Skip to main content

Zusammenfassung

Zahlreiche Umweltchemikalien, die aus den unterschiedlichsten Quellen in die Gewässer gelangen, werden der Wasserphase zunächst dadurch entzogen, daβ sie sich den Schwebstoffen und Sedimenten anlagern (z.B. Schwermetallverbindungen, Pestizide, halogenierte Kohlenwasserstoffe, polyclische aromatische Kohlenwasserstoffe). Unter dem Aspekt der ursprünglich wirksamen Schadstoffkonzentration wirkt dieser Prozeβ für die Organismen in der Wassersäule entgiftend. Der Prozess ist teilweise reversibel und Sedimente fungieren als Quellen für Schadstoffe, die auf aquatische Organismen wirken. Darüberhinaus werden Benthosorganismen ständig diesen sedimentgebundenen Chemikalien ausgesetzt. Sedimenttoxizität ist im weitesten Sinn definiert als ökologische und biologische Änderung, die durch kontaminiertes Sediment verursacht wird. Sie kann aber auch pragmatisch bestimmt werden, als negative Wirkung an einem Testorganismus, der einem belasteten Sediment ausgesetzt wurde. Bei der Differenzierung von toxischen Effekten sedimentassoziierter Schadstoffe müssen jedoch sowohl die Sensitivitäten von Testorganismen als auch die möglichen Aufnahmewege der Chemikalien berücksichtigt werden. Dieses Kapitel beschäftigt sich mit der Diskussion moglicher Prozesse, durch die sedimentgebundene Chemikalien biologisch verfügbar werden und nachteilige Wirkungen erzeugen können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel I.6

  • Abbt-Braun G and Frimmel FH (1996) Interaction of Pesticides with River Sediments and Characterization of Organic Matter of Sediments. In: Sediments and Toxic Substances —Environmental Effects and Ecotoxicity. Eds. Calmano and Förster, Springer Berlin, Heidelberg, 51–89.

    Chapter  Google Scholar 

  • Abe A and Urano K (1994) Influence of chemicals commonly found in a water environ ment on the Salmonella mutagenicity test. Sci. Tot. Environ. 153 (1–2), 169–175

    CAS  Google Scholar 

  • Abe A and Urano K (1996) Characteristics of lethal substances and the removal effect of molecular sulfur in the Salmonella mutagenicity test for river sediments. Mutation Research 351 (1), 61–66

    Article  Google Scholar 

  • Ahlf W (1985) Verhalten sedimentgebundener Schwermetalle in einem Algentestsystem, charakterisiert durch Bioakkumulation und Toxizität. Vom Wasser 65: 183–188

    CAS  Google Scholar 

  • Ahlf W, Calmano W, Erhard J, Förstner U (1989) Comparison of five bioassay techniques for assessing sediment-bound contaminants. Hydrobiologia 188: 285–289.

    Article  Google Scholar 

  • Ahlf W, Dahm M, Förstner U und Wild-Metzko S (1991) Biolgisches Bewertungskonzept für Sedimente. Vom Wasser 76, 215–223

    CAS  Google Scholar 

  • Ahlf W, Gunkel J, LiB W, Neumann-Hensel H, Rönnpagel K, Förstner U (1992) Mikrobielle Biotests mit Sedimenten. In: Biologische Testverfahren. Schr.-Reihe Verein WaBoLu 89: 427–435. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Ahnström G and Erixon K (1973) Radiation induced strand breakage in DNA from mammalien cells. Strand seperationin alkaline solution. Int. J. Radiat. Biol, 23: 285–289

    Article  Google Scholar 

  • Alef K (1991) Methodenhandbuch Bodenmikrobiologie, Aktivitäten, Biomasse, Differenzierung. ecomed, Landsberg / Lech, S. 61 ff.

    Google Scholar 

  • Ali F, Lazar R, Haffner D and Adeli K (1993) Development of a Rapid and Simple Genotoxicity assay using a Brown Bullhead Fish Cell.line Application to Toxicological Surveys of Sediments in teh Huron-erie Corridor. Journal of Great Lake Research 19 (2), 342–351

    Article  CAS  Google Scholar 

  • Alzuet PR, Gaspes E, and Ronco AE (1996) Mutagenicity of enfironmental samples from an industrilized area of the Rio de la Plata estuary using the Salmonella-microsomal assay. Environ. Toxicol. Wat. Qual. 11 (3), 231–236

    Article  Google Scholar 

  • Ames BN, McCann J and Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31:347–364

    Article  CAS  Google Scholar 

  • Anderson RS and Mora LM (1995) Phagocytosis: a Microtiter Plate Assay. In: Techniques in Fish Immunology —Fish Immunology Technical Communications 4 —Immunological and Pathological Techniques of Aquatic Invertebrates. J.S. Stolen, T.C. Fletcher, SA Smith, J.T. Zelikoff, S.L. Kaattari, R.S. Anderson, K. Söderhäll, B.A. WeeksPerkins (eds.). SOS Publications Fair Haven, USA

    Google Scholar 

  • Anderson SL and Wild G (1994) Linking Genotoxic Responses and Reproductive Success in Ecotoxicology. Environ Health Perspect 102 (Suppl. 12): 9–12.

    Article  Google Scholar 

  • Ankley GT, Katko A, Arthur JW (1990) Identification of ammonia as an important sediment-associated toxicant in the lower Fox River and Green Bay, Wisconsin. Environ. Toxicol. Chem. 9: 313–322

    Article  CAS  Google Scholar 

  • Ankley GT, Schubauer-Berigan MK (1995) Background and overview of current sediment toxicity identification evaluation procedures. J Aquatic Ecosystem Health 4:133–149

    Article  Google Scholar 

  • Arambasic M, Bjelic S and Subakov G (1995) Acute Toxicity of Heavy Metals (Copper, Lead, Zinc), Phenol and Sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna St.: Comparative Investigations and the Practical Applications. Wat. Res. 29 (2), pp. 497–503

    Article  CAS  Google Scholar 

  • ASTM (1993a) Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. ASTM Standard E 1367-92, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • ASTM (1994a) Standard guide for conducting sediment toxicity tests with freshwater invertebrates, Annual Book of Standards, Vol. 11.04, E1383-94a, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Balch GC, Metcalfe CD and Huestis SY (1995) Identification of potential fish carcinogens in sediment from Hamilton Harbour, Ontario Canada. Environ. Toxicol. Chem. 14 (1), 79–91

    Article  CAS  Google Scholar 

  • BBA/IVA (1994) International toxicity ring-test on sediment-dwelling Chironomus riparius. Protocol for the toxicity ring-test of two pesticides to the sediment-dwelling larvae of Chironomus riparius.. BBA/IVA ad hoc Working Group on Sediment Toxicity Tests, Braunschweig.

    Google Scholar 

  • Becker DS, Bilyard GR, Ginn TC (1990) Comparisons between sediment bioassays and alterations of benthic macroinvertebrate assemblages at a marine superfund site: Commencement Bay, Washington. Environ. Toxicol. Chem. 9(5): 669–685

    Article  CAS  Google Scholar 

  • Bedard D, Hayton A & Persaud D (1992) Ontario Ministry of the Environment: Laboratory Biological Testing Protocol., Ontario Ministry of the Environment, Toronto.

    Google Scholar 

  • Bengtsson B-E (1978) Use of a harpacticoid copepod in toxicity tests. Mar. Pollut. Bull. 9: 238–241.

    Article  CAS  Google Scholar 

  • Bengtsson B-E (198I) The harpacticoid Nitocra spinipes (Crustacea) as a test organism in brackish water toxicological bioassays. INSERM 106: 421–430.

    Google Scholar 

  • Berglund DL, Eversman S (1988) Flow cytometric measurement of pollutant stress on algal cells.-Cytometry 9: 150–155

    Article  CAS  Google Scholar 

  • Beutler HO (1993) Cholinesterase-Hemmtest. In: Biochemische Methoden zur Schadstofferfassung im Wasser —Möglichkeiten und Grenzen. Hrsg. Fachgruppe Wasserchemie in der GDCh, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Birge WJ, Black JA, Westerman AG and Francis PC (1984) Toxicity of sedimentassociated metals to freshwater organisms: biomonitoring procedures.-In: K.L. Dickson, AW. Maki und W.A Brungs (eds.): Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems. SETAC Special Publication Series, Pergamon Press, New York. 199–218.

    Google Scholar 

  • Blaise C, Legault R, Bermingham N, van Coillie R, Vasseur P (1986) A simple microplate alga assay technique for aquatic toxicity assessment. Tox. Assess. 1: 261–281

    Article  CAS  Google Scholar 

  • Block M (1991) Distribution of cadmium in an octanol/water system in the presence of xanthates and dietyldithiocarbamate. Environ. Toxicol. Chem. 10(10): 1267–1272

    Article  CAS  Google Scholar 

  • Blum DJ, Speece RE (1991) Quantitative structutre-activity relationships for chemical toxicity to environmental bacteria. Ecotox. Environ. Safety 22: 198–224

    Article  CAS  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83: 14–19.

    Article  Google Scholar 

  • Bordin, G., Cordeiro-Raposo, F., McCourt, J. and Rosa-Rodiguez, A. (1994) Occurence of metallothioneine-like metal binding proteins in the marine bivalve Macoma baltica, Comptes Rendus de l’ Academie des Sciences Series III. 317/12, 1057–1064.

    Google Scholar 

  • Bowmer CT (1993) Method for the assessment of acute toxicity of contaminated sediment using the burrowing sea urchin Echinocardium cordatum. Test guideline for PARCOM sediment reworker ring test, TNO-IMW, Delft, The Netherlands.

    Google Scholar 

  • Breteler RJ, Scott KJ & Shepherd SP (1989) Application of a new sediment toxicity test using a marine amphipod Ampelisca abdita to San Francisco Bay sediments. In American Society for Testing and Materials (ed.), Aquatic toxicology and hazard assessment, 12th Symposium, ASTM STP 1027, Philadelphia: 307–314.

    Google Scholar 

  • Bringmann G; Kühn R (1980): Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14: 231–241

    Article  CAS  Google Scholar 

  • Buikema AL & Cairns J (1980) Aquatic invertebrate bioassays. American Society for Testing and Materials, Philadelphia, ASTM STP 715, 209 pp.

    Google Scholar 

  • Buikema AL Jr., Niederlehner BR & Cairns J Jr. (1980) Use of grass shrimp in toxicity tests. In A. L. Buikema & J. Jr. Cairns (eds.), Aquatic invertebrate bioassays, American Society for Testing and Materials, Philadelphia, ASTM 715: 155–173.

    Chapter  Google Scholar 

  • Burgess RM & Morrison GE (1994) A short-exposure sublethal sediment toxicity test using the marine bivalve Mulinia lateralis: statistical design and comparative sensitivity. Environ. Toxicol. Chem. 13: 571–580.

    CAS  Google Scholar 

  • Burton G (1991) Assessing the Toxicity of Freshwater Sediments. Environ. Toxicol. Chem., 10, pp. 1585–1627

    Article  CAS  Google Scholar 

  • Burton G (1992) Plankton, Macrophyte, Fish and Amphibian Toxicity Testing of Freshwater Sediments. In: Sediment Toxicity Assessment, G. Burton, Ed. Lewis Publishers, Chelsea, pp. 167–182

    Google Scholar 

  • Burton GA (1989) Evaluation of seven sediment toxicity tests and their relationship to stream parameters. Tox. Ass.: Internat. J. Vol. 4 pp 149–159.

    Article  CAS  Google Scholar 

  • Burton GA Jr (1991) Assessing the toxicity of freshwater sediments. Environ. Toxicol. Chem. 10(12): 1585–1627.

    Article  CAS  Google Scholar 

  • Burton GA Jr, Burnett L, Henry M, Klaine S, Landrum P, Swift M (1990) A multi-assay comparison of sediment toxicity at three „Areas of Concern,“-Abstracts, 11. Annual Meeting, SETAC, November 11–15, Arlington, VA: 53

    Google Scholar 

  • Burton GA Jr., Stemmer BL (1988) Evaluation of surrogate tests in toxicant impact assessments. Toxicity Assessment: An International Journal 3. 255–269.

    Article  CAS  Google Scholar 

  • Burton GA, Lanza GR (1987) Aquatic microbial activity and macrofaunal profiles of an oklahoma stream. Wat. Res. Vol. 21 (10) pp. 1173–1182

    Article  CAS  Google Scholar 

  • Burton GA, Nelson MK & Ingersoll CG (1992) Freshwater benthic toxicity tests. In G. A. Burton (ed.), Sediment Toxicity Assessment, Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo: 213–240.

    Google Scholar 

  • Byl T and Klaine S (1991) Peroxidase Activity as an Indicator of Sublethal Stress in the Aquatic Plant Hydrilla verticillata (Royle). In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 101–106

    Chapter  Google Scholar 

  • Byl T, Sutton H and Klaine S (1994) Evaluation of Peroxidase as a Biochemical Indicator of Toxic Chemical Exposure in the Aquatic Plant Hydrilla verticillata, Royle. Environ. Toxicol. Chem. 13 (3), pp. 509–515

    CAS  Google Scholar 

  • Cairns J Jr. & Pratt JR (1993) A history of biological monitoring using benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (eds.), Freshwater biomonitoring and benthic macroinvertebrates, Chapman and Hall, New York: 10–27.

    Google Scholar 

  • Cairns MA, Nebeker AV, Gakstatter JH & Griffis W (1984) Toxicity of copper-spiked sediments to freshwater invertebrates. Environ. Toxicol. Chem. 3: 435–446.

    Article  CAS  Google Scholar 

  • Carlson AR, Phipps GL, Mattson VR, Kosian PA & Cotter AM (1991) The role of acidvolatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. Environ. Toxicol. Chem. 10: 1309–1319.

    Article  CAS  Google Scholar 

  • Carpenter SR (1988) Complex interactions in lake communities. Springer Verlag, New York.

    Book  Google Scholar 

  • Carr RS, William JW & Fragata CTB (1989) Development and evaluation of a novel marine sediment pore water toxicity test with the polychaete Dinophilus gyrociliatus. Environ. Toxicol. Chem. 8: 533–543.

    Article  CAS  Google Scholar 

  • Carr RS, Williams JW & Fragata CTB (1986) Development and evaluation of a novel marine sediment pore water toxicity test with the polychaete Dinophilus gyrociliatus for use in short-term life-cycle toxicity tests. Environ. Toxicol. Chem. 5: 703–712.

    CAS  Google Scholar 

  • Casper S und Krausch H-D (1980) Pteridophyta und Anthophyta, in: Süβwasserflora von Mitteleuropa, Bd. 23, Hrsg. Ettl, H., Gerlofff, J. und Heynig, H. Gustav Fischer Verlag, Stuttgart, New York

    Google Scholar 

  • Chapman PM & Brinkhurst RO (1984) Lethal and sublethal tolerances of aquatic oligochaetes with reference to their use as a biotic index of pollution. Hydrobiologia 115: 139–144.

    Article  CAS  Google Scholar 

  • Chapman PM & Fink R (1984) Effects of Puget sound sediments and their elutriates on the life cycle of Capitella capitata. Bull. Environ. Contam. Toxicol. 33: 451–459.

    Article  CAS  Google Scholar 

  • Chapman PM (1987) Oligochaete respiration as a measure of sediment toxicity in Puget Sound, Washington. Hydrobiologia 155: 249–258.

    Article  CAS  Google Scholar 

  • Chapman PM, Farrell MA & Brinkhurst RO (1982a) Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology 2: 47–67.

    Article  CAS  Google Scholar 

  • Chapman PM, Farrell MA & Brinkhurst RO (1982b) Relative tolerances of selected aquatic oligochaetes to combinations of pollutants and environmental factors. Aquatic Toxicology 2: 69–78.

    Article  CAS  Google Scholar 

  • Chapman PM, Vigers GA, Farrell MA, Dexter RN, Quinlan EA, Kocan RM & Landolt ML (1982c) Survey of biological effects of toxicants upon Puget Sound biota. I. Broadscale toxicity survey. NOAA Tech. Memo. OMPA-25: 1–25.

    Google Scholar 

  • Chrost RJ (1991) Microbial Enzymes in Aquatic Environments. Springer Verlag New York

    Book  Google Scholar 

  • Chrost RJ (1992) Significance of bacterial ectoenzyme in aquatic environments. Hydrobiologia 243/4, pp 61–70.

    Article  Google Scholar 

  • Clark JR, Goodman LR, Borthwick PW, Patrick JM Jr., Gripe GM, Moody PM, Moore JC & Lores EM (1989) Toxicity of pyrethroids to marine invertebrates and fish: a literature review and test results with sediment-sorbed chemicals. Environ. Toxicol. Chem. 8: 393–401.

    Article  CAS  Google Scholar 

  • Cook C (1974) Water Plants ofthe World, Dr. W. Junk b.v. Publishers, The Hague

    Google Scholar 

  • Coquery M and Welbourn M (1995) The Relationship Between Metal Concentration and Organic Matter in Sediments and Metal Concentration in the Aquatic Macrophyte Ericocau on septangulare. Wat. Res. 29 (9), pp. 2094–2102

    CAS  Google Scholar 

  • Coull BC & Chandler GT (1992) Pollution and meiofauna: Field, laboratory and mesocosm studies. Ocean. Mar. Biol. Ann. Rev. 30: 191–271.

    Google Scholar 

  • Crane M, Everts J, van de Guchte C, Heimbach F, Hill I, Mathiessen P and Stronkhorst J (1996) Research needs in sediment bioassay and toxicity testing. In: Development and Progress in Sediment Qaulity Assessment: Rationale, Challenges, Techniques & Strategies. SPB Academic Publishing bv, Amsterdam. 49–56.

    Google Scholar 

  • Crane M, Fleming R, Byron N, van de Guchte K, Grootelar L, Smaal A, Holwerda D, Cooise B, Ciarelli S, Karbe L, Westendorf J, Guerra M, Vale C, Castro O, Gaudencio MJ & van der Hurk P (1993) Sediment tests for poorly water-soluble substances. Report to the European Commission, Report EC330.

    Google Scholar 

  • Da Silva de Assis HC (1998) Der Einsatz von Biomarkern zur summarischen Erfassung von Gewlässerverschmutzungen. Dissertation, Technische Universität Berlin, FB 7, Berlin, Curitiba (Brazil), 1998, 36–39.

    Google Scholar 

  • Dave G, Bjornestad E, Efraimsen H & Tarkpea M (1993) Precision of the Nitocra spinipes acute toxicity test and the effect of salinity on toxicity of the reference toxicant potassium bichromate. Environ.Toxicol.WaterQuality 8: 271–277.

    Article  CAS  Google Scholar 

  • Dawson DA, Stebler EF, Burks SL and Bantle (1988) Evaluation of the developmental toxicity of metal-contaminated sediments using short-term fathead minnow and frog embryo-larval assay. Environmental Toxicology and Chemistry. 7, 27–34.

    Article  CAS  Google Scholar 

  • De Marini DM and Brooks HG (1992) Induction of prophage lambda by chlorinated organics: Detection of some single species/single site carcinogens. Environ. Mol. Mutagen. 19, 98–111

    Article  Google Scholar 

  • Deventer K (1996) Detection of Genotoxic Effects on Cells of Liver and Gills of B. rerio by Means of Single Cell Gel Electrophoresis. Bull.Environ.Contam.Toxicol. 56, 911–918

    Article  CAS  Google Scholar 

  • Dickson KL, Maki AW & Brungs WA (1984) Fate and effects of sediment-bound chemicals in aquatic systems. Pergamon Press, New York.

    Google Scholar 

  • Dillon TM, Moore DW & Gibson AB (1993) Development of a chronic sublethal bioassay for evaluating contaminated sediment with the marine polychaete Nereis (Neanthes) arenaceodentata. Environ. Toxicol. Chem. 12: 589–605.

    CAS  Google Scholar 

  • DiToro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM & Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ. Toxicol.Chem. 11: 1487–1502.

    Article  Google Scholar 

  • DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pawlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for estabilishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10: 1541–1583

    Article  CAS  Google Scholar 

  • Ditton HJ und Erdingern L (1994) Untersuchung mutagener und genotoxischer Umwelteinflüsse. BIOforum 17, 350–355

    CAS  Google Scholar 

  • Donelly DC, Brown DW and Scott BR (1987) Chemical and biological characterization of hazardous industrial waste. II. Eukaryotic bioassay of a wood-prserving bottom sediment. Mutation research, 180 (1), 43–53

    Article  Google Scholar 

  • Donnelly KC, Thomas JC and Brown KW (1995) Mutagenic Potential of Environmental Samples before and after Remediation of a Solvent-contaminated Site. Environ. Toxicol. Chem. 14 (8), 1281–1286

    Article  CAS  Google Scholar 

  • Doust L, Doust J und Biernacki M (1994) American Wildcelery, Vallisneria americana, as a Biomonitor of Organic Contaminants in Aquatic Ecosystems. J. Great Lakes Res. 20 (2), pp. 333–354

    Article  CAS  Google Scholar 

  • Duke J (1983) Handbook of Energy Crops, unpublished

    Google Scholar 

  • Dutka BJ, Marsalek J, Jurkovic J. McInnis R and Kwan KK (1994) A seasonal Ecotoxicological Study of Stormwater Ponds. Zeitschrift für angewandte Zoologie 80 (3), 361–381

    Google Scholar 

  • Dutka BJ, McInnis R Jurkovic A, Liu D and Castillo G (1996) Water and sediment ecotoxicity studies in Temuco and Rapel River Basin, Chile. Environ. Toxicol. Wat. Qual. 11 (3), 237–247

    Article  CAS  Google Scholar 

  • Dutka BJ, Teichgräber K and Lifshitz R (1995) A modified SOS-Chromotest Procedure to test for Genotoxicity and Cytotoxicity in Sediments directly without Extraction. Chemospere 31, 5: 3273–3289

    Article  CAS  Google Scholar 

  • Environment Canada (1992) Biological test method: acute test for sediment toxicity using marine or estuarine amphipods. Report EPS 1/RM/26. Environment Canada, Ottawa

    Google Scholar 

  • Environment Canada (1992) Test of Larval Growth and Survival Using Fathead Minnows. Environmental Protection, Conservation and Protection, Environment Canada, Report EPS 1/RM/22. 70 pp.

    Google Scholar 

  • Environment Canada (1995) Guidance Document on Measurement of Toxicity Test Precision Using Control Sediments Spiked with a Reference Toxicant. Environmental Protection, Conservation and Protection, Environment Canada, Report EPS 1/RM/30. 56 pp.

    Google Scholar 

  • Erbes M, Weβler A, Obst U and Wild A (1997) Detection of primary DNA damage in Chlamydomonas reinhardtii by means of modified microgel electrophoresis. Environ. Mol.. Mutagenesis 30, 448–458

    Article  CAS  Google Scholar 

  • Esser L (1994) Echinochloa crus —galli. In Fisher, W., compiler. The Fire Effects Information System (Data Base). Missoula, MT: U:S. Department of Agriculture, Forest Service, Intermountain Research Station. Http://www.fs.fed.us/database/feis/ plants/graminoidlechcru/introductory/html

    Google Scholar 

  • Ettajani H, Amiard-Triquet C, Jeant AY and Amiard JC (1996) Fate and effects of soluble or sediment-bound arsenic in oysters (Crassostrea gigas Thun.). Arch. Environ. Contam. Toxicol. 31/1, 38–46.

    Article  Google Scholar 

  • Faisal M and Ahne W (1990) A cell line (CLC) of adherent peripheral blood mononuclear leucocytes of normal common carp Cyprinus carpio. Dev. Compo Immunol. 14: 255–260.

    Article  CAS  Google Scholar 

  • Faisal M, Sami S and Rutan BJ (1992 ) Fish cell lines of leucocytic origin: maintenance and characterization, p. 35-58. In: Techniques in fish immunology. Fish Immunology Technical Communications 2 (Stolen, J.S., Fletcher, T.C., Anderson, D.P., Kaattari, S.L., Rowley, AF. eds.). SOS publications, Fair Haven, USA

    Google Scholar 

  • Faisal M, Weeks BA, Vogelbein WK and Huggett RJ (1991) Evidence of aberration of the natural cytotoxic cell activity in Fundulus heteroclitus (Pisces: Cyprinodontidae) from the Elizabeth River, Virginia. Vet. Immunol. Immunpatholo. 29, 3–4, 339–351.

    Article  CAS  Google Scholar 

  • Fenchel T (1992) What can ecologists learn from microbes: life beneath a square centimetre of sediment surface.-Funct. Ecol. 6: 499–507

    Article  Google Scholar 

  • Fitzwater SE, Knauer GA, Martin JH (1983) The effects of Cu on the adenyl charge of open ocean phytoplankton. J. Plankt. Res. 5: 935–938

    Article  CAS  Google Scholar 

  • Fleming W, Ailstock M, Momot J, and Norman C (1991) Response of Sago Pondweed, a Submerged Aquatic Macrophyte, to Herbicides in Three Laboratory Culture Systems. In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 267–275

    Chapter  Google Scholar 

  • Fletcher J (1991) Keynote Speech: A Brief Overview of Plant Toxicity Testing. In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 5–11

    Chapter  Google Scholar 

  • Folsom B and Price R (1991) A Plant Bioassay for Assessing Plant Uptake of Contaminants from Freshwater Soils or Dredged Material. In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 172–177

    Chapter  Google Scholar 

  • Förstner U, Ahlf W, Calmano W (1989) Studies on the transfer of heavy metals between sedimentary phases with a multichamber device: combined effects of salinity and redox variation. Mar. Chem. 28: 145–158

    Article  Google Scholar 

  • Fort W, Henschler D, Rummel W (1984) Allgemeine und spezielle Pharmakologie und Toxikologie. 4. Auflage. BI Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Francis PC, Birge WJ and Black JA (1984) Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages. —Ecotoxicology and Environmental Safety 8, 378–387.

    Article  CAS  Google Scholar 

  • Franklin FL (1983) Laboratory tests as a basis for the control of sewage sludge dumping at sea. Mar. Poll. Bull. 14: 217–223.

    Article  CAS  Google Scholar 

  • Fretwurst S und Ahlf W (1996) Modifikation des umu-Testes zum Nachweis gentoxischer und cytotoxischer Wirkungen von feststoffassoziierten Umweltchemikalien. Vom Wasser, 86: 353–361

    CAS  Google Scholar 

  • Gagné F and Blaise C (1995) Evaluation of the genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes. Environ. Toxicol. Wat. Qual. 10 (3), 217–229

    Article  Google Scholar 

  • Gagné F and Blaise C (1995) Evaluation of the genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes. Environmental Toxicology and Water Quality. 10/3, 217–229.

    Article  Google Scholar 

  • Gagné F and Blaise C (1997) Evaluation of cell viability, mixed function oxidase activity, metallothionein induction and genotoxicity in rainbow trout hepatocyte model for ecotoxicity testing of industrial wastewater. Environmental Toxicology and Water Quality. 12, 4, 305–314.

    Article  Google Scholar 

  • Gagne F, Blaise C and Bermingham N (1996) Lethal and sublethal effects of marine sediment extracts on rainbow trout hepatocytes. Toxicol. Lett. 87 (2–3), 85–92

    Article  CAS  Google Scholar 

  • Gagne F, Trottier S, Blaise C, Sproull J and Ernst B (1995) Genotoxicity of sediment extracts obtained in the vicinity of a creosote-treated wharf to rainbow trout hepatocytes. Toxicol. Lett. 78 (3), 175–182

    Article  CAS  Google Scholar 

  • Giesy JP & Hoke RA (1989) Freshwater sediment toxicity bioassessment: Rationale for species selection and test design. J. Great Lakes Res. 15: 539–569.

    Article  CAS  Google Scholar 

  • Giesy JP, Graney RL, Newsted JL, Rosiu CJ, Benda A, Kreis RG Jr. & Horvath FJ (1988). Comparison of three sediment bioassay methods using Detroit River sediments. Environ. Toxicol. Chem. 7: 483–498.

    Article  CAS  Google Scholar 

  • Giesy JP, Hoke RA (1990) Freshwater sediment quality criteria toxicity assessment-In: R. Baudo, J. Giesy u. H. Muntau (Hrsg.) Sediments: Chemistry and Toxicity of In-Place Pollutants. Lewis Publishers, Boca Raton, FL: 265–348

    Google Scholar 

  • Giesy JP, Rosiu CJ, Graney RL & Henry MG (1990) Benthic invertebrate bioassays with toxic sediment and pore water. Environ. Toxicol. Chem. 9: 233–248.

    Article  CAS  Google Scholar 

  • Giesy JP, Rosiu CJ, Graney RL, Newsted JL, Benda A, Kreis RG, Horvath FJ (1988) Toxicity of Detroit River sediment interstitial water to the bacterium Photobacterium phosphoreum. J. Great Lakes Res. 14(4): 502–513

    Article  Google Scholar 

  • Ginet A (1996) Corrélations entre différents Biomarqueurs (Immunocompétence et Réserves Énergétiques) pour évaluer le Degré de Sensibilité de Mya arenaria exposée à une Pollution diffuse et multiple dans le Fjord du Saguenay.-M. Sc. thesis, Université du Québec à Rimouski.

    Google Scholar 

  • Gossiaux DC, Landrum PF & Tsymbal VN (1993) A survey of Saginaw River and Saginaw Bay, Lake Huron, sediments using two bioassays with the amphipod Diporeia spp.. J. Great Lakes Res. 19: 322–332.

    Article  CAS  Google Scholar 

  • Green AS, Chandler GT & Blood ER (1993) Aqueos-, pore-water-, and sediment-phase cadmium: Toxicity relationships for a meiobenthic copepod. Environ.Toxicol.Chem. 12: 1497–1506.

    Article  CAS  Google Scholar 

  • Green DWJ, Williams KA & Pascoe D (1986) The acute and chronic toxicity of cadmium to different life history stages of the freshwater crustacean Asellus aquaticus L.. Arch. Environ. Contamin. Toxicol. 15: 465–471.

    Article  CAS  Google Scholar 

  • Greger M and Kautsky L (1991) Effects of Cu, Pb and Zn on Two Potamogeton Species Grown under Field Conditions. Vegetatio 97, pp. 173–184

    Article  Google Scholar 

  • Griscom SB, Fisher NS, Luoma SN (2000) Geochemical influences on assimilation of sediment-bound metals in clams and mussels. Environ. Sci. Technol. 34: 91–99

    Article  CAS  Google Scholar 

  • Gunkel J (1993) Optimierung einer Biotest-Kombination zur ökotoxfkologischen Beurteilung organisch kontaminierter Böden. Dissertation, TU Hamburg-Harburg

    Google Scholar 

  • Gupta M and Chandra P (1996) Bioaccumulation and Physiological Changes in Hyrilla verticillata (l.f.) Royle in Response to Mercury. Bull. Environ. Contam. Toxicol. 56, pp. 319–326

    Article  CAS  Google Scholar 

  • Hansen P-D (1980) Uptake and transfer of the chlorinated hydrocarbon Lindane (γ-HCH) in a laboratory freshwater food chain. Environm. Pollution (Series A), 21, 97–108

    Article  CAS  Google Scholar 

  • Hansen P-D (1988) Wirkungsbezogene Biotestverfahren —Gefährliche Stoffe —Qualitätsziele zum Schutz oberirdischer Gewässer. Vom Wasser, Bd. 70, 187–196.

    CAS  Google Scholar 

  • Hansen P-D (1992) Suborganismische Testverfahren: Anwendungsbereich und Bewertungsfrage. In: Biologische Testverfahren. Hrsg. K.G. Steinhäuser und P.-D. Hansen, Schriftenreihe des Vereins für Wasser-, Boden-und Lufthygiene, Bd. 89, 705–720. Gustav Fischer Verlag, Stuttgart, New York.

    Google Scholar 

  • Hansen P-D (1993a) Enzymatische Verfahren zur Erfassung der Biotransformation (Entgiftungsaktivität) in der Fischleber —ein Beitrag zum biologischen Effektsmonitoring. In: Biochemische Methoden zur Schadstofferfassung im Wasser —Möglichkeiten und Grenzen. Hrsg. Fachgruppe Wasserchemie in der GDCh, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Hansen P-D (1993b) Schadstoffwirkungen auf das Immunsystem. In: Biochemische Methoden zur Schadstofferfassung im Wasser —Möglichkeiten und Grenzen. Hrsg. Fachgruppe Wasserchemie in der GDCh, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Hansen P-D (1995) Ökotoxikologische Bewertung von Sedimenten —am Beispiel der Elbe. In: Belastung der Elbe und ihrer Nebenflüsse mit organischen Schadstoffen. Hrsg. Internat ionale Kommission zum Schutz der Elbe, Arbeitsgruppe F, Elbeforschung. GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht 315–318.

    Google Scholar 

  • Hansen P-D (1995a) Assessment of Ecosystem Health: Development of Tools and Approaches. —In: Evaluating and Monitoring the Health of Large-Scale Ecosystems. Edited by Rapport, D., Gaudet, C. and Calow, P., Series I: Global Environmental Change, Vol. 28. Springer-Verlag Berlin, Heidelberg, New York, 195–217.

    Chapter  Google Scholar 

  • Hansen P-D (l995b) The Potential and Limitations of New Technical Approaches to Ecotoxicology Monitoring.-In: Environmental Toxicology Assessment. Edited by Mervyn Richardson, Taylor & Francis, London, 13–28.

    Google Scholar 

  • Hansen P-D (1996) Bioassays on Sediment Toxicity. In: Sediments and Toxic Substances-Environmental Effects and Ecotoxicity. Eds. Calmano and Förster, Springer Berlin, Heidelberg, 179–196.

    Chapter  Google Scholar 

  • Hansen P-D (1996) Grenzwerte und Zielvorgaben.-In: Gewässergütekriterien, Deutsche Forschungsgemeinschaft —Senatskommission für Wasserforschung, Mitteilung 13. Hrsg. H. Frimmel, VCH Verlag, Weinheim, 7–26.

    Google Scholar 

  • Hansen P-D and Herbert, A. (1997) Small scale in vitro Genotoxicity Tests for Bacteria and Invertebrates. In: P.G. Wells, K. Lee and C. Blaise (eds.) Microscale Aquatic Toxicology —Advances, Techniques and Practice. CRC Lewis Publishers, Florida

    Google Scholar 

  • Hansen P-D und Pluta H-J (1994) Entgiftungsaktivität in Fischen des Wattenmeeres.-In: Warnsignale aus dem Wattenmeer. Hrsg. Lozán, J.L., Rachor, E., Reise, K., v. Westernhagen, H. u. Lenz, W., Blackwell Wissenschafts-Verlag, Berlin 1994, 241–244

    Google Scholar 

  • Hansen P-D, Bock R and Brauer F (1991) Investigations of phagocytosis concerning the immunological defence mechanism of Mytilus edulis using a sublethal luminescent bacterial assay (Photobacterium phosphoreum). Compo Biochem. Physiol. Vol. 100C, No 1/2, 129–132.

    Article  Google Scholar 

  • Hansen P-D, Dizer H und da Silva de Assis HC (1998a) Gentoxizität von belasteten Sedimenten, Muscheln und Fischen der Ostsee. In: Hrsg. V. Dethlefsen, Arbeiten des Deutschen Fischerei-Verbandes, Belastung der Ostsee und Fischerei. Deutscher Fischerei-Verband e.V., Hamburg.

    Google Scholar 

  • Hansen P-D, Dizer H, Duis K, Krumbeck H and Herbert A (1997) Biochemical and Cellular Markers of Immunotoxicity and Genotoxicity for the Assessment of Ecosystem Health in the Marine Environment. In: P. Garrigues (ed.) Biomarkers in Marine Organisms, A Practical Approach, Elsevier Science, New York

    Google Scholar 

  • Hansen P-D, Dizer H, Hock B, Marx A, Sherry J, McMaster M and Blaise Ch (1998a) Vitellogenin —a Biomarker for Endocrine Disruptors. In: Biosensors for Environmental Diagnostics —Eds. Hock, Barceló, Cammann, Hansen, Turner, B.G. Teubner Verlags-gesellschaft, Stuttgart, Leipzig 1998, 253–261

    Chapter  Google Scholar 

  • Hansen P-D, Dizer H, Hock B, Marx A, Sherry J, McMaster M and Blaise Ch (1998c). Vitellogenin —a biomarker for endocrine disruptors. trends in analytical chemistry, 17, 7, 448–451

    Article  CAS  Google Scholar 

  • Hantge E (1992) Gentoxische Tets bei der Gewässer-und Einleiterüberwachung. Wasser + Boden 3/92, 118–123

    Google Scholar 

  • Harkey GA, Landrum PF, Klaine SJ (1994) Comparison of whole sediment, elutriate and porewater exposures for use in assessing sediment associated organic contaminants in bioassays. Environ. Toxicol. Chem. 13(8): 1315–1329

    Article  CAS  Google Scholar 

  • Hasspieler BM, Ali FN, Alipour M, Haffner GD and Adeli K (1995) Human bioassays to assess environmental genotoxicity: development of a DNA break bioassay in HepG2 cells. Clin. Biochem., 28 (2), 113–116

    Article  CAS  Google Scholar 

  • Heininger P, Claus E, Pelzer J, Tippmann P (1997) Representative studies for trend considerations in river sediment contamination. Water Sci. Technol. (zur Veröffentlichung. eingereicht)

    Google Scholar 

  • Heininger P, Pelzer J, Claus E, Tippmann P (1998) Contamination and toxicity trends for sediments —case ofthe Elbe river. Wat.Sci.Tech, Vol. 37 Nr. 6–7, pp 95–102

    Article  CAS  Google Scholar 

  • Heininger P, Tippmann P (1995) Determination of enzymatic activities for the characterization of sediments. Tox. and Environm. Chem. Vol. 52 pp 25–33.

    Article  CAS  Google Scholar 

  • Heininger P, Tippmann P (1999) Sedimentbewertung auf der Grundlage mikrobieller Enzymaktivitäten. Tagungsband Sedimentsymposium „Sediment Assessment in European River Basins“, BfG, Berlin

    Google Scholar 

  • Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science Publishers, London and New York.

    Book  Google Scholar 

  • Helma C, Knasmüller S und Schulte-Hermann R (1994) Biologische Tests zur Prüfung der Gentoxizität: Einsatzmöglichkeiten zur Verfahrensoptimierung und Emissionskontrolle. In: ECO-Informa-94 Bd. 9: Abfallwirtschaft, Polymere und Umwelt, Textilien —Umwelt und Gesundheit, Umwelttoxikologie und Umwelthygiene, Karzinogenese durch Umweltchemiklien, Flüchtige organische Luftschadtstoffe. ECOinforma 9, 497–511

    CAS  Google Scholar 

  • Herbert A and Hansen P-D (1997) Genotoxicity in fish eggs/embryos. In: Microscale Aquatic Toxicology —Advances, Techniques and Practice —Eds. P.G. Wells, K. Lee and C. Blaise, CRC Lewis Publishers, Florida.

    Google Scholar 

  • Herbert A und Hansen PD (1992) Erfassung des erbgutverändernden Potentials von Gewässem durch Messung von DNS-Schäden mittels alkalischer Denaturierungs-verfahren. In: K. Steinhäuser und P.-D. Hansen (eds.) Schriftenreihe Wasser-, Boden-und Lufthygiene, Bd. 89, Gustav Fischer Verlag; Stuttgart, Jena, New York

    Google Scholar 

  • Herbert A, Krumbeck H, Da Silva de Assis H, Giesy J and Hansen P-D (1997) A Miniaturized DNA Unwinding/HAP ‚Batch ‘Elution Assay for Large-Scale DNA Damage Monitoring in Aquatic Organisms. Environmental Science and Pollution Research

    Google Scholar 

  • Herbert RA (1990) Methods for enumerating microorganisms and dertermining biomass in natural environments. In: methods in Microbiology, Vol. 22. R. Grigorova u. J. R. Norris (Hrsg.) Academic Press, San Diego, S. 1–39

    Google Scholar 

  • Hermens J, Busser F, Leeuwangh P, Musch A (1985) Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: The Microtox test. Ecotoxicol. Environ. Safety 9: 17–25

    Article  CAS  Google Scholar 

  • Hill I, Matthiessen P and Heimbach F, Eds. (1993) Guidance Document on Sediment Toxicity Tests and Bioassays for Freshwater and Marine Environments. From the „Workshop On Sediment Toxicity Assessment“ held at Slot Moermond Congrescentrum Renesse, The Netherlands, 8–10 November 1993

    Google Scholar 

  • Hill IR, Matthiessen P & Heimbach F. (1993) Guidance document on sediment toxicitiy tests and bioassays for freshwater and marine environments. Society of Environmental Toxicology and Chemistry (SETAC-Europe), c/o ZENECA Agrochemicals, Berkshire U.K.

    Google Scholar 

  • Hinman M (1989) Utility of Rooted Aquatic Vascular Plants for Aqautic Sediment Hazard Evaluation: I. Evaluation of Hydrilla verticillata Royle as a Sediment Toxicity Bioassay Organism to Selected Aqautic Pollutants; II. Evaluation and Utility of a Rooted Aqautic Macrophyte Toxicity Bioassay for Sediments; III. Uptake and Translokation of Selected Organic Pesticides by the Rooted Aqautic Plant Hydrilla verticillata Royle. Dissertation, Memphis State University

    Google Scholar 

  • Hoke RA, Jones PD, Maccubin AE, Zabik MJ and Giesey JP (1994) Use of in vitro microbial assays of sediment extracts to detect and quantify contaminants with similar modes of action. Chemosphere 28 (1), 169–181

    Article  CAS  Google Scholar 

  • Hollert H und Braunbeck T (1997) Cytotoxizitätsuntersuchungen an Wasser-und Sedimentproben vom Fluβ Le An (VR China). In: Ökotoxikologie in vitro —Gefährdung-spotential in Wasser, Sediment und Schwebstoffen. Landesanstalt für Umweltschutz Baden-Württemberg, Projekt „Angewandte Ökologie“ Förderkennzeichen PAÖ 9418.02, Karlsruhe. 133–138.

    Google Scholar 

  • Hörnström E (1990). Toxicity test with algae —A discussionon the batch method. Ecotoxicol. Environ. Saf. 20: 343–353

    Article  Google Scholar 

  • Hose JE (1994) Large-scale Genotoxicity Assessments in the Marine Environment. Environ. Health Perspectives 102, 29–32

    Article  Google Scholar 

  • Hubbard D (1973) Gräser, Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Hubbard SA, Green MHL, Gatehouse D and Bridges JW (1984) The Fluctuation Test in Bacteria. p. 141–160. In: BJ. Kilbey, M. Legator, W. Nichols, and: Ramel (eds.), Handbook of Mutagenicity Testing (second edition). ElsevierScience, New York

    Google Scholar 

  • Hughes JB, Hebert AT (1991) erythrocyte micronuclei in winter flounder (Pseudopleuronectes americanus): results of field surveys during 1980–1988 from Virginia to Nova Scotia and in Long Island Sound. Arch. Environ. Contam. Toxicol. 20, 474–479

    Article  CAS  Google Scholar 

  • Ianuzzi TJ, Bonnevie NL, Huntley SL, Wenning RJ, Truchon SP, Tull JD, Sheehan P (1995) Comments on the use of equilibrium partitioning to establish sediment quality criteria for nonionic chemicals. Environ. Toxicol. Chem. 14(8): 1557–1559

    Article  Google Scholar 

  • ICH-Guideline (1997) European Agency for the Evaluation of Medical Products —Human Medicines Evaluation Unit: Note for Guidance on gneotoxicity: A Standard Test battery for Genotoxicity Testing of Pharmaceuticals. CPMP/ICH 174/95

    Google Scholar 

  • Idestam-Almquist J and Kautsky L (1995) Plastic Responses in Morphology of Potamogeton pectinatus L. to Sediment and Above-Sediment Conditions at Two Sites in the Northern Baltic Proper. Aquatic Botany, 52, pp. 205–216

    Article  Google Scholar 

  • IJC (1988) Procedures for the assessment of contaminated sediment problems in the Great Lakes. Report for the Great Lakes Quality Board Sediment Subcommittee, International Joint Commission, Windsor (Ontario). In: Hrsg. J.L. Lozán, E. Rachor, K. Reise, H. v. Westernhagen und W. Lenz, Warnsignale aus dem Wattenmeer, Blackwell Wissenschafts-Verlag, Berlin, Oxford, Edinburgh, Boston, London, Melbourne, Paris, Wien, Yokohama, 241-244.

    Google Scholar 

  • Ingersoll CG, Nelson MK (1990) Testing sediment toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera). In: Landis W, van der Schalie WH (Hrsg.) Aquatic Toxicology and Risk Assessment, 13. Volume. ASTM STP 1096, American Society for Testing and materials, Philadelphia, PA: 93–109

    Google Scholar 

  • Internationale Kommission zum Schutz der Elbe, Arbeitsgruppe F, Elbeforschung. GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht. 315–3I8.

    Google Scholar 

  • Jarvis AS, Honeycutt ME, McFarland VA, Bulich AA and Bounds HC (1996) A Comparison of the AMES Assay and Mutatox in Assessing the Mutagenic Potential of Contaminated Sediment. Ecotox. Environ. Saf. 33: 193–200

    Article  CAS  Google Scholar 

  • Jenner H and Janssen-Mommen J (1993) Duckweed Lemna minor as a Tool for Testing Toxicity of Coal Residues and Polluted Sediments. Arch.Environ.Contam.Toxicol. 25, pp. 3–11

    Article  CAS  Google Scholar 

  • Johns DM, Pastorok RA & Ginn TC (1991) A sublethal sediment toxicity test using juvenile Neanthes sp. (Polychaete: Nereidae). In M. A. Mayes & B. G. Barron (eds.), Aquatic toxicology and hazard assessment, Fourteenth Volume, American Society for Testing and Materials, Philadelphia, ASTM STP 1124: 280–293.

    Chapter  Google Scholar 

  • Johnson BT (1991) Potential Mutagenicity of Great Lakes USA Sediment Extracts tested with Mutatox using Catfish and Rat Hepatic S9 Activation. Abst. Gen. Meet. Am. Soc. Microbiol. 91, 322

    Google Scholar 

  • Jones RA & Lee GF (1978) Evaluation of the elutriate test as a method of predicting contaminant release during open water disposal of dredged sediment and environmental impact of open water dredged material disposal, Vol. 1, Tech. Rep. D78-45, U.S. Army Engineer Waterways Experiment Station, Vicksburg (MI).

    Google Scholar 

  • Kaiser KLE, Esterby SR (1991) Regression and cluster analysis of the acute toxicity of 267 chemicals to six species of biota and the octanol/water partition coefficient. Sci. Tot. Environ. 109/110: 499–514

    Article  Google Scholar 

  • Kamman U (1995) Metallothioneine und polychlorierte Biphenyle in Fischen aus Elbe und Nordsee. Schriftenreihe Bundesforschungsanstalt für Fischerei, Hamburg, 101 Seiten.

    Google Scholar 

  • Kanter PM und Schwartz HS (1977) A hydroxylapatite batch assay for quantitation of cellular DNA damage. Anal. Biochem. 97:77–84

    Article  Google Scholar 

  • Karickhoff SW (1981) Semiempirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 859–867

    Article  Google Scholar 

  • Keane MJ, Xing SG, Harrison JC, Ong T and Wallace WE (1991) Genotoxicity of dieselexhaust particels dispersed in simulated pulmonary surfactant. Mutation Research, 260 (3), 233–238

    Article  CAS  Google Scholar 

  • Klaine S and Lewis M (1995) Algal and Plant Toxicity Testing. In: Handbook of Ecotoxicology, D. Hoffman, B. Rattner, G. Burton and J. Cairns, Eds. Lewis Publishers

    Google Scholar 

  • Klaine S, Byl T, Wall V and Warren J (1993) Heavy Metal Bioavailability in Freshwater Sediments: Implications for Sediment Quality Criteria. Abstract in: Sixth International Symposium Toxicity Assessment and On-line Monitoring, Berlin, 10–14 May 1993, pp. 33

    Google Scholar 

  • Knezovich JP, Harrison FL & Mosher RG (1987) The bioavailability of sediment-sorbed organic chemicals: a review. Water, Air, Soil Pollut. 32: 233–245.

    Article  CAS  Google Scholar 

  • Knie J (1992a) Biologische Testverfahren in der Vollzugspraxis des AbwAG und WHG. In: Biologische Testverfahren. K.G. Steinhäuser u. P.-D. Hansen (Hrsg.), Schr.-Reihe Verein WaBoLu 89: 523–526. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Knie J (1992b) Algen-Abwassertest —Erfahrungen aus Nordrhein-Westfalen. In: Biologische Testverfahren. K.G. Steinhäuser u. P.-D. Hansen (Hrsg.), Schr.-Reihe Verein WaBoLu 89: 539–552. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Kocan RM, Sabo KM and Landolt ML (1985) Cytotoxicity-Genotoxicity: The application of cell culture techniques to the measurement of marine sediment pollution. Aquat. Toxicol. 6 (3), 165–178

    Article  CAS  Google Scholar 

  • Koch U, Glatzle D, Ringenbach F, Dunz T, Steger-Hartmann und Wagner E (1995) Measurement of Ion Leakage from Plant Cells in Response to Aquatic Pollutants. Bull. Environ. Contam. Toxicol., 54, pp. 505–613

    Article  Google Scholar 

  • Köster M, Meyer-Reil L-A (1998) Enzymatischer Abbau von organischem Material in Sedimenten. In: VAAM (Hrsg.). Mikrobiologische Charakterisierung aquatischer Sedimente. Vulkan Verlag. Essen.

    Google Scholar 

  • Krebs F. (1992a) Der Leuchtbakterientest für die Wassergesetzgebung. In: Biologische Testverfahren. K.G. Steinhäuser u. P.-D. Hansen (Hrsg.), Schr.-Reihe Verein WaBoLu 89: 657–674. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Krebs F. (1992b) Gewässeruntersuchung mit dem durch Alkali-und Erdalkaliionen-Zugabe optimierten DIN-Leuchtbakterientest, dargestellt am Beispiel der Saar. In: Biologische Testverfahren. K.G. Steinhäsuser u. P.-D. Hansen (Hrsg.), Schr.-Reihe Verein WaBoLu 89: 591–624. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Kristen U (1997) Use of Higher Plants as Screens for Toxicity Assessment. Toxicol. In Vitro, 11, pp. 181–191

    Article  CAS  Google Scholar 

  • Kubitz JA (1992) Reference toxicant protocol for Hyalella azteca bioassay. Society of Environmental Toxicology and Chemistry (SETAC), 13th Annual meeting, Cincinnati (Abstract 368).

    Google Scholar 

  • Kühn R, Pattard M (1990) Results of the Harmful Effects of Water Pol1utants to Green Algae (Scenedesmus subspicatus) in the Cell Multiplication Inhibition Test. Wat. Res. 24(1): 31–38

    Article  Google Scholar 

  • Kupillas GE, Pill KG, Picardal FW, Arnold RG (1991) A multiparameter chemical toxicity test using Salmonella typhimurium and Spirochaeta aurantia. Environ. Toxicol. Wat. Qual. 6: 293–307

    Article  CAS  Google Scholar 

  • Kwan KK (1991) Qualitative direct sediment toxicity testing procedure (DSTTP). NWRI Contribution No. 91–90

    Google Scholar 

  • Kwan KK and Dutka BJ (1992) A Novel Bioassay Approach: Direct Application of the Toxi-Chromotest and the SOS Chromotest to Sediments. Environ. Toxicol. Water Qual. 7: 49–60

    Article  CAS  Google Scholar 

  • Kwan KK and Dutka BJ (1996) Development of reference sediment samples for solid phase toxicity screening tests. Bull. Environ. Contam. Toxicol. 56/5:696–702

    Article  Google Scholar 

  • La Rocca C, Conti L, Crebelli R, Crocci B, Iacovella N, Rodriguez F, Turrio-Baldassarri L and di Domenic A (1996) PAH content and mutagenicity of marine sediments from the Venice lagoon. Ecotox. Environ. Saf. 33 (3), 236–245

    Article  Google Scholar 

  • Lamberson JO & Swartz RC (1988) Use of bioassays in determining the toxicity of sediment to benthic organisms. In M. S. Evans (ed.), Toxic contaminants and ecosystem health: a Great Lake focus, John Wiley, New York: 257–279.

    Google Scholar 

  • Lan Q, Dickman M and Alvarez M (1991) Evidance of genotoxic substances in the Niagara river watershed, Ontario Canada. Environ. Toxicol. Wat. Qual. 6 (1), 1–16

    Article  CAS  Google Scholar 

  • Landolt E. (1986) Biosystematic Investigations in the Family of Duckweeds (Lemnaceae) (vol. 2). The Family of Lemnaceae —A monographic Study, Vol 1, Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 71. Heft

    Google Scholar 

  • Langeland K (1996) „The Perfect Aquatic Weed“. Castanea 61, pp. 293–304

    Google Scholar 

  • Langevin R, Rasmussen JB, Sloterdijk H and Blaise C (1992) Genotoxicity in water and sediment extracts from the St. Lawrence river system using the SOS Chromotest. Water research 26 (4), 419–429

    Article  CAS  Google Scholar 

  • Lanza GR, Burton GA, Dougherty JM (1988) Microbial enzyme activities: potential use for monitoring decomposition processes. ASTM STP 988, pp 41–54

    CAS  Google Scholar 

  • Lee GF, Jones RA, Saleh FA, Mariani GM, Homer DH, Butler JS & Bandyopadhyay P (1978) Evaluation of the elutriate test as a method of predicting contaminant release during open water disposal of dredged sediment and environmental impact of open water dredged material disposal, Vol. 2, Tech. Rep. D78-45, U.S. Army Engineer Waterways Experiment Station, Vicksburg (MI).

    Google Scholar 

  • Legault R, Blaise C, Rokosh D and Chong-Kit R (1994) Comparative Assessment of the SOS Chromotest Kit and the Mutatox Test with the Salmonella Plate Incorporation (Ames Test) and Fluctuation Tests for Screening Genotoxic Agents. Environ. Toxicol. Water Qual. 9:45–57

    Article  CAS  Google Scholar 

  • Leonhard SL (1979) Tests for the crayfish Orconectes virilis. In E. Scherer ed.) Toxicity tests for freshwater organisms, Can. Spec. Publ. Fish. Aquat. Sci. 44, Dept. of Fisheries and Oceans, Winnipeg: 82–90.

    Google Scholar 

  • Lewander M, Greger M, Kautsky L and Szarek E (1996) Macrophytes as Indicators of Biaoavailable Cd, Pb and Zn flow in the River Przemsza, Katowice Region. Appl. Geochem. 11, pp. 169–173

    Article  CAS  Google Scholar 

  • Lewis M (1995) Algae and Vascular Plant Tests. In: Fundamentals of Aquatic Toxicology, Second Edition, G. Rand, Ed., Taylor & Francis

    Google Scholar 

  • Liβ W, Ablf W (1997) Evidence from whole sediment, pore water, and e1utriate testing in toxicity assessment of contaminated sediments. Ecotox Environ Saf 36: 140–147

    Article  Google Scholar 

  • Long ER, Buchman MF, Bay SM, Breteler RJ, Carr RS, Chapman PM, Hose J & Lissner AL (1990) Comparative evaluation of five toxicity tests with sediments from San Francisco Bay and Tomales Bay, California. Environ. Toxicol. Chem. 9: 1193–1214.

    CAS  Google Scholar 

  • Long ER, Buchman MF, Bay SM, Breteler RJ, Carr RS, Chapman PM, Hose J & Lissner AL (1990) Comparative evaluation of five toxicity tests with sediments from San Francisco Bay and Tomales Bay, California. Environ. Toxicol. Chem. 9: 1193–1214.

    CAS  Google Scholar 

  • Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol. Rev. 54(1): 75–87

    Google Scholar 

  • Lower W, Yanders A, Marrero T, Underbrink A, Drobney V and Collins M (1985) Mutagenicity of Bottom Sediment from a Water Reservoir. Environ. Toxicol. Chem. 4, pp. 13–19

    Article  CAS  Google Scholar 

  • Luoma SN, Ho KT (1993) Appropriate Uses of Marine and Estuarine Sediment Bioassays. In: Handbook of Ecotoxicology. P. Calow (Hrsg.), Blackwell Scientific Publications, Oxford, S. 193–226

    Google Scholar 

  • Malek I, Fencl Z (1966) Theoretical and Methodological Basis of Continuous Culture of Microorganisms. Academic Press, New York: 1–655

    Google Scholar 

  • Maron DM and Ames BM (1984) Revised methods for the Salmonella mutagenicity test. In: Kilby B.J. et at. (ed.): Handbook of mutagenicity test procedures. Elsevier

    Google Scholar 

  • Marvin CH, Allan L, McCarey BE and Bryant DW (1993) Chemico/biological investigation of contaminated sediment from the Hamilton Harbour area of western Lake Ontario. Environ. Mol. Mutagenesis 22 (2), 61–70

    Article  CAS  Google Scholar 

  • Marvin CH, Lundrigan J, McCarey BE and Bryant DW (1995) Determination and genotoxicity of high molecular mass polycyclic aromatic hydrocarbons isolated from coal-tarcontaminated sediment. Environ. Toxicol. Chem., 14 (12), 2059–2066

    Article  CAS  Google Scholar 

  • Marxsen J, Tippmann P, Heininger P, Preuss G, Remde A (1998) Enzymaktivität. In: VAAM (Hrsg.): Mikrobiologische Charakterisierung aquatischer Sedimente. Vulkan Verlag Essen, S. 87–109.

    Google Scholar 

  • Mayfield CI (1993) Microbial Systems. In: Handbook of Ecotoxicology. P. Calow (Hrsg.), BlackwelI Scientific Publications, Oxford, S. 9–27

    Google Scholar 

  • Mayfield CI, Munawar M (1988) Microcomputer-based measurement of algal fluorescence as a potential indicator of environmental contamination. Bull. Environ. Contam. Toxicol. 41: 261–266

    Article  CAS  Google Scholar 

  • McDaniels AE, Reyes AL, Wymer LJ, Rankin CC and Stelma GN Jr. (1990) Coparison of the Salmonella (Ames)Test, Umu Test, and the SOS Chromotest for Detecting Genotoxins. Environ. Mol. Mutagenesis 16, 204–215

    Article  CAS  Google Scholar 

  • McKelvey-Martin VJ, Green MHL, Schmezer P, Pool-Zobel BL, De Meo MP and Collins A (1993) The single cell gel electropnoresis assay (Comet Assay): An European Review. Mut. Res. 288, 47–63

    Article  CAS  Google Scholar 

  • McLeese DW & Metcalf CD (1980) Toxicities of eight organochlorine compounds in sediment and seawater to Crangon septemspinosa. Bull. Environ. Contamin. Toxicol. 25: 921–928.

    Article  CAS  Google Scholar 

  • McLeese DW, Burridge LE & Van Dinter J (1982) Toxicities of five organochlorine compounds in water and sediment to Nereis virens. Bull. Environ. Contamin. Toxicol. 28: 216–220.

    Article  CAS  Google Scholar 

  • Moore DW & Dillon TM (1993) The relationship between growth and reproduction in the marine polychaete Nereis (Neanthes) arenaceodentata (Moore): implications for chronic sublethal sediment bioassays. J. Exp. Mar. Biol. Ecol. 173: 231–246.

    Article  Google Scholar 

  • Munawar M, Munawar IF (1982) Phycological studies in lakes Ontario, Erie, Huron, and Superior (1982) Canad. J. Bot. 60(9): 1837–1858

    Article  CAS  Google Scholar 

  • Munawar M, Munawar IF, Mayfield CI, McCarthy LH (1989) Probing ecosystem health: a multi-disciplinary and multi-trophic assay strategy. In: M. Munawar, G. Dixon, C.I. Mayfield, T. Reynoldson u. M.H. Sadar (Hrsg.) Environmental Bioassay Techniques and Their Application. Kluwer Academic Publishers. Hydrobiologia 188/180: 93–116

    Google Scholar 

  • Munkittrick KR, Power EA (1991) The relative sensitivity of Microtox, daphnid, rainbow trout and fathead minnow acute lethality tests. Environ. Toxicol. Water Qual. 6: 35–62

    Article  CAS  Google Scholar 

  • Nacci DE, Cayula S and Jackim E (1996) Detection of DNA damage in individual cells from marine organisms using the single cell gel assay. Aquat. Toxicol. 35 (3–4), 197–210

    Article  CAS  Google Scholar 

  • Nebeker AV, Cairns MA, Gakstatter JH, Malueg KW, Schuytema GS & Krawczyk DF (1984) Biological methods for determination toxicity of contaminated freshwater sediments to invertebrates. Environ. Toxicol. Chem. 3: 617–630.

    Article  CAS  Google Scholar 

  • Nelson MK, Landrum PF, Burton GA, Klain SJ, Crecelius EA, Byl TD, Gossiaux DC, Tsymbal VN, Cleveland L, Ingersoll CG and Sasson-Brickson G (1993) Toxicity of contaminated sediments in dilution series with control sediments. Chemosphere, 27,9, 1789–1812.

    Article  CAS  Google Scholar 

  • Nicolas J-M and Vandermeulen JH (1997) Estrogenic effect of coal-tar contamination on an estuarian population of male winter flounder (Pleuronectes americanus). In: Canadian Technical Report of Fisheries and Aquatic Sciences No. 2192.

    Google Scholar 

  • Niimi AJ, Lee HB and Muir DCG (1996) Environmental assessment and ecotoxicological implications of the co-elution of PCB congeners 132 and 153. Chemosphere. 32/4, 627–638.

    Article  Google Scholar 

  • Nipper MG, Greenstein DJ & Bay SM (1989) Short-and long-term sediment toxicity test methods with the amphipod Grandidierella japonica. Environ. Toxicol. Chem. 8: 1191–1200.

    CAS  Google Scholar 

  • Nyholm N, Damgaard BM (1990) A comparison of the algal growth inhibition toxicity test method with the short term C14-assimilation test. Chemosphere 21(4-5): 671–679

    Article  CAS  Google Scholar 

  • Obst U (1993) Grundlagen enzymatischer Reaktionen und Nachweismethoden. In: Begleitheft zum GDCh-Fortbildungskurs 368/93 „Biochemische Methoden der Wasseranalytik“.

    Google Scholar 

  • Obst U (1995) Enzymatische Tests für die Wasseranalytik. Oldenbourg Verlag München. Wien

    Google Scholar 

  • Obst U, Holzapfel-Pschom, A. (1988) Enzymatische Tests für die Wasseranalytik. Oldenbourg Verlag. München Wien.

    Google Scholar 

  • Odum EP (1985) Trends expected in stressed ecosystems. BioScience 35: 419–422

    Article  Google Scholar 

  • OECD Guideline for the Testing of Chemicals (1997) Proposal for replacement of guidelines 471 and 472. ENV/EPO (97)4

    Google Scholar 

  • OECD Test Guideline (1997) Lemna Growth Inhibition Test, Draft April 1997, Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  • Painter HA (1993) A review of tests for inhibition of bacteria (especially those agreed internationally). In: Ecotoxicology Monitoring. M. Richardson (Hrsg.) VCH Verlagsgesellschaft Weinheim. S. 17–36

    Google Scholar 

  • Palmer BD, Huth LK, Pieto DL and Selcer KW (1998) Vitellogenin as a biomarker for xenobiotics estrogens in an amphibian model system, Environmental Toxicology and Chemistry, 17, 1, 30–36.

    Article  CAS  Google Scholar 

  • Pandrangi R, Petras M, Ralph S and Vrzoc M (1996) Alkaline Single Cell Gel (Comet) Assay and Genotoxicity Monitoring Using Bullheads and Carp. Environ. Mol. Mutagenesis 26, 345–356

    Article  Google Scholar 

  • Pandrangi R, Petras M, Ralph S and Vrzoc M (1996) Alkaline Single Cell Gel (Comet) Assay and Genotoxicity Monitoring Using Bullheads and Carp. Environ. Mol. Mutagenesis 26, 345–356

    Article  Google Scholar 

  • Papoulias DM and Buckler DR (1996) Mutagenicity of Great Lakes Sediments. Jour. of Great Lakes Research 22 (3), 591–601

    Article  CAS  Google Scholar 

  • Papoulias DM, Buckler DR and Tillitt DE (1996) Optimization of the Ames-Salmonella mutagenicity assay for use with extracts of aquatic sediments. Journal of Great Lakes Research 22 (3), 584–590

    Article  CAS  Google Scholar 

  • Pascoe D, Taylor E & Maund SJ (1992) Development and validation of methods for evaluating chronic toxicity to freshwater ecosystems. Final summary report of the environmental research programme Assessment of Risk Associated with Chemicals (Ecotoxicology). EEC RTD Contract EV4V-0110-UK(BA).

    Google Scholar 

  • Petersen W, Wallmann K, Schroeder, Li P, Schroeder F and Knauth H-D (1996) The Influence of Diageneric Processes on the Exchange of Trace Contaminants at the SedimentWater. In: Sediments and Toxic Substances —Environmental Effects and Ecotoxicity. Eds. Calmano and Förster, Springer Berlin, Heidelberg, 37–50.

    Chapter  Google Scholar 

  • Phipps GL, Ankley GT, Benoit DA & Mattson VR (1993) Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ. Toxicol. Chem. 12: 269–279.

    CAS  Google Scholar 

  • Phipps GL, Ankley GT, Benoit DA (1993) Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ Toxicol Chem 12: 269–279

    CAS  Google Scholar 

  • Pipe RK, Coles JA, and Farley SR (1995) Assays for Measuring Immune Responses in the Mussel Mytilus edulis.-In: Techniques in Fish Immunology —Fish Immunology Technical Communications 4 —Immunological and Pathological Techniques of Aquatic Invertebrates. J. S. Stolen, T. C., Fletcher, S. A. Smith, J. T., Zelikoff, S. L., Kaattari, R. S., Anderson, K., Söderhäll, B. A., Weeks-Perkins (eds.). SOS Publications Fair Haven, USA

    Google Scholar 

  • Pool-Zobel BL (1992) Bedeutung von Indikatortests an nicht-proliferierenden Säugerzellen für die Gentoxizitätsprüfung. BIOforum 9, 329–331

    Google Scholar 

  • Power EA, Munkittrick KR and Chapman PM (1991) An ecological impact assessment framework for decision-making related to sediment quality. In: (Eds.) M.A. Hayes and M.G. Barron, Aquatic Toxicology and Risk Assessment: Fourteenth Volume, ASTM STP 1224, American Society for Testing and Materials, Philadelphia, PA, 48–64.

    Chapter  Google Scholar 

  • Prater BL & Anderson MA (1977a) A 96-hour bioassay of DuLuth and Superior Harbor basins (Minnesota) using Hexagenia limbata, Asellus communis. Daphnia magna and Pimephales promelas as test organisms. Bull. Environ. Contarn. Toxicol. 18: 159–169.

    Article  CAS  Google Scholar 

  • Prater BL & Anderson MA (1977b) A 96-hour bioassay of Otter Creek, Ohio. J. Water Pollut. Control Fed. 49: 2099–2106.

    CAS  Google Scholar 

  • PSEP (1991) Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Draft Report. Puget Sound Estuary Program. U.S. Environmental Protection Agency, Region X, Office of Puget Sound, Seattle.

    Google Scholar 

  • Quillardet P, Huisman O, D’Ari R and Hofnung M. (1982) SOS Chromotest, a direct assay of induction of SOS function in Escherichia coli K-12 to measure genotoxicity. Natl. Acad. Sci. 79:5971–5975

    Article  CAS  Google Scholar 

  • Qureshi AA, Flood KW, Thompson SR, Janhurst SM, Iniss CS, Rokosh DA (1982) Comparison of a luminescent bacterial test with other bioassays for determining toxicity of pure compounds and complex effluents. Aquatic Toxicology and Hazard Assessment: Fifth Conference, ASTM STP 766. ASTM, Philadelphia

    Google Scholar 

  • Ralph S, Petras M, Pandrangi R and Vrzoc M (1996) Alkaline single-cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ. Mol. Mutagen. 28, 112–120

    Article  CAS  Google Scholar 

  • Randow FF, Hubener T, Merkel G und Luck S (1995) Risk for the Rostock water supply from the Warnow river by an old deposit at Schwaan. Zentralblatt für Hygiene und Umweltmedizin 197 (5), 408–419

    CAS  Google Scholar 

  • Rao SS and Lifshitz R (1995) The Muta-ChromoPlate Method for Measuring Mutagenicity of Environmental Samples and Pure Chemicals. Environ. Toxicol. Water Qual. 10: 307–313

    Article  CAS  Google Scholar 

  • Rao SS, Burnison BK, Efler S, Wittekindt E and Hansen PD (1995) Assessment of Genotoxic Potential of Pulp Mill Effluent and an Effluent Fraction Using AMES Mutagenicity and Umu-C Genotoxicity Assays. Environ. Toxicol. Water Qual. 10: 301–305

    Article  CAS  Google Scholar 

  • Rao SS, Neheli TA, Carey JH, Herbert A und Hansen PD (1996) DNA Alkaline Unwinding Assay for Monitoring the Impact of Environmental Genotoxins. Environ. Toxicol. Water Qual. 11: 351–354

    Article  CAS  Google Scholar 

  • Reifferscheid G, Heil J, Oda Y and Zabn RK (1991) A microplate version of the SOS/umutest for rapid detection of genotoxins and genotoxic potentials of environmental samples. Mutation Research, 253, 215–222

    Article  CAS  Google Scholar 

  • Reinnarth G (1993) Prinzip des enzymatischen Schadstoffnachweises in vitro. In: Begleitheft zum GDCh-Fortbildungskurs 368/93 „Biochemische Methoden der Wasseranalytik“

    Google Scholar 

  • Reish DJ & Lemay JA (1988) Bioassay manual for dredged materials. Tech. Rep. DACW-09-83R-005, U.S. Army Corps of Engineers, Los Angeles, CA

    Google Scholar 

  • Renwrantz L, Daniel I and Hansen P-D (1985) Lectin binding to hemocytes of Mytilus edulis.—Devel. Comp. Immunol. 9:203–210

    Article  CAS  Google Scholar 

  • Reynoldson TB, Thompson SP & Bamsey JL (1991) A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex. Environ. Toxicol. Chem. 10: 1061–1072

    CAS  Google Scholar 

  • Roddie B, Edwards T, Ashby-Crane R & Crane M (1994) The toxicity to Corophium volutator (Pallas) of beach sand contaminated by a spillage of crude oil. Chemosphere 29: 719–727

    Article  CAS  Google Scholar 

  • Rodrigues G, Ma T, Pimentel D and Weinstein L (1997) Tradescantia Bioassays as Monitoring Systems for Environmental Mutagenesis: A Review. Critical Reviews in Plant Sciences 16 (4), pp. 325–359

    Google Scholar 

  • Romanga G (1993) Mikrokernsysteme. In Fahrig, R. (Hrsg.): Mutationsforschung und genetische Toxikologie. Wiss. Buchgesellschaft Darmstadt

    Google Scholar 

  • Rönnpagel K, Liss W, Ahlf W (1995) Microbial Bioassays to Assess the Toxicity of Solid-Associated Contaminants. Toxicology and Environmental Safety 31, 99–103

    Article  Google Scholar 

  • Rosenkranz HS und Mermelstein R (1985) The genotoxicity, metyolism and carcinogenicicty of nitrated polycyclic aromatic compounds. J. Environ. Health Perspect. 3, 221–272

    Google Scholar 

  • Rosiu CJ, Giesy JP, Kreis RG (1989) Toxicity of vertical sediments in the Trenton Channel, Detroit River, Michigan, to Chironomus tentans (Insecta: Chironomidae).-J. Great Lakes Res. 15(4): 570–580

    Article  CAS  Google Scholar 

  • Ross P (1993) The use of bacterial luminescence systems in aquatic toxicity testing. In: Ecotoxicology Monitoring. M. Richardson (Hrsg.) VCH Verlagsgesellschaft Weinheim. S. 185–196

    Google Scholar 

  • Ross PE, Jarry V, Sioterdijk H (1988) A rapid bioassay using the green alga Selenastrum capricornutum to screen for toxicity in St. Lawrence River sediment elutriates. In: J. Cairns, Jr. u. J.R. Pratt (Hrsg.) Function Testing of Aquatic Biota for Estimating Hazards of Chemicals. ASTM STP 988, American Society for Testing and Materials, Philadelphia, PA: 68–73

    Chapter  Google Scholar 

  • Roy S and Hänninen O (1994) Peroxidase Activity in Macrophytes as a Marker of Aquatic Pollution. In: Biological Monitoring of the Environment, J. Salanki, D. Jeffrey and G.M. Hughes, Eds. CAB International, Wallingford, pp. 127–130

    Google Scholar 

  • Roy S, Ihantola R and Hänninen O (1992) Peroxidase Activity in Lake Macrophytes and ist Relation to Polution Tolerance. Environ. Exp. Bot. 32 (4), pp. 457–464

    Article  CAS  Google Scholar 

  • Rydberg B (1975) The rate of strand separation in alkali of DNA of irradiated mammalian cells. Radiat. Res. 61: 274–287

    Article  CAS  Google Scholar 

  • Samoiloff MR (1987) Nematodes as indicators of toxic environmental contaminants. In J. A. Veech & D. W. Dickson (eds.), Vistas on Nematology: 433–439

    Google Scholar 

  • Samoiloff MR, Bell J, Birkholz DA, Webster GRB., Amott EG, Pulak R & Madrid A (1983a) Combined bioassay-chemical fractionation scheme for the determination and ranking of toxic chemicals in sediments. Environ. Sci. Technol. 17: 329–334

    Article  CAS  Google Scholar 

  • Samoiloff MR, Pulak RA & Birkholz DA (1983b) The nematode bioassay for toxicity in biological samples or sediments from contaminated aquatic ecosystems. Third Biennial Plains Aquatic Research Conference, Bozeman, Nontana: 15–23.

    Google Scholar 

  • Samoiloff MR, Schulz S, Jordan Y, Denich K & Amott E (1980) A rapid simple long-term toxicity assay for aquatic contaminants using the nematode Panagrellus redivivus. Can. J. Fish. Aquat. Sci. 37: 1167–1174.

    Article  CAS  Google Scholar 

  • Santos MA and Pachecco M (1995) Mutagenicity of cyclophosphamide and kraft mill effluent and sediment on the eel Anguilla anguilla L. Sci. Tot. Environ. 171, 127–130

    Article  CAS  Google Scholar 

  • Schachtschabel P, Blume H-P, Brümmer G, Hartge K-H, Schwertmann U (1992) Lehrbuch der Bodenkunde. 13. Auflage Ferdinand Enke Verlag, Stuttgart.

    Google Scholar 

  • Schlekat CE, McGee BL. & Reinharz E (1992) Testing sediment toxicity in Chesapeake Bay with the amphipod Leptocheirus plumulosus: an evaluation. Envirom. Toxicol. and Chem. 11: 225–236

    CAS  Google Scholar 

  • Schmitt-Biegel B, Obst U (1989) Inhibition of the microbial purification potential in the river Rhine and in the groundwater influenced by the river Rhine. Vom Wasser 73, pp 315–322.

    CAS  Google Scholar 

  • Schuytema GS, Krawczyk DF, Griffis WL, Nebeker AV, Robideaux ML, Brownawell BJ, Westall JC (1988) Comparative uptake of hexachlorobenzene by fathead minnows, amphipods, and oligochaete worms from water and sediment. Environ Toxicol Chem 7:1035–1045

    Article  CAS  Google Scholar 

  • Scott JK & Redmond MS (1989) The effects of a contaminated dredged material on laboratory populations of the tubicolous amphipod, Ampelisca abdita. In American Society for Testing and Materials (ed.), Philadelphia, Aquatic toxicology and hazard assessment, 12th Symposium.

    Google Scholar 

  • Shimabuku R, Ratsch H, Wise C, Nwosu J, and Kapustka L (1991) A New Plant Life-Cycle Bioassay for Assessment of the Effects of Toxic Chemicals Using Rapid Cycling Brassica. In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 365–375

    Chapter  Google Scholar 

  • Shugart LR (1988) Quantification of chemicaIly induced damage to DNA of aquatic organisms by alkaline unwinding assay. Aquatic Toxicology, 13: 43–52

    Article  CAS  Google Scholar 

  • Sijm RTHM, Haller M and Schrap SM (1997) Influence of storage on sediment characteristics and of drying sediment on sorption coefficients of organic contaminants. Bull. Environ. Contam. Toxicol. 58, 6, 961–968.

    Article  CAS  Google Scholar 

  • Singh NP, Stephens RE and Schneider EL (1988) A Simple Tecnique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 175, 194–191

    Article  Google Scholar 

  • Skulberg OM (1966) Algal cultures as a means to assess the fertilizing influence of pollution. Proc. 3rd Int. Conf. Water Poll. Res. 113–137

    Google Scholar 

  • Smith B (1991) An Inter-and Intra-Agency Survey of the Use of Plants for Toxicity Assessment. In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 41–59

    Chapter  Google Scholar 

  • Stab JA, Traas TP, Stroomberg G, Van Kesteren J, Leonards P, Van Hattum B, Brinkmann UAT and Cofino WP (1996) Determination of organotin compounds in the foodweb of a shallow freshwater lake in the Netherlands. Arch. Env. Contam. Toxicol. 31, 3, 319–328

    Article  CAS  Google Scholar 

  • Strømgren T, Nielsen MV & Reierson RO (1993) The effect of hydrocarbons and drilling fluids on the faecal pellet production of the deposit feeder Alba alba. Aquat. Toxicol. 24: 275–286

    Google Scholar 

  • Swanson S, Rickard C, Freemark K and MacQuarrie P (1991) Testing for Pesticide Toxicity to Aquatic Plants: Recommendations for Test Species. In: Plants for Toxicity Assessment: Second Vol., ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 77–97

    Chapter  Google Scholar 

  • Swartz RC, DeBen WA, Jones JKP, Lamberson JO & Cole FA (1985) Phoxocephalid amphipod bioassay for marine sediment toxicity. In R. D. Cardwell, R. Purdy & R. C. Bahner (eds.), Aquatic toxicology and hazard assessment, 7th symposium, American Society for Testing and Materials, Philadelphia, ASTM STP 854: 284–307

    Google Scholar 

  • Swartz RC, DeBen WA. & Cole FA (1979) A bioassay for the toxicity of sediment to the marine macrobenthos. J. Water Pollut. Contr. Fed. 51: 944–950

    Google Scholar 

  • Swartz RC, Kemp PF, Schults DW & Lamberson JO (1988) Effects of mixtures of sediment contaminants on the marine infaunal amphipod Rhepoxinius abronius. Environ. Toxicol. Chem. 7: 1013–1020

    CAS  Google Scholar 

  • Swartz RC, Schults DW, Dewitt TH, Ditsworth GR & Lamberson JO (1990) Toxicity of flouranthene in sediment to marine amphipods: A test of the equilibrium partitioning approach to sediment quality criteria. Environ. Toxicol. Chem. 9: 1071–1080

    Article  CAS  Google Scholar 

  • Tarkpea M, Hansson M & Samuelsson B (1986) Comparison of the Microtox test with the 96-h LC50 test for the harpacticoid Nitocra spinipes. Ecotoxicol. Environ. Safety 11: 127–143

    Article  CAS  Google Scholar 

  • Thain J & Bifield S (1993) A sediment bioassay using the polychaete Arenicola marina. Test guideline for PARCOM sediment reworker ring test. MAFF Fisheries Laboratory, Burnham-on-Crouch (U.K.)

    Google Scholar 

  • Thomas JM, Skalski JR, Cline JF, Mc Shane MC, Miller WE, Peterson SA, Callahan CA, Greene JC (1986) Characterization of chemical waste site contamination and determination of its extent using bioassays. Environ. Toxicol. Chem. 5: 487–501

    Article  CAS  Google Scholar 

  • Thompson BE, Bay SM, Anderson JW, Laughlin JD, Greenstein DJ & Tsukada DT (1989) Chronic effects of contaminated sediments on the urchin Lytechinus pictus. Environ. Toxicol. Chem. 8: 629–637

    CAS  Google Scholar 

  • Tietjen JH & Lee JJ (1984) The use of free-living nematodes as a bioassay for estuarine sediments. Mar. Env. Res. 11: 233–251

    Article  Google Scholar 

  • Tippmann P, Heininger P (1995) Anwendung enzymatischer Tests in vivo zur Sedimentbeurteilung. Berlin. BfG-Bericht 0932

    Google Scholar 

  • Tippmann P, Heininger P (1997) Ansätze zur Normierung enzymatischer Testergebnisse von Sedimenten in: G. PREUSS (Hrsg.) „Normierungsmöglichkeiten bei der Bestimmung mikrobieller und enzymatischer Aktivitaten“, Dortmunder Beiträge der Wasserforschung, Nr. 51, S.37–44 (ISSN 0342-474 X)

    Google Scholar 

  • Tippmann P, Heininger P (1998) Biochemische Methoden der Sedimentbewertung. Kapitel 7. In: Schadstoffe in Schwebstoffen und Sedimenten der Elbe und Oder, BfG-Bericht 1150, Koblenz-Berlin

    Google Scholar 

  • Tippmann P, Heininger P (2001) Anwendung von Enzymaktivitätstests bei der Sediment-bewertung. Hydrologie und Wasserbewirtschaftung

    Google Scholar 

  • Traunspurger W & Drews C (1996) Toxicity analysis of freshwater and marine sediments with meio-and macrobenthic organisms: a review. Hydrobiologia 328: 215–261.

    Article  CAS  Google Scholar 

  • Traunspurger W, Bergtold M & Goedkoop W (1997a) The effects of nematodes on bacterial activity and abundance in a profundal freshwater sediment. Oecologia 112: 118–122.

    Article  Google Scholar 

  • Traunspurger, W., Haitzer, M., Hoess, S., Beier, S., Ahlf, W. & Steinberg, C. (1997b) Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) —A method for testing liquid medium and whole-sediment samples. Environ. Toxicol. Chem. 16: 245–250

    CAS  Google Scholar 

  • Tripathi, R., Rai, U., Gupta, M. and Chandra, P. (1996) Induction of Phytochelatins in Hydrilla verticillata (l.f.) Royle und Cadmium Stress. Bull. Environ. Contam. Toxicol. 56, pp. 505–512

    Article  CAS  Google Scholar 

  • Turbak SC, Olson SB, McFeters GA (1986) Comparison of algal assay systems for detecting waterborne herbicides and metals. Wat. Res. 20(1): 91–96

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1994) ARCS Assessment Guidance Dokument (online) EPA 905-B94-002. University Center, Mich.: Consortium for International Earth Science Information Network (CIESIN). URL: http://epawww.ciesin/glreis/glnpo/ data/arcs/EPA-905-B94-002/EPA-905-B94-002-toc.html

    Google Scholar 

  • US Environmental Protection Agency (1996) Aquatic Plant Toxicity Test Using Lemna spp., Tiers I and II. „Public Draft“. Ecological Effects Test Guidelines, OPPTS 850.4400

    Google Scholar 

  • US EPA/US ACE (1991) Evaluation of dredged material proposed for ocean disposal testing manual. U.S. Environmental Agency/U.S. Army Corps of Engineers, EPA-503-8-91/001, U.S. Environmental Protection Agency (EPA), Office of Science and Technology, Washington, D.C.

    Google Scholar 

  • Vahl, H.H., Karbe, L., Prieto-Alamo, M.J., Pueyo, C. and Westendorf, J. (1995) the use of the Salmonella BA 9 forward mutation assay in sediment quality assessment: Mutagenicity of freshly deposited sediments of the River Elbe. Jounal Aquat. Ecosystem Health 4 (4), 277–283

    Article  Google Scholar 

  • Van den Hurk, P., Chapman, P.M., Roddie, B. & Swartz, R.C. (1992) A comparison of North American and West European infaunal amphipod species in a toxicity test on North Sea sediments. Mar. Ecol. Prog. Ser. 91: 237–243

    Article  Google Scholar 

  • Velema, J.P. (1987) Contaminated drinking water as a potential cause of cancer in humans. Environ. Carc. Rev. C5(1), 1–28

    Google Scholar 

  • Wake, D.B. (1991) Declining amphibian populations. Science, 253, 860

    Article  CAS  Google Scholar 

  • Waldmann, P. (1996) Alkaline filterleution as a method for the demonstration of genotoxic potentials in surface water. Bayerisches Landesamt für Wasserwirtschaft (ed): Münchner Beiträge zur Abwasser-, Fischerei-und Fluβbiologie, Bd. 49, 391–402

    Google Scholar 

  • Walsh, G. (1989) Germination, Survival and Production of Marsh Plant Seedlings in Pulp and Paper Mill Effluent and in Sediments from St. Andrews Bay, Florida. EPA/600/x89/ 032. U.S. Research Product, URL: http://www.epa.gov/ged/publica/c1272.htm

    Google Scholar 

  • Walsh, G. and Weber, D. (1990a) Use of Marsh Plants for Toxicity Testing of Water and Sediment (Abstract). Presented at the 2nd ASTM Symposium on Use of Plants for Toxicity Assessment, 23–24 April 1989, San Francisco, CA. 2p. Research Product, URL: http://www.epa.gov/ged/publica/c1692.htm

    Google Scholar 

  • Walsh, G. and Weber, D. (l990b) Wolverine Brass Company Effluent: Effects on Germination, Survival, and Growth of Wetland Plants. EPA/600/X-90/238. U.S. Research Product, URL: http://www.epa.gov/ged/publica/c1300.htm

    Google Scholar 

  • Walsh, G. and Weber, D. (1990c) ITT Rayonier Pulp Mill Effluent: Effects on Germination, Survival, and Growth of Wetland Plants. EPA/600/X-90/238. U.S. Research Product, URL: http://www.epa.gov/ged/publica/c1301.htm

    Google Scholar 

  • Walsh, G. and Weber, D. (1990d) Survival and Growth of Wetland Plants Exposed to Effluent from the Clary Treatment Works in Hydroponic and Sediment Tests. EPA/600/x-90/234. U.S. Research Product, URL: http://www.epa.gov/ged/publica/c130l. htm

    Google Scholar 

  • Walsh, G. and Weber, D. (1990e) Effects of Effluent from the Crestview, Florida, Waste Water Treatment Plant on Germination, Survival and Growth of Freshwater Wetland Plants. EPA/699/X-90/236. U.S. Research Product, URL: http://www.epa.gov/ ged/publica/c1303.htm

    Google Scholar 

  • Walsh, G. and Weber, D. (1990f) Effects of Effluent from Allied Signal Company Chemical Plant on Germination, Survival and Growth of Freshwater Wetland Plants. EPA/699/x-90/235. U.S. Research Product, URL: http://www.epa.gov/ged/publica/c1302. htm

    Google Scholar 

  • Walsh, G. and Weber, D. (1990g) Germination, Survival and Growth of Echinochloa crusgall i and Sesbania macrocarpa in Koppers Coke Plant Effluent. EPA/699/X-90/237. U.S. Research Product, URL: http://www.epagov/ged/publica/c1304.htm

    Google Scholar 

  • Walsh, G., Weber, D., Brashers, L. and Simon, T. (1990) Artificial Sediments for Use in Tests with Wetland Plants. Environ. Exp. Bot. 30 (3), pp. 391–396

    Article  Google Scholar 

  • Walsh, G., Weber, D., Nguyen, M. and Brashers, L. (199ld) Three-Way Approach to Toxicity Testing with Wetland Plants (Abstract). Presented at the Firts ASTM Symposium on Environmental Toxicology and Risk Assessment: Aquatic, Plant, and Terrestrial, 14–16 April 1991, Atlantic, N.J. 1p, Research Product, URL: http://www.epa. gov/ged/publica/c 1778.htm

    Google Scholar 

  • Walsh, G., Weber, D., Nguyen, M. and Esry, L. (1991b) Responses of Wetland Plants to Effluents in Water and Sediment. Environ. Exp. Botany 31 (3), pp. 351–358

    Article  Google Scholar 

  • Walsh, G., Weber, D., Simon, T. and Brashers, L. (1991c) Toxicity Tests of Effluents with Marsh Plants in Water and Sediment. Environ. Toxicol. Chem. 10, pp. 517–525

    Article  CAS  Google Scholar 

  • Walsh, G., Weber, D., Simon, T., Brashers, L., and Moore, J. (1991a) Use of Marsh Plants for Toxicity Testing of Water and Sediment. In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds, American Society for Testing Materials, Philadelphia, pp. 341–354

    Chapter  Google Scholar 

  • Walton, D.G., Acton, A.B. and Stich, H.F. (1988) Chromosome aberrations in cultured central mudminnow heart cells and Chines hamster ovary cells exposed to polycyclic aromatic hydrocarbons and sediment extracts. Compo Pharmacol. Toxicol., 89 (2), 395–402

    CAS  Google Scholar 

  • Wang, W. (1986) Toxicity Tests of Aquatic Pollutants by Using Common Duckweed. Environ. Pol. (Series B), 11, pp. 1–4

    Article  CAS  Google Scholar 

  • Wang, W. (1987a) Root Elongation Method for Toxicity Testing of Organic and Inorganic Pollutants. Environ. Toxicol. Chem. 6, pp. 409–414

    Article  CAS  Google Scholar 

  • Wang, W. (1987b) Chromate Ion as a Reference Toxicant for Aquatic Phytotoxicity Tests. Environ. Toxicol. Chem. 6, pp. 935–960

    Article  Google Scholar 

  • Wang, W. (1990) Literature Review on Duckweed Toxicity Testing. Environ. Res. 52, pp. 7–22

    Article  CAS  Google Scholar 

  • Wang, W. (1991) Higher Plants (Common Duckweed, Lettuce, and Rice) for Effluent Toxicity Assessment. In: In: Plants for Toxicity Assessment: Second Volume, ASTM STP 1115, J.W. Gorsuch, W.R. Lower, W. Wang and M.A. Lewis, Eds., American Society for Testing Materials, Philadelphia, pp. 68–76

    Chapter  Google Scholar 

  • Wang, W. and Freemark, K. (1995) The Use of Plants for Environmental Monitoring and Assessment. Ecotox. Environ. Safety 30, pp. 289–301

    Article  CAS  Google Scholar 

  • Warren, L., Outridge, P. and Zimmermann, A. (1995) Geochemical Partitioning and Bioavailability of Copper to Aquatic Plants in an Artificial Oxide-Organic Sediment. Hydrobiologia, 304, pp. 197–207

    Article  CAS  Google Scholar 

  • Weber A (1981). An Uncomlicated Screening Test to Evaluate Toxicity of Environmental Hazardous Compounds in Water. ETL 2: 323–328

    Article  CAS  Google Scholar 

  • Weber, D., Walsh, G., and McGregor, M. (1995) Use of Vascular Aquatic Plants in Phytotoxicity Studies with Sediments. In: Environmental Toxicology and Risk Assessment —Third Volume, ASTM STP 1218, J. S. Hughes, G. R. Biddinger, and E. Mones., Eds., American Society for Testing and Materials, Philadelphia, pp. 187–200

    Chapter  Google Scholar 

  • Weßler, A., Dämgen, K., Hryk, R., Obst, U. (1996) Gewässergütebewertung auf der Basis mikrobieller Enzymaktivitäten und Bewertung von Abwasserfahnen in Rhein und Main mit biochemischen Methoden. Abschluβbericht des PWAB Forschungsvorhabens PW 93 125 und des ARW-Forschungsvorhabens. Wasserforschung Mainz

    Google Scholar 

  • Weβler, A., Erbes, M., Krolla-Sidenstein, P. und Obst, U. (1998) Nachweis von DNA-Schäden in aquatischen Protozoen und Aigen mit der Mikrogelelektrophorese (comet assay) für eine gentoxikologische Gewässergütebewertung von Oberflächenwasser. Acta Hydrochim. Hydrobiol. 26,2 S. 82–89

    Article  Google Scholar 

  • White, P.A., Ramussen, J.B. and Blaise, C. (1996) Sorption of Organic Genotoxins to Particulate Matter in Industrial Effluents. Environ. Mol. Mutagenesis 27, 140–151

    Article  CAS  Google Scholar 

  • Wiederholm, T., Wiederholm, A.M. & Milbrink, G. (1987) Bulk sediment bioassays with five species of fresh-water oligochaetes. Water, Air and Soil Pollution 36: 131–154

    Article  CAS  Google Scholar 

  • Williams, T. D., 1992. Survival and development of copepod larvae of Tisbe battagliai in surface microlayer, water and sediment elutriates from the German Bight. Mar. Ecol. Prog. Series 91: 221–228

    Article  Google Scholar 

  • Wong, P.T.S., Chau, Y.K., Ali, N. and Whittle, D.M. (1994) Biochemical and genotoxic effects in the vicinity of a pulp mill discharge. Environ. Toxicol. Wat. Qual. 9 (1), 59–70

    Article  CAS  Google Scholar 

  • Wrisberg, M.N. and van der Gaag, M.A. (1992) In vitro detection of genotoxicity in waste water from a wheat and rye paper pulp factory. Sci. Tot. Environ. 121, 95–108

    Article  CAS  Google Scholar 

  • Würgler FE (1993) Genetische Endpunkte. In: Fahrig, R. (Hrsg.): Mutationsforschung und genetische Toxikologie. Wiss. Buchgesellschaft Darmstadt

    Google Scholar 

  • Würgler, F.E. and Kramers, P.G.N. (1993) Environmental effects of genotoxins (ecogenotoxicology). Mutagenesis, 7/5: 321–327

    Google Scholar 

  • Yentsch CM, Cucci L, Phinney DA (1984) Flow cytometry and cell sorting: problems and promises for biological ocean science research.-In: O. Holm-Hansen, L. Bolis & R. Gilles (Hrsg.): Lecture Notes on Coastal and Estuarine Studies. Proceedings organized within the 5th conference of the European Society for Comparative Physiology and Biochemistry. Sept. 1983, Taormina, Sicily, Italy.

    Google Scholar 

  • Ziechmann W (1996) Huminstoffe und ihre Wirkungen. Huminstoffe und Enzyme. Spektrum Akademischer Verlag Heidelberg. S. 122 ff.

    Google Scholar 

  • Ziegelmayer B, Henschel T (1991) Änderung der mikrobiellen Stoffwechselaktivitäten im Flieβgewässer bei Stoβbelastungen. Vom Wasser 77, S. 67–75.

    CAS  Google Scholar 

  • Zimmer M und Ablf W (1994) Erarbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe. Hrsg. Umweltbundesamt. uba Texte 69/94. 121–123

    Google Scholar 

  • Zimmer M, Ablf W (1994) Bearbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe. UBA-Texte. 69/94

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahlf, W., Hansen, P.D., Lorch, D., Tippmann, P., Traunspurger, W., Weßler, A. (2001). Ökotoxikologische Testmethoden. In: Calmano, W. (eds) Untersuchung und Bewertung von Sedimenten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56483-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56483-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62661-6

  • Online ISBN: 978-3-642-56483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics