 

  8. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP (1997) Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 8:161–172

    CAS  Google Scholar 

  9. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson Jr PD, Pellicci PM, Bullough PG (1988) Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg 70:347–356

    CAS  Google Scholar 

  10. Woodman JL, Jacobs JJ, Galante JO, Urban RM (1984) Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J OrthopRes 1:421–430

    CAS  Google Scholar 

  11. Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M (1996) Cytocompatibility of Ti-6A1-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17:929–940

    CAS  Google Scholar 

  12. Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42

    CAS  Google Scholar 

  13. Cheroudi B, Gould TRL, Brunette DM (1990) Titanium-coated micromachined grooves of different dimensions affect epithelial and connective tissue cells differently in vivo. J Biomed Mater Res 24:1203–1219

    Google Scholar 

  14. Kilpadi DV, Lemons JE (1994) Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 28:1419–1425

    CAS  Google Scholar 

  15. Hay DI, Moreno EC (1979) Differential adsorption and chemical affinities of proteins for apatitic surfaces. J Dent Res 58:930–942

    CAS  Google Scholar 

  16. Maxian SH, DiStefano T, Melican MC, Tiku ML, Zawadsky JP (1998) Bone cell behavior on Matrigel-coated Ca/P coatings of varying crystallinities. J Biomed Mater Res 40:171–179

    CAS  Google Scholar 

  17. Hazan R, Brener R, Oron U (1993) Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 14:570–574

    CAS  Google Scholar 

  18. Meyer AE, Baier RE, Natiella JR, Meenaghan MA (1988) Investigation of tissue/implant interactions during the first two hours of implantation. J Oral Implantol 14:363–379

    CAS  Google Scholar 

  19. Pankowsky DA, Ziats NP, Topham NS, Ratnoff OS, Anderson JM (1990) Morphological characteristics of absorbed plasma proteins on vascular grafts and biomaterials. J Vasc Surg 11:599–606

    CAS  Google Scholar 

  20. Pearson BS, Klebe RJ, Boyan BD, Moskowicz D (1988) Comments on the clinical application of fibronectin in dentistry. J Dent Res 67:515–517

    CAS  Google Scholar 

  21. Baier RE, Meyer AE (1988) Future directions in surface preparation of dental implants. J Dental Education 52:788–791

    CAS  Google Scholar 

  22. DePalma VA (1977) Correlation of Surface Electrical Properties With Initial Events in Bio-adhesion. Doctoral dissertation, State Univ NY Buffalo, p 260

    Google Scholar 

  23. DePalma VA, Baier RE (1978) Microfouling of metallic and coated metallic flow surfaces in model heat exchange cells. In: Proceedings of the Ocean Thermal Energy Conversion (OTEC) Biofouling and Corrosion Symposium. US Department of Energy, pp 89–106

    Google Scholar 

  24. Bourdon MA, Ruoslahti E (1989) Tenascin mediates cell attachment through an RGD-dependent receptor. J Cell Biol 108:1149–1155

    CAS  Google Scholar 

  25. Ziats NP, Miller KM, Anderson JM (1988) In vitro and in vivo interactions of cells with bio-materials. Biomaterials 9:5–13

    CAS  Google Scholar 

  26. Howlett CR, Evans MD, Walsh WR, Johnson G, Steele JG (1994) Mechanism of initial attachment of cells derived from human bone to commonly used prosthetic materials during cell culture. Biomaterials 15:213–222

    CAS  Google Scholar 

  27. Terranova VP, Aumailley M, Sultan LH, Martin GR, Kleinman HK (1986) Regulation of cell attachment and cell number by fibronectin and laminin. J Cell Physiol 127:473–479

    CAS  Google Scholar 

  28. Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880

    CAS  Google Scholar 

  29. Sinha RK, Tuan RS (1996) Regulation of human osteoblast integrin expression by orthopaedic implant materials. Bone 18:451–457

    CAS  Google Scholar 

  30. Gronowicz G, McCarthy MB (1996) Response of human osteoblasts to implant materials: Integrin-mediated adhesion. J Orthop Res 14:878–887

    CAS  Google Scholar 

  31. Puleo DA, Holleran LA, Doremus RH, Bizios R (1991) Osteoblast responses to orthopaedic implant materials in vitro. J Biomed Mater Res 25:711–723

    CAS  Google Scholar 

  32. Sinha RK, Morris F, Shah SA, Tuan RS (1994) Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Clin Orthop Rel Res 305:258–272

    Google Scholar 

  33. Swart KM, Keller JC, Wightman JP, Draughn RA, Stanford CM, Michaels CM (1992) Short-term plasma-cleaning treatments enhance in vitro osteoblast attachment to titanium. J Oral Implantol 18:130–137

    CAS  Google Scholar 

  34. Windeler AS, Bonewald LF, Khare AG, Boyan BD, Mundy GR (1991) The influence of sputtered bone substitutes on cell growth and phenotypic expression. In: Davies JE (ed) The Bone-Biomaterial Interface. Toronto Press, Toronto, pp 205–213

    Google Scholar 

  35. Hambleton JC, Schwartz Z, Windeler SW, Luna MH, Brooks BP, Khare AG, Dean DD, Boyan BD (1994) Culture surfaces coated with various implant materials affect chondrocyte growth and metabolism. J Orthop Res 12:542–552

    CAS  Google Scholar 

  36. Keller JC, Stanford CM, Wightman JP, Draughn RA, Zaharias R (1994) Characterization of titanium implant surfaces. III. J Biomed Mater Res 28:939–946

    CAS  Google Scholar 

  37. Squire MW, Ricci JL, Bizios R (1996) Analysis of osteoblast mineral deposits on orthopaedic/dental implant metals. Biomaterials 17:725–733

    CAS  Google Scholar 

  38. Yliheikkila PK, Masuda T, Ambrose WW, Suggs CA, Felton DA, Cooper LF (1996) Preliminary comparison of mineralizing multilayer cultures formed by primary fetal bovine man-dibular osteoblasts grown on titanium, hydroxyapatite, and glass substrates. Int J Oral Maxillofac Implants 11:456–465

    CAS  Google Scholar 

  39. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z (1998) Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19:2219–2232

    CAS  Google Scholar 

  40. Boyan BD, Lincks J, Lohmann CH, Sylvia VL, Cochran DL, Blanchard CR, Dean DD, Schwartz Z (1999) The effect of surface roughness and composition on costochondral chon-drocytes is dependent on cell maturation state. J Orthop Res 17:446–457

    CAS  Google Scholar 

  41. Beder OE, Eade G (1956) An investigation of tissue tolerance to titanium metal implants in dogs. Surgery 39:470–473

    CAS  Google Scholar 

  42. Bechtol CO (1959) Metals and Engineering in Bone and Joint Surgery. Williams & Wilkins, Baltimore, MD,p 186

    Google Scholar 

  43. Hall CW, Liotta D, O’Neal RM, Adams JG, DeBakey ME (1966) Medical applications of the velour fabrics. Ann NY Acad Sci 146:314–324

    Google Scholar 

  44. Homsy CA, Tullos HS, Anderson MS, King JW (1971) Prevention of interfacial corrosion of SMO stainless steel appliances. Cem Orthop Rel Res 75:261–268

    CAS  Google Scholar 

  45. Homsy CA, Armediades CD (1972) Biomaterials for Skeletal and Cardiovascular Applications. Interscience Publishers, New York, p 169

    Google Scholar 

  46. Hulbert SF, Klawitter JJ, Leonard RB (1971) Compatibility of bioceramics with the physiological environment. In: Kriegel WW, Palmour H III (eds) Ceramics in Severe Environments. Plenum Press, New York, pp 417–434

    Google Scholar 

  47. Hulbert SF, Morrison SJ, Klawitter JJ (1972) Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res 6:347–374

    CAS  Google Scholar 

  48. Hulbert SF, Levine SN, Moyle DD (eds) (1974) Prostheses and Tissue: The Interface Problem. John Wiley & Sons, New York, p 448

    Google Scholar 

  49. Hulbert SF, Klawitter JJ, Bartles DM (1974) A quick screening test of biomaterials by means of a chick embryo technique. J Biomed Mater Res 8:137–153

    CAS  Google Scholar 

  50. Natiella JR, Meenaghan MA, Flynn HE (1977) Unilateral subperiosteal oral implants. II. A light microscopic study. Biomed Mater Res Symp Trans 1:73

    Google Scholar 

  51. Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparison of biodegradable substances as osteogenic agents. Oral Surg Med Oral Path 43:836–843

    CAS  Google Scholar 

  52. Lintner F, Zweymuller K, Brand G (1986) Tissue reactions to titanium endoprostheses. Autopsy studies in four cases. J Arthroplasty 1:183–195

    CAS  Google Scholar 

  53. Willert HG, Lintner F (1987) Morphology of the implant site in cemented and uncemented joint implants. Langenbecks Archiv für Chirurgie 372:447–455

    CAS  Google Scholar 

  54. Lintner F, Zweymuller K, Bohm G, Brand G (1988) Reactions of surrounding tissue to the cementless hip implant Ti-6Al-4V after an implantation period of several years. Autopsy studies in three cases. Arch Orthop Traumat Surg 107:357–363

    CAS  Google Scholar 

  55. Buser D, Schenk R, Steinemann S, Fiorellini J, Fox C, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902

    CAS  Google Scholar 

  56. Vercaigne S, Wolke JG, Naert I, Jansen JA (1998) Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clin Oral Implants Res 9:261–271

    CAS  Google Scholar 

  57. Ito K, Nanba K, Nishida T, Sato H, Murai S (1998) Comparison of osseointegration between hydroxyapatite-coated and uncoated threaded titanium dental implants placed into surgically-created bone defect in rabbit tibia. J Oral Science 40:37–41

    CAS  Google Scholar 

  58. Moroni A, Toksvig-Larsen S, Maltarello MC, Orienti L, Stea S, Giannini S (1998) A comparison of hydroxyapatite-coated, titanium-coated, and uncoated tapered external fixation pins. An in vivo study in sheep. J Bone Joint Surg (Am) 80:547–554

    CAS  Google Scholar 

  59. Sela J, Amir D, Schwartz Z, Weinberg H (1987) Ultrastructural tissue morphometry of the distribution of extracellular matrix vesicles in remodeling rat tibial bone six days after injury. Acta Anat (Basel) 128:295–300

    CAS  Google Scholar 

  60. Schwartz Z, Amir D, Boyan BD, Cochavy D, Muller-Mai C, Swain LD, Gross U, Sela J (1991) Effect of glass ceramic and titanium implants on primary calcification during rat tibial bone healing. Calcif Tissue Int 49:359–364

    CAS  Google Scholar 

  61. Sela J, Shani J, Kohavi D, Soskolne WA, Itzhak K, Boyan BD, Schwartz Z (1995) Uptake and biodistribution of 99mtechnetium methylene-[32P]diphosphonate during endosteal healing around titanium, stainless steel and hydroxyapatite implants in rat tibial bone. Biomaterials 16:1373–1380

    CAS  Google Scholar 

  62. Braun G, Kohavi D, Amir D, Luna MH, Caloss R, Sela J, Dean DD, Boyan BD, Schwartz Z (1995) Markers of primary mineralization are correlated with bone-bonding ability of titanium or stainless steel in vivo. Clin Oral Implants Res 6:1–13

    CAS  Google Scholar 

  63. Brunette DM (1986) Spreading and orientation of epithelial cells on grooved substrata. Exper Cell Res 167:203–217

    CAS  Google Scholar 

  64. Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30:145–155

    CAS  Google Scholar 

  65. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7:302–310

    CAS  Google Scholar 

  66. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD (1995) Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 29:389–401

    CAS  Google Scholar 

  67. Boyan BD, Hummert TW, Kieswetter K, Schraub D, Dean DD, Schwartz Z (1995) Effect of titanium surface characteristics on chondrocytes and osteoblasts in vitro. Scan Electron Microsc (Cells & Materials) 5:323–335

    CAS  Google Scholar 

  68. Cochran DL, Simpson J, Weber H, Buser D (1994) Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Maxillofac Implants 9:289–297

    Google Scholar 

  69. Keller JC, Draughn RA, Wightman JP, Dougherty WJ, Meletiou SD (1990) Characterization of sterilized CP titanium implant surfaces. Int J Oral Maxillofac Implants 5:360–367

    CAS  Google Scholar 

  70. Ricci JL, Spivak JM, Blumenthal NC, Alexander H (1991) Modulation of bone ingrowth by surface chemistry and roughness. In: Davies, JE (ed) The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 334–349

    Google Scholar 

  71. Davies JE, Lowenberg B, Shiga A (1990) The bone-titanium interface in vitro. J Biomed Mater Res 24:1289–1306

    CAS  Google Scholar 

  72. Stein GS, Lian JB, Owen TA (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4:3111–3123

    CAS  Google Scholar 

  73. Lian JB, Stein GS (1992) Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 3:269–305

    CAS  Google Scholar 

  74. Lian JB, Stein GS (1993) The developmental stages of osteoblast growth and differentiation exhibit selective responses of genes to growth factors (TGF-ß1) and hormones (vitamin D and glucocorticoids). J Oral Implantol 19:95–105

    CAS  Google Scholar 

  75. Groessner-Schreiber B, Tuan RS (1992) Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci 101:209–217

    CAS  Google Scholar 

  76. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z (1998) Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1α,25-(OH)2D3. J Biomed Mater Res 39:77–85

    CAS  Google Scholar 

  77. Batzer R, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Boyan BD, Schwartz Z (1998) Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to lα,25-(OH)2D3. J Biomed Mater Res 41:489–496

    CAS  Google Scholar 

  78. Hancock RH, Schwartz Z, Swain LD, Ramirez V, Boyan BD (1990) Effect of dexamethasone on cartilage cell differentiation. J Dent Res 69:293

    Google Scholar 

  79. Grigoriadis AE, Heersche JN, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: Effect of dexamethasone. J Cell Biol 106:2139–2151

    CAS  Google Scholar 

  80. Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI (1991) In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195:492–503

    CAS  Google Scholar 

  81. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG63 cells. J Biomed Mater Res 32:55–63

    CAS  Google Scholar 

  82. Chyun YS, Raisz LG (1984) Stimulation of bone formation by prostaglandin E2. Prostaglandins 27:97–103

    CAS  Google Scholar 

  83. Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop Rel Res 250:261–276

    Google Scholar 

  84. Bonewald LF, Kester MB, Schwartz Z, Swain LD, Khare AG, Johnson TL, Leach RJ, Boyan BD (1992) Effects of combining transforming growth factor ß and 1,25-dihydroxyvitamin D3 on differentiation of a human osteosarcoma (MG-63). J Biol Chem 267:8943–8949

    CAS  Google Scholar 

  85. Dworetzky SI, Fey EG, Penman S, Lian JB, Stein JL, Stein GS (1990) Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation. Proc Natl Acad Sci USA 87:4605–4609

    CAS  Google Scholar 

  86. Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-ß and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207

    CAS  Google Scholar 

  87. Raisz LG, Fall PM (1990) Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: Interaction with cortisol. Endocrinology 126:1654–1659

    CAS  Google Scholar 

  88. Schwartz Z, Swain LD, Kelly DW, Brooks BP, Boyan BD (1992) Regulation of prostaglandin E2 production by vitamin D metabolites in growth zone and resting zone chondrocyte cultures is dependent on cell maturation. Bone 13:395–401

    CAS  Google Scholar 

  89. Farr D, Pochal W, Brown M, Shapiro E, Weinfeld N, Dziak RM (1984) Effects of prostaglan-dins on rat calvarial bone-cell calcium. Arch Oral Biol 29:885–891

    CAS  Google Scholar 

  90. McCarthy TL, Centrella M, Raisz LG, Canalis E (1991) Prostaglandin E2 stimulates insulinlike growth factor synthesis in osteoblast-enriched cultures from fetal rat bone. Endocrinology 128:2895–2900

    CAS  Google Scholar 

  91. Ong JL, Carnes DL, Cardenas HL, Cavin R (1997) Surface roughness of titanium on bone morphogenetic protein-2-treated osteoblast cells in vitro. Impl Dent 6:19–24

    CAS  Google Scholar 

  92. Akiyama SK (1996) Integrins in cell adhesion and signaling. Human Cell 9:181–186

    CAS  Google Scholar 

  93. Chicurel ME, Singer RH, Meyer CJ, Ingber DE (1998) Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392:730–733

    CAS  Google Scholar 

  94. Lohmann CH, Sagun R, Jr., Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z (1999) Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)2D3 through regulation of phospholipase A2 activity and activation of protein kinase A. J Biomed Mater Res 47:139–151

    CAS  Google Scholar 

  95. Albrektsson T, Brånemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170

    CAS  Google Scholar 

  96. Linder L, Albrektsson T, Brånemark PI, Hansson HA, Ivarsson B, Jonsson U, Lundstrom I (1983) Electron microscopic analysis of the bone-titanium interface. Acta Orthop Scand 54:45–52

    CAS  Google Scholar 

  97. Linder L, Carlsson A, Marsal L, Bjursten LM, Brånemark PI (1988) Clinical aspects of osseointegration in joint replacement: a histological study of titanium implants. J Bone Joint Surg 70B:550–555

    Google Scholar 

  98. Thomas KA, Cook SD (1985) An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 19:875–901

    CAS  Google Scholar 

  99. Albrektsson T, Hansson HA (1986) An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials 7:201–205

    CAS  Google Scholar 

  100. Cheroudi B, Gould TRL, Brunette DM (1987) Effects of a grooved titanium coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res 23:1067–1085

    Google Scholar 

  101. Haddad RJ, Jr., Cook SD, Thomas KA (1987) Biological fixation of porous coated implants. J Bone Joint Surg 69A:1459–1466

    Google Scholar 

  102. Inoue T, Cox JE, Pilliar RM, Melcher AH (1987) Effect of the surface geometry of smooth and porous-coated titanium alloy on the orientation of fibroblasts in vitro. J Biomed Mater Res 21:107–126

    CAS  Google Scholar 

  103. Thomas KA, Kay JF, Cook SD, Jarcho M (1987) The effect of surface macrotexture and hydroxyapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res 21:1395–1414

    CAS  Google Scholar 

  104. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T (1988) Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 3:21–24

    CAS  Google Scholar 

  105. Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LTT, Hjorting-Hansen E (1995) Anchorage of TiO2-blasted, HA-coated, and machined implants: An experimental study with rabbits. J Biomed Mater Res 29:1223–1231

    CAS  Google Scholar 

  106. Cochran DL, Numikoski PV, Higgenbottom FL, Hermann JS, Makins SR, Buser D (1996) Evaluation of an endosseous titanium implant with a sandblasted and acid-etched surface in the canine mandible: Radiographic results. Clin Oral Implants Res 7:240–252

    CAS  Google Scholar 

  107. Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA (1994) Mineral apposition rates of human cancellous bone at the interface of porous coated implant. J Biomed Mater Res 28:537–544

    CAS  Google Scholar 

  108. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88

    CAS  Google Scholar 

  109. Wang X, Jin Y, Liu B, Zhou S, Yang L, Yang X, White FH (1994) Tissue reactions to titanium implants containing bovine bone morphogenetic protein: a scanning electron microscopic investigation. Int J Oral Maxillofac Surg 23:115–119

    CAS  Google Scholar 

  110. Cole BJ, Bostrom MP, Pritchard TL, Sumner DR, Tomin E, Lane JM (1997) Use of bone morphogenetic protein 2 on ectopic porous coated implants in the rat. Clin Orthop Rel Res 345:219–228

    Google Scholar 

  111. Herr G, Hartwig CH, Boll C, Küsswetter W (1996) Ectopic bone formation by composites of BMP and metal implants in rats. Acta Orthop Scand 67:606–610

    CAS  Google Scholar 

  112. Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO (1995) Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg (Am) 77:1135–1147

    CAS  Google Scholar 

  113. Steflik DE, Corpe RS, Lake FT, Young TR, Sisk AL, Parr GR, Hanes PJ, Berkery DF (1998) Ultrastructural analyses of the attachment (bonding) zone between bone and implanted bio-materials. J Biomed Mater Res 39:611–620

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyan, B.D., Dean, D.D., Lohmann, C.H., Cochran, D.L., Sylvia, V.L., Schwartz, Z. (2001). The Titanium-Bone Cell Interface In Vitro: The Role of the Surface in Promoting Osteointegration. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics