A Perspective on Titanium Biocompatibility

  • Buddy D. Ratner
Part of the Engineering Materials book series (ENG.MAT.)


The widespread and successful application of titanium (Ti) in medical implants is unquestionable. If, each year, Ti is used with good outcomes in hundreds of thousands of clinical implants, surely it must be biocompatible? This supposition will be examined in light of the definition of biocompatibility, ideas on the foreign body reaction and new developments in surface modification.


Titanium Surface Foreign Body Reaction Biomed Mater Protein Film Bioactive Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williams, DF (ed) (1987) Definitions in Biomaterials. Progress in Biomedical Engineering, 4. edition, Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Martinson L, Goessl A, Ciridon W, Pan YV, Sigle R, Savinit G, Leach-Scampavia D, Leach K, Kyriakides T, Shen L, Branca A, Carter W, Bornstein P, Sage H, Giachelli C, Horbett T, Ratner B (2000) Biomaterial Implants in the Subcutaneous Mouse Model. Transactions of the Sixth World Biomaterials Congress, May 15-20, 2000, Kamuela, Hawaii, USA, p 1289Google Scholar
  3. 3.
    Kokubo T, Miyaji F, Kim HM (1996) Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79(4): 1127-1129CrossRefGoogle Scholar
  4. 4.
    Tang L, Eaton JW (1993) Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147-2156CrossRefGoogle Scholar
  5. 5.
    Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29:1517-1524CrossRefGoogle Scholar
  6. 6.
    Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P (1998) Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA 96:4449-4454CrossRefGoogle Scholar
  7. 7.
    Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493-507CrossRefGoogle Scholar
  8. 8.
    Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7-15CrossRefGoogle Scholar
  9. 9.
    Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B (1997) Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci: Mater Med 8:653-665CrossRefGoogle Scholar
  10. 10.
    Steinemann SG (1998) Titanium - the material of choice? Periodontology 2000 17:7-21CrossRefGoogle Scholar
  11. 11.
    Clark GCF, Williams DF (1982) The effects of proteins on metallic corrosion. J Biomed Mater Res 16:125-134CrossRefGoogle Scholar
  12. 12.
    Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36:387-392CrossRefGoogle Scholar
  13. 13.
    Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA (1997) Apatite deposition on titanium surfaces - the role of albumin adsorption. Biomaterials 18(14):963-968CrossRefGoogle Scholar
  14. 14.
    Tamura RN, Oda D, Quaranta V, Plopper G, Lambert R, Glaser S, Jones JCR (1997) Coating of titanium alloy with soluble laminin-5 promotes cell attachment and hemidesmosome assembly in gingival epithelial cells: potential application to dental implants. J Periodontal Res 32:287-294CrossRefGoogle Scholar
  15. 15.
    Collis JJ, Embery G (1992) Adsorption of glycosaminoglycans to commercially pure titanium. Biomaterials 13(8):548-552CrossRefGoogle Scholar
  16. 16.
    Kane KR, DeHeer DH, Owens SR, Beebe JD, Swanson AB (1994) Adsorption of collagenase to particulate titanium: a possible mechanism for collagenase localization in periprosthetic tissue. J Appl Biomat 5:353-360CrossRefGoogle Scholar
  17. 17.
    Vaudaux P, Clivaz X, Emch R, Descouts P, Lew D (1990) Heterogeneity of antigenic and proadhesive activity of fibronectin adsorbed on various metallic or polymeric surfaces. In: Heimke G, Soltesz U, Lee AJC (eds) Clinical Implant Materials vol 9. Elsevier, Amsterdam, pp 31-36Google Scholar
  18. 18.
    Elwing H, Invarsson B, Lundstrom I (1987) Note: Serum complement deposition on platinum and titanium oxide surfaces measured by ellipsometry at liquid-solid interface. J Biomed Mater Res 21: 263-267CrossRefGoogle Scholar
  19. 19.
    Sundgren JE, Bodo P, Ivarsson B, Lundstrom I (1986) Adsorption of fibrinogen on titanium and gold surfaces studied by ESCA and ellipsometry. J Colloid Interface Sci 113(2):530-543CrossRefGoogle Scholar
  20. 20.
    Ellingsen JE (1995) Pretreatment of titanium implants with fluoride ion improves their retention in bone. J Mater Sci: Mater Med 6:749-753CrossRefGoogle Scholar
  21. 21.
    Ellingsen JE (1998) Surface configurations of dental implants. Periodontology 2000 17:36-46CrossRefGoogle Scholar
  22. 22.
    Chauvy PF, Madore C, Landolt D (1998) Variable length scale analysis of surface topography: characterization of titanium surfaces for biomedical applications. Surf Coat Technol 110:48-56CrossRefGoogle Scholar
  23. 23.
    Taborelli M, Jobin M, Francois P, Vaudaux P, Tonetti M, Szmukler-Moncler S, Simpson JP, Descouts P (1997) Influence of surface treatments developed for oral implants on the physical and biological properties of titanium - I. Surface characterization. Clin Or Implants Res 8:208-216CrossRefGoogle Scholar
  24. 24.
    Douglas K, Devaud G, Clark NA (1992) Transfer of biologically derived nanometer-scale patterns to smooth substrates. Science 257:642-644CrossRefGoogle Scholar
  25. 25.
    Schenk RK, Buser D (1998) Osteointegration: a reality. Periodontology 2000 17:22-35CrossRefGoogle Scholar
  26. 26.
    Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B (1997) Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci: Mater Med 8:653-665CrossRefGoogle Scholar
  27. 27.
    Hanff G, Danielsen N, Thomsen P (1994) E-PTFE in rabbit knee-joints. J Mater Sci: Mater Med 5:473-480CrossRefGoogle Scholar
  28. 28.
    Anderson JM (1996) Inflammation, wound healing and the foreign body response. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, San Diego, pp 165-173Google Scholar
  29. 29.
    Liao H, Wurtz T, Li J (1999) Influence of titanium ion on mineral formation and properties of osteoid nodules in rat calvaria cultures. J Biomed Mater Res 47:220-227CrossRefGoogle Scholar
  30. 30.
    Schoen FJ, Harasaki H, Kim KM, Anderson HC, Levy RJ (1988) Biomaterial-associated calcification: pathology, mechanisms, and strategies for prevention. J Biomed Mater Res: Appl Biomat 22:11-36Google Scholar
  31. 31.
    Hong J, Andersson J, Ekdahl KN, Elgue G, Axén N, Larsson R, Nilsson B (1999) Titanium is a highly thrombogenic biomaterial: Possible implications for osteogenesis. Thromb Haemost 82(l):58-64Google Scholar
  32. 32.
    Homsey CA (1970) Bio-compatibility in selection of materials for implantation. J Biomed Mater Res 4:341-356CrossRefGoogle Scholar
  33. 33.
    Ratner BD (1993) New ideas in biomaterials science - a path to engineered biomaterials. J Biomed Mater Res 27:837-850CrossRefGoogle Scholar
  34. 34.
    Ratner BD (1997) The engineering of biomaterials exhibiting recognition and specificity. J Mol Rec 9:617-625CrossRefGoogle Scholar
  35. 35.
    McKee MD, Nanci A (1995) Osteopontin and the bone remodeling sequence. Colloidal-gold immunocytochemistry of an interfacial extracellular matrix protein. Ann N Y Acad Sci 760:177-189CrossRefGoogle Scholar
  36. 36.
    Butler WT, Ridall AL, McKee MD (1996) Chap. 13 Osteopontin. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. Academic Press, San Diego, pp 167-181Google Scholar
  37. 37.
    Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686-1696CrossRefGoogle Scholar
  38. 38.
    Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF and Giachelli CM (1998) NF-kB mediates avβ3 integrin-induced endothelial cell survival. J Cell Biol 141:1083-1093CrossRefGoogle Scholar
  39. 39.
    Wang X, Jin Y, Liu B, Zhou S, Yang L, Xi Y, White FH (1994) Tissue reactions to titanium implants containing bovine bone morphogenetic protein: a scanning electron microscopic investigation. Int J Oral Maxillofac Surg 23:115-119CrossRefGoogle Scholar
  40. 40.
    Dee KC, Bizios R (1996) Mini-review: Proactive biomaterials and bone tissue engineering. Biotechnol Bioeng 50(4):438-442CrossRefGoogle Scholar
  41. 41.
    Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD (1998) Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res: 40(2):324-335CrossRefGoogle Scholar
  42. 42.
    Xiao SJ, Textor M, Spencer ND, Sigrist H (1998) Covalent attachment of cell-adhesive, (Arg-Gly-Asp) -containing peptides to titanium surfaces. Langmuir 14:5507-5516CrossRefGoogle Scholar
  43. 43.
    Riches DWH (1996) Chap. 3. Macrophage involvement in wound repair, remodeling, and fibrosis. In: Clark RAF (ed) The Molecular and Cellular Biology of Wound Repair, second edn. Plenum Press, New York, pp 95-141Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Buddy D. Ratner
    • 1
  1. 1.University of Washington Engineered Biomaterials (UWEB)SeattleUSA

Personalised recommendations