Skip to main content

Particle Image Velocimetry

  • Chapter
Optical Measurements

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

Particle Image Velocimetry (PIV) belongs to the class of optical “whole- field” measuring techniques. The name of the method is self-explaining: The velocity distribution in a whole field of a fluid flow is determined by measuring the displacements Δs that the images of tracer particles experience during a time interval Δt. Local, instantaneous velocity values (and directions) w(x,y) = Δs / Δt are measured simultaneously at many positions (x, y) in the field of view. The idea of determining flow velocities by measuring the displacement of tracer particles is not quite new and was in practical use long before the name Particle Image Velocimetry appeared. The new name arose from the possibility of registering the particle images in digital form and efficiently handling the large amount of planar, quantitative data with the techniques of digital image processing. The state of the art for the period prior to the PIV era is well documented in the article by Emrich [414].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson S., Lonnes S. (1995) Uncertainty in calculating vorticity from 2D velocity fields using circulation and least-squares approaches. Exp Fluids 20:10–20

    Article  Google Scholar 

  2. Adria R.J. (1986) Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Appl Opt 25:3855–3858

    Article  ADS  Google Scholar 

  3. Adrian R.J. (1991) Particle-imaging Techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  ADS  Google Scholar 

  4. Barker D.B., Fourney M.E. (1977) Measuring fluid velocities with speckle patterns. Optics Letters 1:135–137

    Article  ADS  Google Scholar 

  5. Barnhart D.H., Adrian R.J., Papen G.C. (1994) Phase-conjugate holographic system for high-resolution particle image velocimetry. Appl Opt 33:7159–7170

    Article  ADS  Google Scholar 

  6. Brücker C, Althaus W. (1992) Study of vortex breakdown by particle tracking velocimetry (PTV). Part 1: Bubble-type vortex breakdown. Exp Fluids 13:339–349

    Article  Google Scholar 

  7. Brücker C. (1995) Digital Particle Image Velocimetry (DPIV) in a scanning light sheet: 3D starting flow around a short cylinder. Exp Fluids 19:255–263

    Article  Google Scholar 

  8. Buchhave P. (1994) Particle image velocimetry. In: Lading L., et al (Eds.) Optical Diagnostics for Flow Processes, Plenum Press, New York

    Google Scholar 

  9. Carasone F., Cenedese A., Querzoli G. (1995) Recognition of partially overlapped particle images using the Kohonen neural network. Exp Fluids 19:225–232

    Google Scholar 

  10. Cenedese A., Paglialunga A. (1989) A new technique for the determination of the third velocity component with PIV. Exp Fluids 8:228–230

    Article  Google Scholar 

  11. Cenedese A., Paglialunga A. (1990) Digital direct analysis of a multiexposed photograph in PIV. Exp Fluids 8:273–280

    Article  Google Scholar 

  12. Chen P.H., Yen J.Y., Chen J.L. (1998) An artificial neural network for double exposure PIV image analysis Exp Fluids 24:373–374

    Article  Google Scholar 

  13. Coupland J.M., Pickering C.J.D., Halliwell N.A. (1987) Particle image velocimetry: theory of directional ambiguity removal using holographic image separation. Appl Opt 26:1576–1578

    Article  ADS  Google Scholar 

  14. Coupland J.M., Halliwell N.A. (1992) Particle image velocimetry: Three-dimensional fluid velocity measurements using holographic recording and optical correlation. Appl Opt 31:1005–1007

    Article  ADS  Google Scholar 

  15. Drobniak S., Eisner J.W., El-Kassem E.S.A. (1998) The relationship between coherent structures and heat transfer processes in the initial region of a round jet. Exp Fluids 24:225–237

    Article  Google Scholar 

  16. Dudderar T.D., Simpkins P.G. (1977) Laser speckle photography in a fluid medium. Nature 270:45–47

    Article  ADS  Google Scholar 

  17. Eggels J.G.M., Unger F., Weiss M.H., Westerweel J., Adrian R.J., Friedrich R., Nieuwstadt F.T.M. (1994) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–209

    Article  ADS  Google Scholar 

  18. Emrich R.J. (1983) Flow field measurement by tracer photography. Exp Fluids 1:179–184

    Article  Google Scholar 

  19. Fincham A.M., Spedding G.R. (1997) Low cost, high resolution DPIV for measurement of turbulent fluid flow. Exp Fluids 23:449–462

    Article  Google Scholar 

  20. Fomin N.A. (1998) Speckle Photography for Fluid Mechanics Measurements. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Fouras A., Soria J. (1998) Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp Fluids 25:409–430

    Article  Google Scholar 

  22. Fujita I., Kaizu T. (1995) Correction method of erroneous vectors in PIV. J Flow Visual Image Processing 2:173–185

    Google Scholar 

  23. Gaydon M., Raffel M., Willert C., Rosengarten M., Kompenhans J. (1997) Hybrid stereoscopic particle image velocimetry. Exp Fluids 23:331–334

    Article  Google Scholar 

  24. Gogineni S., Visbal M., Shih C. (1999) Phase-resolved PIV measurements in a translational plane wall jet: a numerical comparison. Exp Fluids 27:126–136

    Article  Google Scholar 

  25. Grant I., Liu A. (1990) Directional ambiguity resolution in particle image velocimetry by pulse tagging. Exp Fluids 10:71–76

    Article  Google Scholar 

  26. Grant I., Pan X. (1995) An investigation of the performance of multi layer, neural networks applied to the analysis of PIV images. Exp Fluids 19:159–166

    Google Scholar 

  27. Grant I. (1997) Particle image velocimetry: a review. Proc Instn Mech Engrs 211:55–76

    Google Scholar 

  28. Grousson R., Mallick S. (1977): Study of flow pattern in a fluid by scattered laser light. Appl Opt 16: 2334–2336.

    Article  ADS  Google Scholar 

  29. Guezennec Y.G., Kiritsis N. (1990) Statistical investigation of errors in particle image velocimetry. Exp Fluids 10:138–146

    Article  Google Scholar 

  30. Guezennec Y.G., Brodkey R.D., Trigui N., Kent J.C. (1994) Algorithms for fully automated three-dimensional particle tracking velocimetry. Exp Fluids 17:209–219

    Article  Google Scholar 

  31. Gui L., Merzkirch W. (1996a) A method of tracking ensembles of particle images. Exp Fluids 21:465–468

    Article  Google Scholar 

  32. Gui L., Merzkirch W. (1996b) Phase separation of PIV measurements in twophase flow by applying a digital mask technique. ERCOFTAC Bull 30:45–48

    Google Scholar 

  33. Gui L., Merzkirch W. (1998) Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings. Exp Fluids 24:66–69

    Article  Google Scholar 

  34. Gui L., Merzkirch W. (1999) A comparative study of the MQD method and several correlation-based PIV evaluation algorithms. Exp Fluids 28

    Google Scholar 

  35. Hart DP (1996) Sparse array image correlation. In: Proc. 8th Intl Symp Appl Laser Techn Fluid Mech, Lisbon

    Google Scholar 

  36. Hartmann J., Köhler J., Stolz W., Flögel H.H. (1996) Evaluation of instation-ary flow fields using crosscorrelation in image sequences. Exp Fluids 20:210–217

    Article  Google Scholar 

  37. Hassan Y.A., Blanchat T.K., Seeley C.H., Canaan R.E. (1992) Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry. Int J Multiphase Flow 18:371–395

    Article  MATH  Google Scholar 

  38. Hassan Y.A., Philip O.G. (1997) A new artificial neural network tracking technique for particle image velocimetry. Exp Fluids 23:145–154

    Article  Google Scholar 

  39. Hilgers S. (1996) Darstellung der fluidmechanischen Prozesse in Blasensäulen-Reaktoren durch die Particle-Image-Velocimetry. Dissertation, Universität Essen

    Google Scholar 

  40. Hinsch KD (1993) Particle image velocimetry. In: Sirohi R.S. (Eds.) Specie Metrology, M Dekker, New York, 235–323

    Google Scholar 

  41. Huang H.T., Fiedler H.E., Wang J.J. (1993) Limitation and improvement of PIV. Part I: Limitation of conventional techniques due to deformation of particle image patterns. Exp Fluids 15:168–174

    Google Scholar 

  42. Huang H.T., Fiedler H.E., Wang J.J. (1993) Limitation and improvement of PIV. Part II: Particle image distortion, a novel technique. Exp Fluids 15:263–273

    Google Scholar 

  43. Huang H., Dabiri D., Gharib M. (1997) On errors of digital particle image velocimetry. Meas Sei Technol 8:1427–1440

    Article  ADS  Google Scholar 

  44. Jähne B. (1989) Digitale Bildverarbeitung. Springer, Berlin

    Book  MATH  Google Scholar 

  45. Keane R.D., Adrian R.J (1990) Optimization of particle image velocimeters. Part I. Double-pulsed systems. Meas Sei Technol 1:1202–1215

    Article  ADS  Google Scholar 

  46. Keane R.D., Adrian R.J. (1992) Theory of cross-correlation analysis of PIV images. Appl Sei Res 49:191–215

    Article  Google Scholar 

  47. Kemmerich T., Rath H.J. (1994) Multi-level convolution filtering technique for digital laser speckle velocimetry. Exp Fluids 17:315–322

    Article  Google Scholar 

  48. Khalili B. (1991) Study of the intake tumble motion by flow visualization and particle tracking velocimetry. Exp Fluids 10:230–236

    Google Scholar 

  49. Lallement J.P., Desailly R., Froehly C. (1977) Mesure de vitesse dans un liquide par diffusion coherente. Acta Astronautica 4:343–356

    Article  ADS  Google Scholar 

  50. Lawson N.J., Wu J. (1997) Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system. Meas Sei Technol 8:1455–1464

    Article  ADS  Google Scholar 

  51. Lecerf A., Renao B., Allano D., Boukhalfa A., Trinite M. (1999) Stereoscopic PIV: validation and application to isotropic turbulent flow. Exp Fluids 26:107–115

    Article  Google Scholar 

  52. Lindken R., Gui L., Merzkirch W. (1999) Velocity measurements in multiphase flow by means of particle image velocimetry. Chem Eng Technol 22:202–206

    Article  Google Scholar 

  53. Lueptow RM., Akonur A., Shinbrot T. (1999) PIV for granular flows. Exp Fluids 27

    Google Scholar 

  54. Lourenco L., Krothapalli A.(1995) On the accuracy of velocity and vorticity measurements with PIV. Exp Fluids 18:421–428

    Article  Google Scholar 

  55. Maas H.G., Gruen A., Papantoniou D. (1993) Particle tracking velocimetry in three-dimensional flows. Part I: Photogrammetric determination of particle coordinates. Exp Fluids 15:133–146

    Article  Google Scholar 

  56. Malik N.A., Dracos T., Papantoniou D.A. (1993) Particle tracking velocimetry in three-dimensional flows. Part II: Particle tracking. Exp Fluids 15:279–294

    Article  Google Scholar 

  57. Meinhart CD., Wereley ST., Santiago J.G. (1999) PIV measurements of a microchannel flow. Exp Fluids 27

    Google Scholar 

  58. Melling A. (1997): Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  ADS  Google Scholar 

  59. Merzkirch W., Mrosewski T., Wintrich H. (1994) Digital partiele image ve-locimetry applied to a natural convective flow. Acta Mechanica (Suppl.) 4:19–26

    Google Scholar 

  60. Nogueira J., Lecuona A., Rodriguez P.A. (1999) Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp Fluids 27:107–116

    Article  Google Scholar 

  61. Okamoto K., Hassan Y.A., Schmidl W.D. (1995) New tracking algorithm for particle image velocimetry. Exp Fluids 19:342–347

    Article  Google Scholar 

  62. Prasad A.K., Adrian R.J., Landreth C.C., Offutt P.W. (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116

    Article  Google Scholar 

  63. Prasad A.K., Adrian R.J. (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60

    Article  Google Scholar 

  64. Prenel J.P., Porcar R.E.I., Rhassouli A. (1989) Three-dimensional flow analysis by means of sequential and volumic laser sheet illumination. Exp Fluids 7:133–137

    Article  Google Scholar 

  65. Raffel M., Kompenhans J. (1995) Theoretical and experimental aspects of image shifting by means of a rotating mirror system for particle image velocimetry. Meas Sci Technol 6:795–808

    Article  ADS  Google Scholar 

  66. Raffel M., Gharib M., Ronneberger O., Kompenhans J. (1995a) Feasibility study of three-dimensional PIV by correlating images of particles within parallel light sheet planes. Exp Fluids 19:69–77

    Article  Google Scholar 

  67. Raffel M., Kompenhans J., Wernert P. (1995b) Investigation of the unsteady flow field above an airfoil pitching under deep dynamic stall conditions. Exp Fluids 19:103–111

    Article  Google Scholar 

  68. Raffel M., Kost F. (1998) Investigation of aerodynamic effects of coolant ejection at the trailing edge of a turbine blade model by PIV and pressure measurements. Exp Fluids 24:447–461

    Article  Google Scholar 

  69. Raffel M., Willert C, Kompenhans J. (1998): Particle Image Velocimetry. A Practical Guide. Springer, Berlin

    Google Scholar 

  70. Rösgen T., Totaro R. (1995) Two-dimensional on-line particle image velocimetry. Exp Fluids 19:188–193

    Google Scholar 

  71. Royer H. (1997) Holography and particle image velocimetry. Meas Sei Technol 8:1562–1572

    Article  ADS  Google Scholar 

  72. Sadeh M., Strauss K., Schneider T. (1997) A combined PIV/LIF system for the measurement of heterogeneous drag reduction effects in a pipe flow. Exp Fluids 22:292–299

    Article  Google Scholar 

  73. Scarano F., Riethmuller F.M. (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26:513–523

    Article  Google Scholar 

  74. Schneider F., Merzkirch W., Rettich T. (1999) PIV visualization of coherent structures for analyzing an ultrasonic flow metering approach. In: Proc 8th Intl Conf Laser Anemometry—Advances & Applications, EALA

    Google Scholar 

  75. Sinha S.K. (1988) Improving the accuracy and resolution of particle image or laser speckle velocimetry. Exp Fluids 6:67–68

    Article  Google Scholar 

  76. Soloff S.M., Adrian R.J., Liu Z.C. (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sei Technol 8:1441–1454

    Article  ADS  Google Scholar 

  77. Song X., Yamamoto F., Iguchi M., Murai Y. (1999) A new tracking algorithm of PIV and removal of spurious vectors using Delaunay tesselation. Exp Fluids 26:371–380

    Article  Google Scholar 

  78. Sridhar G., Katz J. (1995) Drag and lift forces on microscopic bubbles entrained by a vortex. Phys Fluids 7:389–399.

    Article  ADS  Google Scholar 

  79. Volino R.J., Smith G.B. (1999) Use of simultaneous IR temperature measurements and DPIV to investigate thermal plumes in a thick layer cooled from above. Exp Fluids 27:70–78

    Article  Google Scholar 

  80. Wernet M.P., Pline A. (1993) Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery. Exp Fluids 15:295–307

    Article  Google Scholar 

  81. Westerweel J. (1993) Digital Particle Image Velocimetry—Theory and Application. Delft University Press, Delft

    Google Scholar 

  82. Westerweel J. (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247

    Article  Google Scholar 

  83. Westerweel J., Draad A.A., van der Hoeven J.G.T., van Oord J. (1996) Measurement of fully developed pipe flow with digital particle image velocimetry. Exp Fluids 20:165–177

    Article  Google Scholar 

  84. Westerweel J., Dabiri D., Gharib M. (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp Fluids 23:20–28

    Article  Google Scholar 

  85. Willert C.E., Gharib M. (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

  86. Willert C. (1996) The fully digital evaluation of photographic PIV recordings. Appl Sei Res 56:79–102

    Article  Google Scholar 

  87. Willert C. (1997) Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas Sei Technol 8:1465–1479

    Article  ADS  Google Scholar 

  88. Wozniak K., Wozniak G., Rösgen T. (1990) Particle image velocimetry applied to thermocapillary convection. Exp Fluids 10:12–16

    Article  Google Scholar 

  89. Xiong W., Merzkirch W. (1999) PIV experiments using an endoscope for studying pipe flow. J Flow Visualization and Image Processing

    Google Scholar 

  90. Zhang Z., Eisele K. (1995) The two-dimensional velocity shift caused by the use of a rotating mirror in PIV flow field measurements. Exp Fluids 20:106–111

    Article  Google Scholar 

  91. Nordmann, D. Mayinger, F. (1981) Temperatur, Druck und Wärmetransport in der Umgebung kondensierender Blasen, VDI Forschungsheft, 605, VDI Verlag Düsseldorf.

    Google Scholar 

  92. Chen, Y.M. (1985) Wärmeübergang an der Phasengrenze kondensierender Blasen, Diss. Techn. Universität München.

    Google Scholar 

  93. Chen, Y.M., Mayinger, F. (1992), Measurements of Heat Transfer at the Phase-Interface of Condensing Bubbles, Int. J. Multiphase Flow, No 18, No 6, pp. 877–890.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merzkirch, W. (2001). Particle Image Velocimetry. In: Mayinger, F., Feldmann, O. (eds) Optical Measurements. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56443-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56443-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63079-8

  • Online ISBN: 978-3-642-56443-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics