Advertisement

Production of Microfabricated Surfaces and Their Effects on Cell Behavior

  • Nicolas A. F. Jaeger
  • Donald M. Brunette
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Microfabrication is a general, catch-all term that describes the technologies that are used to manufacture integrated circuits and micromachines [1]. It includes techniques for depositing or implanting dopants onto or into substrates, techniques for growing epitaxial layers onto substrates, methods for etching materials off of substrates, methods for oxidizing materials, methods for patterning one material on another material, and methods for diffusing dopants into materials. Most microfabrication techniques and technologies have at least their roots in technologies originally developed for the microelectronics industry, see for example [2]. Microfabrication is no longer the preserve of the microelectronics industry however; it is used in areas of optics such as integrated-optics and electro-photonics, it is used in the fabrication of microsensors [3], it is used to fabricate micro-electromechanical systems, and, of course, it is finding increasing applications in the biological sciences.

Keywords

Cell Behavior Etch Rate Biomed Mater Anisotropic Etching Groove Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rai-Choudhury P (ed) (1997) Handbook of Microlithography, Micromachining and Micro-fabrication. SPIE Optical Engineering Press, Bellingham, and IEE, LondonGoogle Scholar
  2. 2.
    Campbell SA (1996) The Science and Engineering of Microelectronic Fabrication. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Gardner JW (1994) Microsensors: Principles and Applications. John Wiley & Sons, ChichesterGoogle Scholar
  4. 4.
    Pogge HB (ed) (1996) Electronic Materials Chemistry. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Kendall DL, Shoultz (1997) Wet chemical etching of silicon and SiO2, and ten challenges for micromachiners. In: Rai-Choudhury P (ed) Handbook of Microlithography, Micromachining, and Microfabrication Vol. 2: Micromachining and Microfabrication. SPIE Optical Engineering Press, Bellingham, and IEE, London, pp 41–97Google Scholar
  6. 6.
    Glembocki OJ, Palik ED, de Guel GR, Kendall DL (1991) Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydroxides. J Electrochem Soc 138(4):1055–1063CrossRefGoogle Scholar
  7. 7.
    Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions - I. orientation dependence and behavior of passivation layers. J Electrochem Soc 137(11):3612–3626CrossRefGoogle Scholar
  8. 8.
    Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions - II. influence of dopants. J Electrochem Soc 137(11):3626–3632CrossRefGoogle Scholar
  9. 9.
    Zavracky PM, Earles T, Pokrovskiy NL, Green JA, Burns BE (1994) Fabrication of vertical sidewalls by anisotropic etching of silicon (100) wafers. J Electrochem Soc 141(11):3182–3188CrossRefGoogle Scholar
  10. 10.
    Bassous E (1978) Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon. IEEE Transactions on Electron Devices 25(10):1178–1185CrossRefGoogle Scholar
  11. 11.
    Bassous E, Baran EF (1994) The Fabrication of High Precision Nozzles by the Anisotropic Etching of (100) Silicon. J Electrochem Soc 125(8):1321–1327CrossRefGoogle Scholar
  12. 12.
    Price JB (1973). Anisotropic etching of silicon with KOH-H2O-Isopropyl alcohol. In: Huff HR, Burgess RR (eds) Semiconductor Silicon. Princeton, New Jersey, pp 339–353Google Scholar
  13. 13.
    Kuo Y, Schrott AG (1995). Plasma etch of titanium and titanium oxide. Electrochem Soc Proc 95–5:246–257Google Scholar
  14. 14.
    Madore C, Landolt D (1997). Electrochemical micromachining of controlled topographies on titanium for biological applications. J Micromech Microeng 7:270–275CrossRefGoogle Scholar
  15. 15.
    Piotrowski 0, Madore C, Landolt D (1998). Electropolishing of titanium and titanium alloys in perchlorate-free electrolytes. Plating and Surface Finishing 115–119Google Scholar
  16. 16.
    Madore C, Piotrowski 0, Landolt D (1999). Through-mask electrochemical micromachining of titanium. J Electrochem Soc 146(7):2526–2532CrossRefGoogle Scholar
  17. 17.
    Lesem LB, Hirsch PM, Jordan JA Jr (1969). The kinoform: a new wavefront reconstruction device. IBM J Res Dev 13:150–155CrossRefGoogle Scholar
  18. 18.
    Larsson M, Ekberg M, Nikolajeff F, Hård S (1994). Successive development optimization of resist kinoforms manufactured with direct-writing, electron beam lithography. Appl Optics 33(7):1176–1179CrossRefGoogle Scholar
  19. 19.
    Ekberg M, Larsson M, Bolle A, and Hård S (1991). Nd:YAG laser machining with multilevel resist kinoforms. Appl Optics 30(25):3604–3606CrossRefGoogle Scholar
  20. 20.
    Kasemo B, Gold J (1999). Implant surfaces and interface processes. Adv Dent Res 13:8–20CrossRefGoogle Scholar
  21. 21.
    Brunette, DM, Kenner GS, Gould TRL (1983) Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res 62:1045–1048CrossRefGoogle Scholar
  22. 22.
    Brunette DM (1986) Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp Cell Res 164:11–26CrossRefGoogle Scholar
  23. 23.
    Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1987) Topographical control of cell behavior. I. Simple step cues. Development 99(3):439–48Google Scholar
  24. 24.
    Rich A, Harris AK (1981) Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J Cell Sci 50:1–7Google Scholar
  25. 25.
    den Braber ET, Jansen HV, de Boer MJ, Croes HJ, Elwenspoek M, Ginsel LA, Jansen JA (1998) Scanning electron microscopic, transmission electron microscopic, and confocal laser scanning microscopic observation of fibroblasts cultured on microgrooved surfaces of bulk titanium substrata. J Biomed Mater Res 40:425–33CrossRefGoogle Scholar
  26. 26.
    Weiss P (1945) Experiments on cell and axon orientation in vitro; the role of colloidal exu-dates in tissue organization. J Exp Zool 100:343CrossRefGoogle Scholar
  27. 27.
    Hoch HC, Raples RC, Whithead B, Comeau J, Wolf ED (1987) Signalling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–62CrossRefGoogle Scholar
  28. 28.
    Nagata I, Nakatsuji N (1991) Rodent CNS neuroblasts exhibit both perpendicular and parallel contact guidanceon the aligned parallel neurite bundle. Development 112:581–90Google Scholar
  29. 29.
    Rajnicek A, Britland S, McCaig C (1997) Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci 110:2905–13Google Scholar
  30. 30.
    Brunette DM (1996) Effects of surface topography of implant materials on cell behavior in vitro and in vivo. In: Hoch HC, Jelinksi LW, Craighead H (eds) Nanofabrication and Biosys-tems: Integrating Materials Science, Engineering and Biology. Cambridge University Press, pp 335–355Google Scholar
  31. 31.
    Sandford KK (1974) Biologic manifestations of oncogenesis in vitro: a critique. J Natl Cancer Inst 53:1481–1485Google Scholar
  32. 32.
    Fisher PE and Tickle C (1981) Differences in alignment of normal and transformed cells on glass fibres. Exp Cell Res 131:407–9CrossRefGoogle Scholar
  33. 33.
    Vesely P, Matouskova E, Krychnakova E, Rovensky YA, Savnaya IL, Samoilov VI, Vasiliev YM (1981) Behavior of normal and neoplastic rat cells on grooved substrates. Folio biologica (Praha) 27 52–6Google Scholar
  34. 34.
    McCartney MD, Buck RC (1981) Comparison of the degree of contact guidance between tumor cells and normal cells in vitro. Cancer Res 41:3046–51Google Scholar
  35. 35.
    Curtis ASG, Wilkinson CDW (1998) Reactions of cells to topography. J Biomater Sci: Polymer Edn 9:1313–1329CrossRefGoogle Scholar
  36. 36.
    Weiss P, Garber B (1952) Shape and movement of mesenchyme cells as functions of the physical structure of the medium. Contributions to a quantitative morphology. Proc Nat Acad Sci (USA) 264–80Google Scholar
  37. 37.
    Ohara PT, Buck RC (1979) Contact guidance in vitro. A light, transmission and scanning electron microscopic study. Exp Cell Res 121:235–49CrossRefGoogle Scholar
  38. 38.
    Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101:1–14CrossRefGoogle Scholar
  39. 39.
    Dunn GA, Brown AF (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J Cell Sci 83:313–40Google Scholar
  40. 40.
    Dow JAT, Clark P, Connolly P, Curtis ASG, Wilkinson CDW (1987) Novel methods for the guidance and monitoring of single cells and simple networks in culture. J Cell Sci Suppl 8, pp 55–79Google Scholar
  41. 41.
    Meyle J, von Recum AF, Gibbesch B, Huttemann W, Schlagenhauf U, Schulte W (1991) Fibroblast shape conformation to surface micromorphology. J Appl Biomat 2:273–76CrossRefGoogle Scholar
  42. 42.
    Clark P, Connolly P, Curtis ASG, Dow JAT and Wilkinson CDW (1991) Cell guidance by ultrafine topographyin vitro. J Cell Sci 99:73–77Google Scholar
  43. 43.
    Rovensky YA, Bershadsky AD, Givargizon EI, Obolenskaya LN, Vasiliev JM (1991) Spreading of mouse fibroblasts on the substrate with multiple spikes. Exp Cell Res 197:107–12CrossRefGoogle Scholar
  44. 44.
    Green AM, Jansen JA, van der Waerden JPCM, von Recum AF (1994) Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface. J Biomed Mat Res 28:647–53CrossRefGoogle Scholar
  45. 45.
    den Braber ET, Jansen HV, de Boer MJ, Croes HJ, Elwenspoek M, Ginsel LA, Jansen JA (1998) Scanning electron microscopic, transmission electron microscopic and confocal laser scanning microscopic observation of fibroblasts cultured on microgrooved surfaces of bulk titanium substrata. J Biomed Mater Res 40:425–33CrossRefGoogle Scholar
  46. 46.
    Brunette DM (1986) Spreading and orientation of epithelial cells on grooved substrata. Exp Cell Res 167:203–217CrossRefGoogle Scholar
  47. 47.
    Oakley C, Brunette DM (1995) The response of single, pairs, and clusters of epithelial cells to substratum topography. Biochemistry and Cell Biology, spec issue Cytomechanics, 73:473–489Google Scholar
  48. 48.
    Hemmerli G, Felix H (1982) shape and motility, two interdependent features. Scanning Electron Microsc 1982:731–39Google Scholar
  49. 49.
    Meyle J, Gultig K, Nisch W (1995) Variation in contact guidance by human cells on a micro-structured surface. J Biomed Mat Res 29:81–88CrossRefGoogle Scholar
  50. 50.
    Damji A, Weston L, Brunette DM (1996) Directed confrontations between fibroblasts and epithelial cells on micromachined grooved substrata. Exp Cell Res 228:114–124CrossRefGoogle Scholar
  51. 51.
    Hong HL and Brunette DM (1987) Effect of cell shape on proteinase secretion. J Cell Sci 87:259–267Google Scholar
  52. 52.
    Chehroudi B, Gould TRL, Brunette DM (1988) Effects of a grooved epoxy substratum on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res 22:459–473CrossRefGoogle Scholar
  53. 53.
    Chehroudi B, Gould TRL, Brunette DM (1989) Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res 23:1067–1085CrossRefGoogle Scholar
  54. 54.
    Chehroudi B, Gould TRL, Brunette DM (1990)Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res 24:1203–1219CrossRefGoogle Scholar
  55. 55.
    Chehroudi B, Gould, TRL, Brunette DM (1992) The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants. J Biomed Mater Res 26:493–515CrossRefGoogle Scholar
  56. 56.
    Chehroudi B, Sooranyi E, Schindelhauer N, Brunette DM (1995) Computer-assisted three-dimensional reconstruction of epithelial cells attached to percutaneous implants. J Biomed Mater Res 29: 371–379CrossRefGoogle Scholar
  57. 57.
    Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1990) Topographical control of cell behavior: II. Multiple grooved substrata. Development 108:635–44Google Scholar
  58. 58.
    Wood A (1988) Contact guidance on microfabricated substrata; the response of telost fin mesenchyme cells to repeating topographical patterns. Cell Sci 90:667–81Google Scholar
  59. 59.
    Meyle J, Gultig K, Wolburg H, von Recum AF (1993) Fibroblast anchorage to microtextured surfaces. J Biomed Mater Res 2:1553–57CrossRefGoogle Scholar
  60. 60.
    den Braber ET, de Ruijter JE, Croes HJE, Ginsel LA, Jansen JA (1997) Transmission electron microscopical study of fibroblast attachment to microtextured silicone rubber surfaces. Cells and Materials 7:31–39Google Scholar
  61. 61.
    Walboomers XF, Croes HJ, Ginsel LA, Jansen JA (1998) Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 19:1861–1868CrossRefGoogle Scholar
  62. 62.
    Oakley C, Brunette DM (1993) The sequence of alignment of microtubules, focal contacts, and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J Cell Sci 106:343–354Google Scholar
  63. 63.
    Chou L, Firth JD, Uitto V-J, Brunette DM (1995) Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci 108:1563–1573Google Scholar
  64. 64.
    den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA (1998) Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res 40:291–300CrossRefGoogle Scholar
  65. 65.
    Wojciak-Stothard B, Curtis AS, Monaghan W, McGrath M, Sommer I, Wilkinson CD (1995) Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata. Cell Motil Cytoskeleton 31:147–58CrossRefGoogle Scholar
  66. 66.
    Oakley C, Jaeger NAF, Brunette DM (1997)Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation on micromachined grooves of different dimensions. Exp Cell Res 234:413–424CrossRefGoogle Scholar
  67. 67.
    Curtis ASG, Varde M (1964). Control of cell behavior - topological factors. J Natl Cancer Inst 33:15–36Google Scholar
  68. 68.
    Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 1573–83Google Scholar
  69. 69.
    Abiko Y, Brunette DM (1993) Immunohistochemical investigation of tracks left by the migration of fibroblasts on titanium surfaces. Cells Mater 3:161–170Google Scholar
  70. 70.
    Chehroudi B, Gould TRL, Brunette DM (1991) A light and electron microscopic observation of the effects of surface topography on the behavior of cells attached to titanium-coated percutaneous implants. J Biomed Mater Res 25:387–405CrossRefGoogle Scholar
  71. 71.
    Wall boomers XF, Croes HJE, Ginsel LA, Jansen JA (1998) Microgrooved subcutaneous implants in the goat. J Biomed Mater Res 42:634–41CrossRefGoogle Scholar
  72. 72.
    den Braber ET, de Ruijter JE, Jansen JA (1997) The effect of a subcutaneous silicone rubber implant with shallow surface microgrooves on the surrounding tissues in rabbits. J Biomed Mater Res 37:539–47CrossRefGoogle Scholar
  73. 73.
    Campbell CE, von Recum AF (1989) Microtopography and soft tissue response. J Invest Surg 2:51–74CrossRefGoogle Scholar
  74. 74.
    Brunette DM, Chehroudi B (1999) Effects of surface topography on cell behavior in vitro and in vivo. J. Biomech Eng 121:49–57CrossRefGoogle Scholar
  75. 75.
    Brunette DM, Ratkay J, Chehroudi B (1991) Behavior of osteoblasts on micromachined surfaces in the bone-biomaterial interface. Davies J.E (ed). The Bone-Biomaterial Interface. University of Toronto Press, pp 170–180Google Scholar
  76. 76.
    Qu J, Chehroudi B, Brunette DM (1996) The use of micromachined surfaces to investigate the cell behavioral factors essential to osseointegration. Oral Diseases 2:102–115CrossRefGoogle Scholar
  77. 77.
    Chesmel KD, Clark CC, Brighton CT, Black J (1995) Cellular responses to chemical and morphologic aspects of biomaterial surfaces II. The biosynthetic and migratory response of bone cell populations. J Biomed Mater Res 29:1101–10CrossRefGoogle Scholar
  78. 78.
    Chehroudi B, McDonnel D, Brunette DM (1997) The effects of micromachined surfaces on formation of bone-like tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res 34:279–290CrossRefGoogle Scholar
  79. 79.
    Chehroudi B, Ratkay J, Brunette DM (1992) The role of implant surface geometry on mineralization in vivo and in vitro; a transmission and scanning electron microscopic study. Cells Mater 2(2):89–104Google Scholar
  80. 80.
    Wilkinson PC, Shields JM, Haston WS (1982) Contact guidance of human neutrophil leukocytes. Exp Cell Res 140:55–62CrossRefGoogle Scholar
  81. 81.
    Wojciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C (1996) Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res 223:426–35CrossRefGoogle Scholar
  82. 82.
    Wojciak-Stothard B, Madeja Z, Korohoda W, Curtis A, Wilkinson C (1995) Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behavior. Cell Biol Int 19:485–90CrossRefGoogle Scholar
  83. 83.
    Rajnicek A, Britland S, McCaig C (1997) Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci 110:2905–13Google Scholar
  84. 84.
    Schmidt JA, von Recum AF (1992) Macrophage response to microtextured silicone. Biomaterials 13:1059–69CrossRefGoogle Scholar
  85. 85.
    Britland S, Morgan H, Wojiak-Stodart B, Riehle M, Curtis A, Wilkinson C (1996) Synergistic and hierarchical adhesive and topographic guidance of BHK cells. Exp Cell Res 228:313–25CrossRefGoogle Scholar
  86. 86.
    Britland S, Perridge C, Denyer M, Morgan H, Curtis A, Wilkinson C (1996) Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. Exp Biol Online 1:2 AbstractGoogle Scholar
  87. 87.
    Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94:9114–9118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Nicolas A. F. Jaeger
    • 1
  • Donald M. Brunette
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Oral Biological and Medical SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations