Skip to main content

Thermal Spray Coatings on Titanium

  • Chapter
Book cover Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The geometric form of a prosthesis and the material for its manufacture are determined mainly by the static and dynamic loading requirements during daily use. Mechanical stability over time is required, and the device must therefore have the ability to withstand stress and strain up to the elastic limits of the construction. Additionally, temperature response must be considered as well as chemical stability. For medical devices, acceptance by the surrounding tissue must be ensured. Properties such as bioinertness, biocompatibility or bioactivity are a few characteristics of materials claimed to be biomaterials [1] or medical devices. The interactions with human body fluids and tissues take place at the interface and are determined mainly by the surface characteristics of the component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Osborn JF, Weiss T (1978) Hydroxylapatitkeramik - ein knochenähnlicher Biowerkstoff. Schweiz. Monatszeitschrift Zahnheilkunde 88:118–24

    Google Scholar 

  2. Definition of Thermal Spraying German Standard DIN 32530

    Google Scholar 

  3. Kreye H (1988) Optimization and control for the spray conditions in the jet kote process. Proc Nat Thermal Spray Conf, Cincinnati, pp 39–46

    Google Scholar 

  4. Schoop M (1912) German Patent No 2585 005

    Google Scholar 

  5. Smith RW, Novak R (1991) Advances and applications in U.S. thermal spray technology. Powder Metallurgy Int 23:147–155

    CAS  Google Scholar 

  6. Kreye H, Schwetzke R, Zimmermann S (1996) High velocity oxy-fuel flame spraying. Proc Nat Thermal Spray Conf, Ohio, pp 451–456

    Google Scholar 

  7. Zimmermann S, Höhle HM (2000) Functional coatings for wear and corrosion protection by HVOF spraying. Proc 5th Colloq HVOF, Erding, pp 99–107

    Google Scholar 

  8. Alkimov AP, Kosarev VF, Papyrin AN (1990) Cold gas-dynamic spray method. Dokl Acad Nauk SSSR 318:1062–1065

    Google Scholar 

  9. Browning JA (1959) Plasma - a substitute for the oxy-fuel flame. Weld J 38:870–875

    Google Scholar 

  10. Muehlberger E, Kremith RD (1982) System and method for plasma coating. US-patent No. 4 328 257

    Google Scholar 

  11. Marchandise H (1970) Plasmatechnologie - Grundlagen und Anwendungen. DVS-Berichte 8. Editor: Deutscher Verlag fĂĽr Schweisstechnik GmbH, DĂĽsseldorf

    Google Scholar 

  12. Ingham HS, Shepard AP (1965) Flame Spray Handbook, 3 Metco Inc, Westbury NY

    Google Scholar 

  13. Vardelle M, Vardelle A and Fauchais P (1983) 10th Int Thermal Spray Conf, Essen, DVS-Berichte 88. Editor: Deutscher Verlag fĂĽr Schweisstechnik GmbH, DĂĽsseldorf

    Google Scholar 

  14. Okada M, Maruo H (1968) New plasma spraying and its application. Brit Welding J 15:371–386

    CAS  Google Scholar 

  15. Houben JM, Zaat J H (1976) Proc 8th Thermal Spraying Conf, Miami, pp 78–85

    Google Scholar 

  16. Charnley J (1960) Anchorge of the femoral head prosthesis to the shaft of the femur. J Bone Jt Surg 42-B:28–36

    CAS  Google Scholar 

  17. Osborn JF (1989) Bonding osteogenesis under loaded conditions - the histological evaluation of a human autopsy specimen of a hydroxyapatite ceramic coated stem of a titanium hip prosthesis. Bioceramics EuroAmerica Inc, Tokyo and St. Louis, pp 388–400

    Google Scholar 

  18. Kümmer B (1991) Primary fixation of the H-A.C.-coated furlong prosthesis. Proc J F Osborn Mem Symp Furlong Research Foundation, pp 43–54

    Google Scholar 

  19. Winkler-Gniewek W, Stallforth H, Ungethüm M, Gruner H (1988) Structure and properties of VPS coatings in medical technology. Vol. 3. Proc 1st Plasma-Technik Symp, Luzern, pp 95–102

    Google Scholar 

  20. Ungethüm M, Winkler-Gniewek W, Stallforth H (1987) Technische und medizinische Aspek-te verschiedener Oberflächenstrukturen zementfreier Hüftendoprothesen. Proc. 8. Vortragsreihe Arbeitskreis Implantate, DVM e.V., Berlin, pp 5–15

    Google Scholar 

  21. Mäusli PA, Bloch PR, Geret V, Steinemann GS (1986) Surface characterisation of titanium and titanium-alloys. Advances in Biomaterials 6:57–62

    Google Scholar 

  22. Albrektsson T, Brånemark PI, Hansson HA (1983) The interface zone of inorganic implants in vivo: Titanium implants in bone. Annals Biomed Eng 11:1–27

    Article  CAS  Google Scholar 

  23. Lintner K, Zweymüller K, Brand G (1986) Tissue reactions to titanium endoprostheses: Autopsy studies in four cases. J Arthroplasty 1:183–195

    Article  CAS  Google Scholar 

  24. Muehlberger E (1973) Method and apparatus for effecting high-energy dynamic coating of substrates. US-PS No 3, 839,618

    Google Scholar 

  25. Gruner H (1984) Vacuum plasma spray quality control. Thin Solid Films 118:394–407

    Article  Google Scholar 

  26. Henne H, Mayr W, Reusch A (1993) Influence of nozzle geometry as particle behaviour and coating quality in high-velocity VPS. DVS-Reports 152:7–11

    CAS  Google Scholar 

  27. Gruner H, Schwarz E (1985) Vakuum-Plasmaspritzen im Turbinenbau. DVS-Berichte 98:116–121

    Google Scholar 

  28. Gruner H (1992) Neue Anwendung der VPS-Technik. In: Pulvermetallurgie in Wiss u. Praxis, Band 8:82–101. VDI-Verlag GmbH, Düsseldorf

    Google Scholar 

  29. Hench LL, Splitter RJ, Allen WC. Greenlec TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials, J Biomed Mater Res Symp 2:117–141

    Article  Google Scholar 

  30. Hubbarb WG (1974) Physiological calcium phosphates as orthopedic biomaterials. Diss Abstracts Int, p 35

    Google Scholar 

  31. de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA (1990) Plasma-sprayed coatings of calcium phosphate. CRC Handbook of Bioactive Ceramics, CRC Press, Boston, 2:133–142

    Google Scholar 

  32. Osborn JF, Kovacs E, Kallenberger A (1980) Hydroxylapatitkeramik - Entwicklung eines neuen Biowerkstoffes und erste experimentelle Ergebnisse, Deutsche zahnärztl. Z. 35:54–56

    CAS  Google Scholar 

  33. Osborn JF (1983) Hydroxylapatitkeramik - ein osteotroper Werkstoff für den Knochenersatz. Fortsch. Kiefer-Gesichtschirurgie 28:37–40

    Google Scholar 

  34. Sumitomo Chemical Co, Osaka Japan (1975) Implant-body for bone, joints and teeth and method for its production. Patent application No 158 745

    Google Scholar 

  35. Driskell TD (1994) Early history of calcium phosphate materials and coatings. ASTM publication, Philadelphia, pp 3–8

    Google Scholar 

  36. Winter M, Griss P, de Groot K, Tagai H, Heimke G, van Dijk HJA, Sawai K (1981) Comparative histocompatibility testing of seven calcium phosphate ceramics. Biomaterials 2:159–161

    Article  CAS  Google Scholar 

  37. Osborn JF (1985) Implantatwerkstoff Hydroxylapatitkeramik-Grundlagen und klinische Anwendungen. Quintessenz Verlag, Berlin

    Google Scholar 

  38. Furlong R (1991) Six years experience of hydroxyapatite ceramic coated hip prostheses. Furlong Research Foundation, London, pp 13–24

    Google Scholar 

  39. Osborn JF (1987) Die biologische Leistung der Hydroxylkeramik-Beschichtung auf dem Femurschaft einer Titanendoprothese - erste histologische Auswertung eines Humanexplantates. Biomed Tech 32:177–183

    Article  CAS  Google Scholar 

  40. Furlong R, Osborn JF (1991) Fixation of hip prostheses by hydroxyapatite ceramic coatings. J Bone Joint Surg (Br) 73B:741–745

    Google Scholar 

  41. Fischer GR, Bardhan P, Geiger JE (1983) The lattice thermal expansion of hydroxyapatite. J Mater Sci Lett 2:577–578

    Article  CAS  Google Scholar 

  42. Gruner H (1985) Cr2O3 protecting coating and method for its production. German Patent No 35 13 892

    Google Scholar 

  43. Gruner H (1985) Implant body with porous, biologically compatible coating. European Patent No 02 22 853

    Google Scholar 

  44. Gruner H (1990) Plasma sprayed coatings on endoprostheses. Proc North Sea Conf on Biomed Eng, Antwerp Topic 1:21–24

    Google Scholar 

  45. Gruner H (1992) A new generation of hydroxyapatite coating. Osborn Mem Symp, Furlong Research Foundation, London, pp 97–114

    Google Scholar 

  46. Ha SW (1997) Bioactive Calcium Phosphate Coatings on Poly(etheretherketone) and its Composites. Ph.D. thesis Nr. 12198, Swiss Federal Institute of Technology (ETH), Zurich

    Google Scholar 

  47. Nilles JL, Coletti JR, Wilson C (1973) Biomechanical evaluation of bone-porous material interfaces. J Biomed Mater Res 7:231–251

    Article  Google Scholar 

  48. Gruner H (1995) Technology of HA-ceramic coating (H-A.C). In: Coating (H-A.C). Proc. Symp. on Hydroxyapatite Ceramic, a Decade of Experience in Hip Arthroplasty. Furlong Research Foundation, London, pp 27–40

    Google Scholar 

  49. European Standard EN 582 (1993) Thermal Spraying Determination of Tensile Adhesive Strength

    Google Scholar 

  50. Doerre E (1989) Hydroxyapatite ceramic coatings for anchoring components of hip-joint prostheses (technical aspects). Biomed Technik 34:46–52

    Article  Google Scholar 

  51. Cameron HU, Pillar RM, Macnab I (1973) The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 7:301–311

    Article  CAS  Google Scholar 

  52. Søballe K et al. (1990) HA coating enhances fixation of porous coated implants. Acta Orthop Scand 60:299–306

    Google Scholar 

  53. Gross U (1993) Biological aspects of implants materials. Dtsch Zahnärztl Z 48:750–755

    CAS  Google Scholar 

  54. Søballe K (1995) The role of H-A.C. in ingrowth prostheses. In: Hydroxyapatite Ceramic, a Decade of Experience in Hip Arthroplasty. Furlong Research Foundation, London, pp 57–67

    Google Scholar 

  55. Christel P, Meunier A, Heller M, Torre JP, Peille CN (1989) J Biomed Mater Res 23:45–49

    Article  CAS  Google Scholar 

  56. Weber BG, Fiechter T (1989) Polyäthylen-Verschleiss und Spätlockerung der Totalprothese des Hüftgelenkes. Orthopädie 18:370–376

    CAS  Google Scholar 

  57. Gruner H (1998) Dense oxide coatings, a new application for VPS. Proc ATTAC 88, Osaka: 265–270

    Google Scholar 

  58. Winkler-Gniewek W, Stallfurth H (1986) Verfahren zum Aufbringen einer Schutzschicht auf Gelenkendoprothesen. European Patent Application No. 02 48 117

    Google Scholar 

  59. Fink U (1993) Verschleissverhalten der Paarung TiA16V4-Polyethylen für Implantatanwendungen bei verschiedenen Oberflächenbehandlungen der Metallkomponente. VDI-Fortschrittberichte Reihe 17, Nr. 104, Verlag des Vereins Deutscher Ingenieure, Düsseldorf

    Google Scholar 

  60. Foitzek Ch, Stamm M (1997) Einsatz von phasenreinem ß-TCP zur Auffüllung von ossären Defekten-Biologische Materialvorteile und klinische Erfahrungen. Quintessenz 48: 1365–1377

    Google Scholar 

  61. Ha SW, Eckert KL, Wintermantel E, Gruner H, Guecheva M, Vonmont H (1997) NaOH treatment of VPS-sprayed Ti on carbon fibre-reinforced PEEK. J Mater Sci: Mater Med 8:881–886

    Google Scholar 

  62. Ha SW, Reber R, Baerlocher C, Wintermantel E, Gruner H (1996) In vitro studies of vacuum-plasma-sprayed hydroxyapatite coatings after immersion in simulated body fluid and fetal calf serum. Bioceramics 9, Otsu Japan, pp 309–312

    Google Scholar 

  63. Brekke JH, Toth JM (1998) Principles of tissue engineering applied to programmable osteo-genesis. J Biomed Mater Res 42:380–398

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruner, H. (2001). Thermal Spray Coatings on Titanium. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics