Proteins at Titanium Interfaces

  • Pentti Tengvall
Part of the Engineering Materials book series (ENG.MAT.)


Proteins in solutions accumulate spontaneously at interfaces. Exceptions to this rule may be charge neutral surfaces with high water retention and/or high mobility. In the human body, cell membranes in general, albumin associating cell surfaces, and mucosas with high oligosaccharide content behave in this manner. In vitro, artificial surfaces, such as the charge-neutral poly(ethyleneoxide/-glycols) type of surfaces are protein repellent in one or a few protein systems. However, rigid surfaces like oxide-covered titanium adsorb proteins within seconds of exposure to e.g. blood plasma.


Human Serum Albumin Titanium Surface Biomed Mater Titanium Disc Radio Immuno Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinemann SG (1980) Titanium alloys as metallic biomaterials in titanium science and technology. Lütjering G, Zwicker U, Bunk W (eds). Deutsche Gesellschaft für Metallkunde, pp 1327-1334Google Scholar
  2. 2.
    Steinemann SG, Maüsli PA (1988) Titanium alloys for surgical implants-biocompatibility from physicochemical principles. In: Lacombe P, Tricot R, Beranger G (eds) Sixth World Conference on Titanium, Proceedings part I. Societé Francaise de Metallurgie, les Editions de Physique, Cannes, France, pp 535-540Google Scholar
  3. 3.
    Breme J (1989) Titanium and its alloys biomaterials of preference. Mem Etud Sci Rev Metall 86:625-637Google Scholar
  4. 4.
    Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115-134CrossRefGoogle Scholar
  5. 5.
    Ivarsson BA, Hegg PO, Lundström KI, Jönsson U (1985) Adsorption of proteins on metal surfaces studied by ellipsometric and capacitance measurements. Colloids Surf 13:169-192CrossRefGoogle Scholar
  6. 6.
    Wälivaara B, Askendal A, Elwing H, Lundström I, Tengvall P (1992) Antisera binding onto metals immersed in human plasma in vitro. J Biomed Mater Res 26:1205-1216CrossRefGoogle Scholar
  7. 7.
    Ivarsson B, Lundström I (1986) Physical characterization of protein adsorption on metal and metal oxide surfaces. In: Williams DF (ed) CRC Critical Reviews in Biocompatibility. CRC Press, Boca Raton FL, pp 1-96Google Scholar
  8. 8.
    Vroman L, Adams AL (1969) Identification of adsorbed plasma protein films by exposure to antisera and water vapour. J Biomed Mater Res 3:669-671CrossRefGoogle Scholar
  9. 9.
    Horbett TA (1984) Mass action effects on competetive adsorption of fibrinogen from hemoglobin solutions and from plasma. Thromb Hemostas 51(2): 174-181Google Scholar
  10. 10.
    Brash JL, Ten Hove P (1984) Effect of plasma dilution on adsorption of fibrinogen to solid surfaces. Thromb Hemostas 51:326-330Google Scholar
  11. 11.
    Hughes Wassell DT, Embery G (1996) Adsorption of bovine serum albumin on to titanium powder. Biomaterials 17(9):859-864CrossRefGoogle Scholar
  12. 12.
    Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36:387-392CrossRefGoogle Scholar
  13. 13.
    Liu F, Zhou M, Zhang F (1998) 125I labelling of human serum albumin and fibrinogen and a study of protein adsorption properties on the surface of titanium oxide film. Appl Radiat Isot 49 (l-2):67-72Google Scholar
  14. 14.
    Sheardown H, Cornelius RM, Brash JL (1997) Measurement of protein adsorption to metals using radioiodination methods: A caveat. Colloids Surf B: Biointerfaces 10:29-33CrossRefGoogle Scholar
  15. 15.
    Williams RL, Wiliams DF (1988) Albumin adsorption on metal surfaces. Biomaterials 9:206-212CrossRefGoogle Scholar
  16. 16.
    Bentaleb A, HaÏkel Y, Voegel JC, Schaaf P (1998) Kinetics of the homogenous exchange of α-lactalbumine adsorbed on titanium oxide surface. J Biomed Mater Res 40(3):449-457CrossRefGoogle Scholar
  17. 17.
    Galisto F, Norde W (1995) Protein adsorption at the Agl-water surface. J Colloid Interface Sci 172:502-509CrossRefGoogle Scholar
  18. 18.
    Liedberg B, Ivarsson B, Lundström I (1984) Fourier transform infrared reflection absorption spectroscopy (FT-IRAS) of fibrinogen adsorbed on metal and metal oxide surfaces. J Biochem Biophys Meth 9:233-243CrossRefGoogle Scholar
  19. 19.
    Sundgren JE, Bodö P, Lundström I, Berggren A, Hellem S (1984) Adsorption on titanium and gold surfaces studied by ESCA and ellipsometry. J Colloid Interface Sci 113(2):530-543CrossRefGoogle Scholar
  20. 20.
    Francois P, Vaudaux P, Taborelli M, Tonetti M, Lew DP, Descouts P (1997) Influence of surface treatments developed for oral implants on the physical and biological properties of titanium (II) Adsorption isotherms and biological activity of immobilized fibronectin. Clin Oral Impl Res 8(3):217-225CrossRefGoogle Scholar
  21. 21.
    Sunny M, Sharma C (1991) Titanium-protein interaction: changes with oxide layer thickness. J Biomater Appl 6(l):89-98CrossRefGoogle Scholar
  22. 22.
    Mantus DS, Ratner BD, Carlson BA, Moulder JF (1993) Static secondary ion mass spectrometry of adsorbed proteins. Anal Chem 65:1431-1438CrossRefGoogle Scholar
  23. 23.
    Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12:593-596CrossRefGoogle Scholar
  24. 24.
    Kohavi D, Klinger A, Steinberg D, Mann E, Sela NM (1997) α-Amylase and salivary albumin adsorption onto titanium, enamel and dentin: an in vivo study. Biomaterials 18(13):903-906CrossRefGoogle Scholar
  25. 25.
    Steinberg, D, Klinger A, Kohavi D, Sela MN (1995) Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials 16(17):1339-1343CrossRefGoogle Scholar
  26. 26.
    Kanagaraja S, Lundström I, Nygren H, Tengvall P (1996) Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood. Biomaterials 17:2225-2232CrossRefGoogle Scholar
  27. 27.
    Wälivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P (1994) Titanium with different oxides: In vitro studies of protein adsorption and contact activation. Biomaterials 15(10):827-834CrossRefGoogle Scholar
  28. 28.
    Wälivaara B, Askendal A, Lundström I, Tengvall P (1996) Blood protein interactions with titanium surfaces. J Biomater Sci Polymer Edn 8(l):41-48Google Scholar
  29. 29.
    Elwing H, Ivarsson B, Lundström I (1987) Note: Serum somplement deposition on platinum and titanium oxide surfaces measured by ellipsometry at liquid-solid interface. J Biomed Mater Res 21:263-267CrossRefGoogle Scholar
  30. 30.
    McAlarney ME, Skalak R, Kim S, Neugroschl D, Machlin ES (1991) TEM immunogold staining of C3 from plasma onto titanium oxides. J Biomed Mater Res 25:845-864CrossRefGoogle Scholar
  31. 31.
    Kurrat R, Wälivaara B, Marti A, Textor M, Tengvall P, Ramsden JJ, Spencer ND (1998) Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids Surf B: Biointerfaces 11:187-201CrossRefGoogle Scholar
  32. 32.
    Veerman ECI, Suppers RJF, Klein CPAT, De Groot K, Amerongen AVN (1987) SDS-PAGE analysis of the protein layers adsorbing in vivo and in vitro to bone substituting materials. Biomaterials 8:442-448CrossRefGoogle Scholar
  33. 33.
    Rosengren A, Johansson BR, Danielsen N, Thomsen P, Ericson LE (1996) Immunohisto-chemical studies on the distribution of albumin, fibrinogen, fibronectin, IgG and collagen around PTFE and titanium implants. Biomaterials 17(18):1779-1786CrossRefGoogle Scholar
  34. 34.
    Ayukawa Y, Takeshita F, Inoue T, Yoshinari M, Shimono M, Suetsugu T, Tanaka T (1998) An immunoelectron microscopic localization of non-collagenous bone proteins (osteocalcin and osteopontin) at the bone-titanium interface of rat tibiae. J Biomed Mater Res 41:111-119CrossRefGoogle Scholar
  35. 35.
    Smith RA, Daniels AU, Gartner TK (1997) Endothelial cell adhesion to implant metal surfaces. Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, February 9-13, San Francisco, California, p 732Google Scholar
  36. 36.
    Nygren H, Eriksson C, Lausmaa J (1997) Adhesion and activation of platelets and polymor-phonuclear granulocyte cells at TiO2 surfaces. J Lab Clin Med 129(l):35-46CrossRefGoogle Scholar
  37. 37.
    Nygren H, Tengvall P, Lundström I (1997) The initial reactions of TiO2 with blood. J Biomed Mater Res 34:487-492CrossRefGoogle Scholar
  38. 38.
    Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1996) Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials 17(23):2233-2240CrossRefGoogle Scholar
  39. 39.
    Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD (1995) Effect of titanium surface roughness on proliferation, differentiation, and synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 29:389-401CrossRefGoogle Scholar
  40. 40.
    Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32:55-63CrossRefGoogle Scholar
  41. 41.
    Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z (1998) Titanium surface roughness alters responsiviness of MG63 osteoblast-like cells to lα,25-(OH)2D3. J Biomed Mater Res 39(l):77-85CrossRefGoogle Scholar
  42. 42.
    Batzer R, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Boyan BD, Schwartz Z (1998) Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to lα,25-(OH)2D3. J Biomed Mater Res 41:489-496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Pentti Tengvall
    • 1
  1. 1.Laboratory of Applied PhysicsLinköping UniversityLinköpingSweden

Personalised recommendations