Thermal Spray Coatings on Titanium

  • Heiko Gruner
Part of the Engineering Materials book series (ENG.MAT.)


The geometric form of a prosthesis and the material for its manufacture are determined mainly by the static and dynamic loading requirements during daily use. Mechanical stability over time is required, and the device must therefore have the ability to withstand stress and strain up to the elastic limits of the construction. Additionally, temperature response must be considered as well as chemical stability. For medical devices, acceptance by the surrounding tissue must be ensured. Properties such as bioinertness, biocompatibility or bioactivity are a few characteristics of materials claimed to be biomaterials [1] or medical devices. The interactions with human body fluids and tissues take place at the interface and are determined mainly by the surface characteristics of the component.


Thermal Spray Plasma Torch Thermal Spray Coating Host Bone Vacuum Plasma Spraying 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osborn JF, Weiss T (1978) Hydroxylapatitkeramik - ein knochenähnlicher Biowerkstoff. Schweiz. Monatszeitschrift Zahnheilkunde 88:118–24Google Scholar
  2. 2.
    Definition of Thermal Spraying German Standard DIN 32530Google Scholar
  3. 3.
    Kreye H (1988) Optimization and control for the spray conditions in the jet kote process. Proc Nat Thermal Spray Conf, Cincinnati, pp 39–46Google Scholar
  4. 4.
    Schoop M (1912) German Patent No 2585 005Google Scholar
  5. 5.
    Smith RW, Novak R (1991) Advances and applications in U.S. thermal spray technology. Powder Metallurgy Int 23:147–155Google Scholar
  6. 6.
    Kreye H, Schwetzke R, Zimmermann S (1996) High velocity oxy-fuel flame spraying. Proc Nat Thermal Spray Conf, Ohio, pp 451–456Google Scholar
  7. 7.
    Zimmermann S, Höhle HM (2000) Functional coatings for wear and corrosion protection by HVOF spraying. Proc 5th Colloq HVOF, Erding, pp 99–107Google Scholar
  8. 8.
    Alkimov AP, Kosarev VF, Papyrin AN (1990) Cold gas-dynamic spray method. Dokl Acad Nauk SSSR 318:1062–1065Google Scholar
  9. 9.
    Browning JA (1959) Plasma - a substitute for the oxy-fuel flame. Weld J 38:870–875Google Scholar
  10. 10.
    Muehlberger E, Kremith RD (1982) System and method for plasma coating. US-patent No. 4 328 257Google Scholar
  11. 11.
    Marchandise H (1970) Plasmatechnologie - Grundlagen und Anwendungen. DVS-Berichte 8. Editor: Deutscher Verlag für Schweisstechnik GmbH, DüsseldorfGoogle Scholar
  12. 12.
    Ingham HS, Shepard AP (1965) Flame Spray Handbook, 3 Metco Inc, Westbury NYGoogle Scholar
  13. 13.
    Vardelle M, Vardelle A and Fauchais P (1983) 10th Int Thermal Spray Conf, Essen, DVS-Berichte 88. Editor: Deutscher Verlag für Schweisstechnik GmbH, DüsseldorfGoogle Scholar
  14. 14.
    Okada M, Maruo H (1968) New plasma spraying and its application. Brit Welding J 15:371–386Google Scholar
  15. 15.
    Houben JM, Zaat J H (1976) Proc 8th Thermal Spraying Conf, Miami, pp 78–85Google Scholar
  16. 16.
    Charnley J (1960) Anchorge of the femoral head prosthesis to the shaft of the femur. J Bone Jt Surg 42-B:28–36Google Scholar
  17. 17.
    Osborn JF (1989) Bonding osteogenesis under loaded conditions - the histological evaluation of a human autopsy specimen of a hydroxyapatite ceramic coated stem of a titanium hip prosthesis. Bioceramics EuroAmerica Inc, Tokyo and St. Louis, pp 388–400Google Scholar
  18. 18.
    Kümmer B (1991) Primary fixation of the H-A.C.-coated furlong prosthesis. Proc J F Osborn Mem Symp Furlong Research Foundation, pp 43–54Google Scholar
  19. 19.
    Winkler-Gniewek W, Stallforth H, Ungethüm M, Gruner H (1988) Structure and properties of VPS coatings in medical technology. Vol. 3. Proc 1st Plasma-Technik Symp, Luzern, pp 95–102Google Scholar
  20. 20.
    Ungethüm M, Winkler-Gniewek W, Stallforth H (1987) Technische und medizinische Aspek-te verschiedener Oberflächenstrukturen zementfreier Hüftendoprothesen. Proc. 8. Vortragsreihe Arbeitskreis Implantate, DVM e.V., Berlin, pp 5–15Google Scholar
  21. 21.
    Mäusli PA, Bloch PR, Geret V, Steinemann GS (1986) Surface characterisation of titanium and titanium-alloys. Advances in Biomaterials 6:57–62Google Scholar
  22. 22.
    Albrektsson T, Brånemark PI, Hansson HA (1983) The interface zone of inorganic implants in vivo: Titanium implants in bone. Annals Biomed Eng 11:1–27CrossRefGoogle Scholar
  23. 23.
    Lintner K, Zweymüller K, Brand G (1986) Tissue reactions to titanium endoprostheses: Autopsy studies in four cases. J Arthroplasty 1:183–195CrossRefGoogle Scholar
  24. 24.
    Muehlberger E (1973) Method and apparatus for effecting high-energy dynamic coating of substrates. US-PS No 3, 839,618Google Scholar
  25. 25.
    Gruner H (1984) Vacuum plasma spray quality control. Thin Solid Films 118:394–407CrossRefGoogle Scholar
  26. 26.
    Henne H, Mayr W, Reusch A (1993) Influence of nozzle geometry as particle behaviour and coating quality in high-velocity VPS. DVS-Reports 152:7–11Google Scholar
  27. 27.
    Gruner H, Schwarz E (1985) Vakuum-Plasmaspritzen im Turbinenbau. DVS-Berichte 98:116–121Google Scholar
  28. 28.
    Gruner H (1992) Neue Anwendung der VPS-Technik. In: Pulvermetallurgie in Wiss u. Praxis, Band 8:82–101. VDI-Verlag GmbH, DüsseldorfGoogle Scholar
  29. 29.
    Hench LL, Splitter RJ, Allen WC. Greenlec TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials, J Biomed Mater Res Symp 2:117–141CrossRefGoogle Scholar
  30. 30.
    Hubbarb WG (1974) Physiological calcium phosphates as orthopedic biomaterials. Diss Abstracts Int, p 35Google Scholar
  31. 31.
    de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA (1990) Plasma-sprayed coatings of calcium phosphate. CRC Handbook of Bioactive Ceramics, CRC Press, Boston, 2:133–142Google Scholar
  32. 32.
    Osborn JF, Kovacs E, Kallenberger A (1980) Hydroxylapatitkeramik - Entwicklung eines neuen Biowerkstoffes und erste experimentelle Ergebnisse, Deutsche zahnärztl. Z. 35:54–56Google Scholar
  33. 33.
    Osborn JF (1983) Hydroxylapatitkeramik - ein osteotroper Werkstoff für den Knochenersatz. Fortsch. Kiefer-Gesichtschirurgie 28:37–40Google Scholar
  34. 34.
    Sumitomo Chemical Co, Osaka Japan (1975) Implant-body for bone, joints and teeth and method for its production. Patent application No 158 745Google Scholar
  35. 35.
    Driskell TD (1994) Early history of calcium phosphate materials and coatings. ASTM publication, Philadelphia, pp 3–8Google Scholar
  36. 36.
    Winter M, Griss P, de Groot K, Tagai H, Heimke G, van Dijk HJA, Sawai K (1981) Comparative histocompatibility testing of seven calcium phosphate ceramics. Biomaterials 2:159–161CrossRefGoogle Scholar
  37. 37.
    Osborn JF (1985) Implantatwerkstoff Hydroxylapatitkeramik-Grundlagen und klinische Anwendungen. Quintessenz Verlag, BerlinGoogle Scholar
  38. 38.
    Furlong R (1991) Six years experience of hydroxyapatite ceramic coated hip prostheses. Furlong Research Foundation, London, pp 13–24Google Scholar
  39. 39.
    Osborn JF (1987) Die biologische Leistung der Hydroxylkeramik-Beschichtung auf dem Femurschaft einer Titanendoprothese - erste histologische Auswertung eines Humanexplantates. Biomed Tech 32:177–183CrossRefGoogle Scholar
  40. 40.
    Furlong R, Osborn JF (1991) Fixation of hip prostheses by hydroxyapatite ceramic coatings. J Bone Joint Surg (Br) 73B:741–745Google Scholar
  41. 41.
    Fischer GR, Bardhan P, Geiger JE (1983) The lattice thermal expansion of hydroxyapatite. J Mater Sci Lett 2:577–578CrossRefGoogle Scholar
  42. 42.
    Gruner H (1985) Cr2O3 protecting coating and method for its production. German Patent No 35 13 892Google Scholar
  43. 43.
    Gruner H (1985) Implant body with porous, biologically compatible coating. European Patent No 02 22 853Google Scholar
  44. 44.
    Gruner H (1990) Plasma sprayed coatings on endoprostheses. Proc North Sea Conf on Biomed Eng, Antwerp Topic 1:21–24Google Scholar
  45. 45.
    Gruner H (1992) A new generation of hydroxyapatite coating. Osborn Mem Symp, Furlong Research Foundation, London, pp 97–114Google Scholar
  46. 46.
    Ha SW (1997) Bioactive Calcium Phosphate Coatings on Poly(etheretherketone) and its Composites. Ph.D. thesis Nr. 12198, Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  47. 47.
    Nilles JL, Coletti JR, Wilson C (1973) Biomechanical evaluation of bone-porous material interfaces. J Biomed Mater Res 7:231–251CrossRefGoogle Scholar
  48. 48.
    Gruner H (1995) Technology of HA-ceramic coating (H-A.C). In: Coating (H-A.C). Proc. Symp. on Hydroxyapatite Ceramic, a Decade of Experience in Hip Arthroplasty. Furlong Research Foundation, London, pp 27–40Google Scholar
  49. 49.
    European Standard EN 582 (1993) Thermal Spraying Determination of Tensile Adhesive StrengthGoogle Scholar
  50. 50.
    Doerre E (1989) Hydroxyapatite ceramic coatings for anchoring components of hip-joint prostheses (technical aspects). Biomed Technik 34:46–52CrossRefGoogle Scholar
  51. 51.
    Cameron HU, Pillar RM, Macnab I (1973) The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 7:301–311CrossRefGoogle Scholar
  52. 52.
    Søballe K et al. (1990) HA coating enhances fixation of porous coated implants. Acta Orthop Scand 60:299–306Google Scholar
  53. 53.
    Gross U (1993) Biological aspects of implants materials. Dtsch Zahnärztl Z 48:750–755Google Scholar
  54. 54.
    Søballe K (1995) The role of H-A.C. in ingrowth prostheses. In: Hydroxyapatite Ceramic, a Decade of Experience in Hip Arthroplasty. Furlong Research Foundation, London, pp 57–67Google Scholar
  55. 55.
    Christel P, Meunier A, Heller M, Torre JP, Peille CN (1989) J Biomed Mater Res 23:45–49CrossRefGoogle Scholar
  56. 56.
    Weber BG, Fiechter T (1989) Polyäthylen-Verschleiss und Spätlockerung der Totalprothese des Hüftgelenkes. Orthopädie 18:370–376Google Scholar
  57. 57.
    Gruner H (1998) Dense oxide coatings, a new application for VPS. Proc ATTAC 88, Osaka: 265–270Google Scholar
  58. 58.
    Winkler-Gniewek W, Stallfurth H (1986) Verfahren zum Aufbringen einer Schutzschicht auf Gelenkendoprothesen. European Patent Application No. 02 48 117Google Scholar
  59. 59.
    Fink U (1993) Verschleissverhalten der Paarung TiA16V4-Polyethylen für Implantatanwendungen bei verschiedenen Oberflächenbehandlungen der Metallkomponente. VDI-Fortschrittberichte Reihe 17, Nr. 104, Verlag des Vereins Deutscher Ingenieure, DüsseldorfGoogle Scholar
  60. 60.
    Foitzek Ch, Stamm M (1997) Einsatz von phasenreinem ß-TCP zur Auffüllung von ossären Defekten-Biologische Materialvorteile und klinische Erfahrungen. Quintessenz 48: 1365–1377Google Scholar
  61. 61.
    Ha SW, Eckert KL, Wintermantel E, Gruner H, Guecheva M, Vonmont H (1997) NaOH treatment of VPS-sprayed Ti on carbon fibre-reinforced PEEK. J Mater Sci: Mater Med 8:881–886Google Scholar
  62. 62.
    Ha SW, Reber R, Baerlocher C, Wintermantel E, Gruner H (1996) In vitro studies of vacuum-plasma-sprayed hydroxyapatite coatings after immersion in simulated body fluid and fetal calf serum. Bioceramics 9, Otsu Japan, pp 309–312Google Scholar
  63. 63.
    Brekke JH, Toth JM (1998) Principles of tissue engineering applied to programmable osteo-genesis. J Biomed Mater Res 42:380–398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Heiko Gruner
    • 1
  1. 1.Medicoat AGMägenwilSwitzerland

Personalised recommendations