Skip to main content

A Common-Mode Skeleton Model for EMC Simulations

  • Conference paper
Scientific Computing in Electrical Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 18))

  • 574 Accesses

Abstract

Systems that consist of printed circuit boards with various digital and analog components, connecting wires and metal enclosures can show complex electromagnetic behaviour. A model is reviewed that allows for the calculation of the most important contribution to the emitted radiation from such systems. In this model the radiation is driven by common-mode voltage sources. The physical origin of these voltage sources is explained and the relevant electric field integral equation is derived. When planes are discretized by wire grids, the resulting equations can be analysed by means of a program like NEC. A program similar to NEC, named BERBER, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergervoet, J. R., G. P. J. F. M. Maas, M. J. C. M. van Doom, The commonmode skeleton model for assessment of electromagnetic compatibility at the system level, Proceedings of the 12th International Zürich Symposium on EMC (1997).

    Google Scholar 

  2. Bergervoet, J. B., Philips Journal of Research 48 (1994), p. 63–87.

    Google Scholar 

  3. Burke, G., A. Poggio, Numerical Electromagnetics Code (NEC)—Method of moments, Lawrence Livermore National Laboratory (1981).

    Google Scholar 

  4. See e.g., The unofficial Numerical Electromagnetic Code (NEC) Archives at http://www.qsl.net/wb6tpu/swindex.html.

  5. Jackson, J. D., Classical Electrodynamics, Third Edition, Wiley (1998).

    Google Scholar 

  6. Bergervoet, J.R., R. Rietman, Combined modelling of ICs, packages and PCBs using analytical equivalent-circuit approximations, Proceedings of the 13th international Zürich Symposium on EMC (1999).

    Google Scholar 

  7. Verbeek, Menno E., Repairing near-singularity for dense EMC problems by adaptive basis techniques, to appear in Numerical Linear Algebra with Applications, special issue with proceedings of the 1999 Minneapolis conference Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications (2000).

    Google Scholar 

  8. For an overview of iterative solution methods for linear equations see e.g., Saad, Y. and H. van der Vorst, Iterative Solution of Linear Systems in the 20-th Century, preprint available at http://www.math.uu.nl/people/vorst/ithistory.tgz, to appear in JCAM (2000).

  9. Schelkunoff, A. S. and H. T. Friis, Antennas; theory and practice Wiley (1952).

    Google Scholar 

  10. Wu, T.T. and R. P. King, The Tapered Antenna and Its Applications to the Junction Problem for Thin Wires, IEEE Transactions on Antennas and Propagation, Vol. AP 24 (1976).

    Google Scholar 

  11. The homepage of the Mesa project is http://www.mesa3d.org.

    Google Scholar 

  12. Kanwal, R.P., Linear Integral Equations, Theory and Technique, Second Edition, Birkhäuser (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rietman, R. (2001). A Common-Mode Skeleton Model for EMC Simulations. In: van Rienen, U., Günther, M., Hecht, D. (eds) Scientific Computing in Electrical Engineering. Lecture Notes in Computational Science and Engineering, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56470-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56470-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42173-3

  • Online ISBN: 978-3-642-56470-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics