Skip to main content

Instrumentation

  • Chapter
Interplanetary Dust

Part of the book series: Astronomy and Astrophysics Library ((AAL))

Abstract

Information on the dynamics and properties of interplanetary dust is obtained from in-situ detectors on board Earth satellites and deep space probes. This chapter reviews the methods of detection and discusses their strengths and limitations. Detailed descriptions are given for those detectors which have significantly advanced the state of the art of interplanetary dust research. Also reviewed are laboratory facilities required for the calibration of the detectors with fast (1 to 100 km S-l) dust particles and for the simulation of electrical charging of dust in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, J. A. 1990. Impact flash jet initiation phenomenology. Int. J. Impact Eng., 10, pp. 23–33.

    Article  ADS  Google Scholar 

  • Auer, S. 1972. Cosmic dust impact location detector. U.S. Patent no. 3,694,655.

    Google Scholar 

  • Auer, S. 1974. The asteroid belt: Doubts about the particle concentration measured with the Asteroid/Meteoroid Detector on Pioneer 10. Science, 186, pp. 650–652.

    Article  ADS  Google Scholar 

  • Auer, S. 1975. Two high resolution velocity vector analyzers for cosmic dust particles. Rev. Sci. Instrum., 46, pp. 127–135.

    Article  ADS  Google Scholar 

  • Auer, S. 1982. Imaging by dust rays: a dust ray camera. Optica Acta, 29/10, pp. 1421–1426.

    Google Scholar 

  • Auer, S. 1984. Space debris monitor. Feasibility study. Final Report to NASA Johnson Space Center under contract NAS9-17028.

    Google Scholar 

  • Auer, S. 1994a. Plasma produced by impacts of fast dust particles on a thin film. LPI Tech. Rpt. 94–05, pp. 21-25.

    Google Scholar 

  • Auer, S. 1994b. CDCF trajectory sensor development and calibration. Final Report for NASA Johnson Space Center under purchase order no. T-2899T.

    Google Scholar 

  • Auer, S. 1996. Accuracy of a velocity/trajectory sensor for charged dust particles. In Physics, Chemistry, and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner (Provo, Utah: Astronomical Soc. of the Pacific Press), pp. 251–254.

    Google Scholar 

  • Auer, S. 1998. Impact ionization from silica aerogel. Int. J. Impact Eng., 21, pp. 89–95.

    Article  Google Scholar 

  • Auer, S. and Berg, O.E. 1975. Composition analyzer for microparticles using a spark ion source. Rev. Sci. Instrum., 46, pp. 1530–1534.

    Article  ADS  Google Scholar 

  • Auer, S., and Sitte, K. 1968. Detection technique for micrometeoroids using impact ionization. Earth Planet. Sci. Leiters, 4, pp. 178–183.

    Article  ADS  Google Scholar 

  • Auer, S., and von Bun, F. O. 1994. Highly transparent and rugged sensor for velocity determinations of cosmic dust particles. LPI Tech. Rpt., 94-05, pp. 25–29.

    Google Scholar 

  • Beard, R. 1991. Impacts on the meteoroid and rear shields of the Giotto spacecraft at the GEM encounter with Grigg-Skjellerup. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: Univ. of Kent), pp. 94–99.

    Google Scholar 

  • Berg, O. E., and Grün, E. 1973. Evidence of hyperbolic cosmic dust particles. Space Research, XIII, (Berlin: Akademie-Verlag), pp. 1047–1055.

    Google Scholar 

  • Berg, O. E., and Meredith, L. H. 1956. Meteorite impacts to altitude of 103 kilometers. J. Geophys. Res., 61, pp. 751–754.

    Article  ADS  Google Scholar 

  • Berg, O. E., and Richardson, F. F. 1969. The Pioneer 8 Cosmic Dust Experiment. Rev. Sci. Instrum., 40, pp. 1333–1337.

    Article  ADS  Google Scholar 

  • Berg, O. E., Richardson, F. F., and Burton, H. 1973. Lunar ejecta and meteorites experiment. Apollo 17 Prelim. Science Report, NASA SP-330, 16-1.

    Google Scholar 

  • Berg, O. E., Wolf, H., and Rhee, J. 1975. Lunar soil movement registered by the Apollo cosmic dust experiment. Proc. IA U Colloq., 31, pp. 233–238.

    ADS  Google Scholar 

  • Bohn, J. L., and Nadig, F.H. 1950. Researches in the physical properties of the upper atmosphere with special emphasis on acoustical studies with V-2 rockets. Report No.8 (Research Institute of Temple University), pp. 1–26.

    Google Scholar 

  • Boehnhardt, H., and Fechtig, H. 1987. Electrostatic charging and fragmentation of dust near P /Giacobini-Zinner and P /Halley. Astron. Astrophys., 187, pp. 824–828.

    ADS  Google Scholar 

  • Burchell, M. J., Kay, L., and Ratcliff, P. R. 1996. Use of combined light flash and plasma measurements to study hypervelocity impact processes. Adv. Space Res., 17/12, pp. (12)141–(12)145.

    ADS  Google Scholar 

  • Burton, W. M. 1983. Cometary particle impact simulation using pulsed lasers. Adv. Space Res., 2/12, pp. 255–258.

    ADS  Google Scholar 

  • Cable, A. J. 1970. Hypervelocity accelerators. In High-velocity impact phenomena, ed. Ray Kinslow (New York, London: Academic Press), pp. 1–21.

    Google Scholar 

  • Capaccioni, F., and McDonnell, J. A. M. 1986. Experimental measurement of particle deceleration and survival in multiple thin foil targets. Adv. Space Res., 6/7, pp. 17–20.

    Article  ADS  Google Scholar 

  • čermák, I., Grün, E., and Švestka;, J. 1995. New results in studies of electric charging of dust particles. Adv. Space Res., 15, pp. (10)59–(10)64.

    Article  Google Scholar 

  • Chow, V. W., Mendis, D. A., and Rosenberg, M. 1993. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res., 98, pp. 19,065–19,076.

    Article  ADS  Google Scholar 

  • Christiansen, E. L. 1993. Design and performance equations for advanced meteoroid and debris shields. Int. J. Impact Eng., 14, pp. 145–156.

    Article  Google Scholar 

  • Christiansen, E. L., and Kerr, J. H. 1993. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection. Int. J. Impact Eng., 14, pp. 169–180.

    Article  Google Scholar 

  • Crozier, W. D., and Hume, W. 1957. High-velocity, light1gas gun. J. Appl. Phys., 28, pp. 892–894.

    Article  ADS  Google Scholar 

  • Cour-Palais, B. G., and Crews, J. L. 1990. A multi-shock concept for spacecraft shielding. Int. J. Impact Eng., 10, pp. 135–146.

    Article  Google Scholar 

  • Dalmann, B.-K., Griln, E., Kissel, J., and Dietzel, H. 1977. The ion composition of the plasma produced by impact of fast particles. Planet. Space Sci., 25, pp. 135–147.

    Article  ADS  Google Scholar 

  • Dietzel, H., Neukum, G., and Rauser, P. 1972. Micrometeoroid simulation studies on metal targets. J. Geophys. Res., 77, pp. 1375–1395.

    Article  ADS  Google Scholar 

  • Dietzel, H., Eichhorn, G., Fechtig, H., Griln, E., Hoffmann, H.-J., and Kissel, J. 1973. The HEOS 2 and Helios micro meteoroid experiments. J. Phys. (E) Scientific Instrum., 6, pp. 209–217.

    Article  ADS  Google Scholar 

  • Dow, K. L., Sykes, M. V., Low, F. J., and Vilas, F. 1990. The detection of Earth orbiting objects by IRAS. Adv. Space Res., 10, pp. (3)381–(3)384.

    ADS  Google Scholar 

  • Draine, B. T., and Salpeter, E. E. 1979. On the physics of dust grains in a hot gas. Astrophys. J., 231, pp. 77–94.

    Article  ADS  Google Scholar 

  • Drapatz, G., and Michel, K. W. 1974. Theory of shock-wave ionization upon high-velocity impact of micrometeorites. Z. Naturforsch., 29 a, pp. 870–879.

    ADS  Google Scholar 

  • Edenhofer, P., Bird, M. K., Brenkle, J. P., Buschert, H., Esposito, P. B., Porsche, H., and Volland, H. 1986. First results from the Giotto radio-science experiment. Nature, 321, pp. 355–357.

    Article  ADS  Google Scholar 

  • Eichhorn, G. 1974. Untersuchung der Lichtemission bei Hochgeschwindigkeitseinschlagen. Dissertation (University of Heidelberg, Germany).

    Google Scholar 

  • Eichhorn, G. 1975. Measurements of the light flash produced by high velocity particle impact. Planet. Space Sci., 23, pp. 1519–1525.

    Article  ADS  Google Scholar 

  • Eichhorn, G. 1976. Analysis of the hypervelocity impact process from impact flash measurements. Planet. Space Sci., 24, pp. 771–78l.

    Article  ADS  Google Scholar 

  • Eichhorn, G. 1978a. Heating and vaporization during hypervelocity particle impact. Planet. Space Sci., 26, pp. 463–467.

    Article  ADS  Google Scholar 

  • Eichhorn, G. 1978 b. Primary velocity dependence of impact ejecta parameters. Planet. Space Sci., 26, pp. 469–47l.

    Article  ADS  Google Scholar 

  • Fechtig, H., Griln, E., and Morfill, G. 1979. Micrometeoroids within ten Earth radii. Planet. Space Sci., 27, pp. 511–531.

    Article  ADS  Google Scholar 

  • Friichtenicht, J. F. 1962. Two-million-Volt electrostatic accelerator for hypervelocity research. Rev. Sci. Instrum., 34, pp. 209–212.

    Article  ADS  Google Scholar 

  • Friichtenicht, J. F. 1964. Micrometeoroid simulation using nuclear accelerator techniques. Nucl. Instrum. Meth., 28, pp. 70–78.

    Article  ADS  Google Scholar 

  • Goller, J. R., and Griln, E. 1989. Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles. Planet. Space Sci., 37, pp. 1197–1206.

    Article  ADS  Google Scholar 

  • Griln, E. 1981. Physikalische und chemische Eigenschaften des interplanetaren Staubes - Messungen des Mikrometeoritenexperimentes auf Helios. Bundesministerium fü;r Forschung und Technologie, Report BMFT-FB-?W 81-034.

    Google Scholar 

  • Griln, E. 1984. Impact ionization from gold, aluminium and PCB-Z. In The Giotto Spacecraft, eds. E. Wolfe and B. Battrick, ESA SP-224, pp. 39–41.

    Google Scholar 

  • Griln, E., Berg, O. E., and Dohnanyi, J. S. 1973. Reliability of cosmic dust data from Pioneers 8 and 9. Space Research, XIII, (Akademia- Verlag), pp. 1057–1062.

    Google Scholar 

  • Griln, E., Fechtig, H., Gammelin, P., and Kissel, J. 1975. Das Staubexperiment auf Helios (E10). Raumfahrtforschung, 19, pp. 268–269.

    ADS  Google Scholar 

  • Griln, E., Fechtig, H., Gammelin, P., Kissel, J., Auer, S., Braun, G., Dalman, B.-K., Dietzel, H., and Hoffmann, H.-J. 1979. Das Helios-Mikrometeoritenexperiment (Sonnensonde Helios A und B - Experiment 10). Bundesministerium fü;r Forschung und Technologie, Report BMFT-FB-W 79-09.

    Google Scholar 

  • Griln, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Maas, D., Morfill, G. E. and Zook, H. A. 1992 a. The Galileo dust detector. Space Sci. Rev., 60, pp. 317–340.

    ADS  Google Scholar 

  • Grün, E., Fechtig, H., Giese, R. H., Kissel, J., Linkert, D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G. and Zook, H. A. 1992b. The Ulysses dust experiment. Astron. Astrophys. Suppl. Ser., 92, pp. 411–423.

    ADS  Google Scholar 

  • Grün, E., Morfill, G. E., and Mendis, D. A. 1984. Dust-magnetosphere interactions. In Planetary Rings, eds. R. Greenberg and A. Brahic (Tucson: Univ. of Arizona Press), pp. 275–332.

    Google Scholar 

  • Grün, E. and Rauser, P. 1969. Penetration studies of iron dust particles in thin foils. Space Research, IX, eds. K.S.W. Champion et al., pp. 147–154.

    Google Scholar 

  • Grün, E. and 22 co-authors 1993. Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Grün, E., Gallagher, D., Kurth, W. S., and Scarf, F. L. 1983. Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus, 53, pp. 236–254.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Scarf, F. L., Burns, J. A., Cuzzi, J. N., and Grün, E. 1987. Micron-sized particle impacts detected near Saturn by the Voyager 2 plasma wave instrument. J. Geophys. Res., 92, pp. 14,959–14,968.

    Article  ADS  Google Scholar 

  • Hansen, D. O. 1968. Mass analysis of ions produced by hypervelocity impact. Appl. Phys. Letters, 13, pp. 89–91.

    Article  ADS  Google Scholar 

  • Hastings, E. C. 1964. The Explorer XVI micrometeoroid satellite. Supplement III, preliminary results for period May 27, 1963 through July 22, 1963. NASA TM X-949.

    Google Scholar 

  • Hoffmann, H.-J., Fechtig, H., Grün, E. and Kissel, J. 1975a. First results of the micrometeoroid experiment S 215 on the HEOS 2 satellite. Planet. Space Sci., 23, pp. 215–224.

    Article  ADS  Google Scholar 

  • Hoffmann, H.-J., Fechtig, H., Grün, E., and Kissel, J. 1975b. Temporal fluctuations and anisotropy of the micrometeoroid flux in the Earth-moon system measured by HEOS 2. Planet. Space Sci., 23, pp. 985–991.

    Article  ADS  Google Scholar 

  • Hornung, K., and Kissel, J. 1994. On shock wave impact ionization of dust particles. Astron. Astrophys., 291, pp. 324–336.

    ADS  Google Scholar 

  • Hornung, K., Malama, Yu. G., and Thomas, K. 1996. Modeling of the very high velocity impact process with respect to in-situ ionization measurements. Adv. Space Res., 17/12, pp. (12)77–(12)86.

    ADS  Google Scholar 

  • Harz, F., Cintala, M. J., Bernhard, R. P. and See, T. H. 1994. Dimensionally scaled penetration experiments: aluminum targets and glass projectiles 50 /Lm to 3.175 mm in diameter. Int. J. Impact Eng., 15, pp. 257–280.

    Article  Google Scholar 

  • Harz, F., Cintala, M. J., Bernhard, R. P., Cardenas, F., Davidson, W. E., Haynes, G., See, T. H., and Winkler, J. L. 1995. Penetration experiments in aluminium 1100 targets using soda-lime glass projectiles. NASA Technical Memorandum 104813.

    Google Scholar 

  • Humes, D. H., Alvarez, J. M., O’Neal, R. L., and Kinard, W. H. 1974. The interplanetary and near-Jupiter meteoroid environments. J. Geophys. Res., 79, 25, pp. 3677–3684.

    Article  ADS  Google Scholar 

  • Hudepohl, A., Rott, M., and Igenbergs, E. 1989. Coaxial plasma accelerator with compression coil and radial gas injection. IEEE Trans. Magnetics, 25, pp. 232–237.

    Article  ADS  Google Scholar 

  • Igenbergs, E., Aigner, S., Hudepohl, A., Iglseder, H., Kuczera, H., Rott, M., and Weishaupt, U. 1987. Launcher technology, in-flight velocity measurement and impact diagnostics at the TUM/LRT. Int. J. Impact Eng., 5, pp. 371–380.

    Article  Google Scholar 

  • Igenbergs, E., Hudepohl, A., Uesugi, K., Hayashi, T., Svedhem, H., Iglseder, H., Koller, G., Glasmachers, A., Grün, E., Schwehm, G., Mizutani, H., Yamamoto, T., Fujimura, A., Ishii, N., Araki, H., Yamakoshi, K. and Nogami, K. 1991. The Munich dust counter-A cosmic dust experiment on board of the MUSES-A mission of Japan. In Origin and evolution of interplanetary dust, eds. A. C. Levasseur-Regourd et al., (Kluwer Academic Publishers), pp. 45–48.

    Google Scholar 

  • Isbell, W. M. 1987. Historical overview of hypervelocity impact diagnostic technology. Int. J. Impact Eng., 5, pp. 389–410.

    Article  Google Scholar 

  • Jean, B. and Rollins, T. L. 1970. Radiation from hypervelocity impact generated plasma. AIAA Journal, 8, pp. 1742–1748.

    Article  ADS  Google Scholar 

  • Kassel, P. C., Jr. 1973. Characteristics of capacitor-type micrometeoroid flux detectors when impacted with simulated micrometeoroids. Technical Note D-7359, NASA, Washington.

    Google Scholar 

  • Keaton, P. W., Idzorek, G. C., Rowton Sr., L. J., Seagrave, J. D., Stradling, G. L., Bergeson, S. D., Collopy, M. T., Curling Jr., H. L., McColl, D. B., and Smith, J. D. 1990. A hypervelocity-microparticle-impacts laboratory with 100 km/s projectiles. Int. J. Impact Eng., 10, pp. 295–308.

    Article  Google Scholar 

  • Kern, H. E., and McKenzie, J. M. 1970. Noise studies of ceramic encapsulated junction field effect transistors (JFETs). IEEE Trans. Nucl. Sci., 17/3, pp. 425–432.

    Article  ADS  Google Scholar 

  • Kissel, J. 1986. The Giotto particulate impact analyser. ESA SP-1077, pp. 67–83.

    Google Scholar 

  • Kissel, J., and Krueger, F. R. 1987. Ion formation by impact of fast dust particles and comparison with related techniques. Appl. Phys. A, 42, pp. 69–85.

    Article  ADS  Google Scholar 

  • Knabe and Krueger 1982. Ion formation from alkali iodide solids by swift dust particle impact. Z. Naturforsch., 37a, pp. 1335–1340.

    ADS  Google Scholar 

  • Krueger, F. R. 1996. Ion formation by high- and medium-velocities dust impacts from laboratory measurements and Halley results. Adv. Space Res., 17/12, pp. (12)71–(12)75.

    ADS  Google Scholar 

  • Leese, M. R., McDonnell, J. A. M., Green, S. F., Busoletti, E., Clark, B. C., Colangeli, L., Crifo, J. F., Eberhardt, P., Giovane, F., Grün, E., Gustafson, B., Hughes, D. W., Jackson, D., Lamy, P., Langevin, Y., Mann, I., McKenna-Lawlor, S., Tanner, W. G., Weissman, P. R., and Zarnecki, J. C. 1996. Dust flux analyser experiment for the Rosetta mission. Adv. Space Res., 17/12, pp. 137–140.

    Article  ADS  Google Scholar 

  • Leinert, C., and Kliippelberg, D. 1974. Stray light suppression in optical space experiments. Applied Optics, 13, pp. 556–564.

    Article  ADS  Google Scholar 

  • Leinert, C., Link, H., Pitz, E., Salm, N., and Kliippelberg, D. 1975. The Helios zodiacal light experiment (E9). Raumfahrtforschung, 19/5, pp. 264–267.

    ADS  Google Scholar 

  • Leinert, C., Pitz, E., Link, H., and Salm, N. 1981. Calibration and in-flight performance of the zodiacal light experiment on Helios. Space Science Instrumentation, 5, pp. 257–270.

    ADS  Google Scholar 

  • Mamyrin, B. A., Karataev, V. I., Shmikk, D. V., and Zagulin, V. A. 1973. The massreflect ron, a new non-magnetic time-of-flight mass spectrometer with high resolution. Zh. Eksp. Teor. Fiz., 64, pp. 82–89, and Sov. Phys.-JETP, 37, pp. 45-48 (in English).

    Google Scholar 

  • Martelli, G., and Cerroni, P. 1983. Hypervelocity acceleration techniques: a review of existing capabilities and prospects for future developments. Adv. Space Res., 2, pp. 259–268.

    Article  ADS  Google Scholar 

  • McDonnell, J. A. M. 1970. Factors affecting the choice of foils for penetration experiments in space. Space Research, X, (North Holland), pp. 314–325.

    Google Scholar 

  • McDonnell, J. A. M., and Abellanas, C. 1972. A technique for position sensing and improved momentum evaluation of microparticle impacts in space. Rev. Sci. Instrum., 43, pp. 1214–1216.

    Article  Google Scholar 

  • McDonnell, J. A. M., Alexander, M., Lyons, D., Tanner, W., Anz, P., Hyde, T., Chen, A.L., Stevenson, T. J., and Evans, S. T. 1984. The impact of dust grains on fast fly-by spacecraft: momentum multiplication, measurements and theory. Adv. Space Res., 4/9, pp. 297–301.

    Article  ADS  Google Scholar 

  • McDonnell, J. A. M., and 24 co-authors 1986a. The Giotto dust impact detection system. ESA SP-1077, pp. 85–107.

    Google Scholar 

  • McDonnell, J. A. M. and 27 co-authors 1986b. Dust density and mass distribution near comet Halley from Giotto observations. Nature, 321, pp. 338–341.

    Article  ADS  Google Scholar 

  • McDonnell, J. A. M., and Sullivan, K. 1992. Hypervelocity impacts on space detectors: decoding the projectile parameters. Proc. Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: Univ. of Kent, 1-5 July 1991), pp. 39–47.

    Google Scholar 

  • McMillan, A. R. 1968. Experimental investigations of simulated meteoroid damage to various spacecraft structures. Contractor Report, contract no. NAS9-3081, NASA CR-915, p. 89.

    Google Scholar 

  • Meshejian, W. K., Ramamurti, K., Trower, W. P., and Wollan, D. S. 1970. A gas density detector for use in space. J. Spacecr. Rockets, 7, pp. 1228–1233.

    Article  ADS  Google Scholar 

  • Miller, M. S., Evans, D. C., Moseley, H., and Ludwig, U. W., 1982. Optical design of the Diffuse Infrared Background Experiment for NASA’s Cosmic Background Explorer. SPIE 331 Instrumentation in Astronomy, IV, pp. 483–489.

    ADS  Google Scholar 

  • Miinzenmayer, R. 1995. Beiträge zur experimentellen Erforschung des Staubes im Weltall. Ph. D. Thesis, (Mü;nchen: Technische Universität).

    Google Scholar 

  • Naumann, R. J., Jex, D. W., and Johnson, C. L. 1969. Calibration of Pegasus and Explorer XXIII detector panels. NASA Technical Report R-321.

    Google Scholar 

  • Oberc, P. 1996. Electric antenna as a dust detector. Adv. Space Res., 17/12, pp. 105–110.

    Article  ADS  Google Scholar 

  • Perruchot, S., Lamy, P. L., Giovane, F., and Gustafson, B. Å. S. 1996. Concepts for dust velocity measurements on a cometary orbiter. Proceedings, IAU Colloquium 150.

    Google Scholar 

  • Peterson, R. 1994. Charge collection during hypervelocity penetrations of thin foils. LPI Tech. Rpt. 94-05. pp. 64–76.

    Google Scholar 

  • Ratcliff, P. R., McDonnell, J. A. M., Firth, J. G., and Grün, E. 1992. The cosmic dust analyser. J. Brit. Interplan. Soc., 45q, pp. 375–380.

    Google Scholar 

  • Ratcliff, P. R., Gogu, F., Grün, E., and Srama, R. 1996. Plasma produced by secondary impacts: implications for velocity measurements by in-situ dust detectors. Adv. Space Res., 17/12, pp. (12)111–(12)115.

    Google Scholar 

  • Rudolph, V. 1966. Massen-Geschwindigkeitsfilter fiir kiinstlich beschleunigten Staub. Z. Naturforsch., 21a, pp. 1993–1996.

    ADS  Google Scholar 

  • Schleicher, B., Burtscher, H., and Siegmann, H.C. 1994. Photoelectric quantum yield of nanometer metal particles. Applied Phys. Letters, 63(9), p. 1191.

    Google Scholar 

  • Seigel, A. E. 1979. Theory of high-muzzle-velocity guns. In Interior ballistics of guns, eds. H. Krier and M. Summerfield, ctProgress in Astronautics and Aeronautics, vol. 66, (published by the AIAA), pp. 135–175 (Eq. 23).

    Google Scholar 

  • Shelton, H., Hendricks Jr., C. D., and Wuerker, R. F. 1960. Electrostatic acceleration of microparticles to hypervelocities. J. Appl. Phys., 31, pp. 1243–1246.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Rabinowitz, D., Tuzzolino, A. J., Ksanfomality, L. V., and Sagdeev, R. Z. 1987. The dust coma of comet P /Halley: measurements on the VeGa-1 and VeGa-2 spacecraft. Astron. Astrophys., 187, pp. 742–752.

    ADS  Google Scholar 

  • Simpson, J. A., Rabinowitz, D., and Tuzzolino, A. J. 1989. Cosmic dust investigations I. PVDF detector signal dependence on mass and velocity for penetrating particles. Nucl. Instr. and Meth., A279, pp. 611–624.

    ADS  Google Scholar 

  • Simpson, J. A., and Tuzzolino, A. J. 1985. Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nucl. Instr. and Meth., A236, pp. 187–202.

    ADS  Google Scholar 

  • Simpson, J. A., and Tuzzolino, A. J. 1989. Cosmic dust investigations II. Instruments for measurement of particle trajectory, velocity and mass. Nucl. Instr. and Meth., A279, pp. 625–639.

    ADS  Google Scholar 

  • Singer, S. F., Stanley, J. E., and Kassel, P. C. 1985. The LDEF interplanetary dust experiment. In Properties and Interactions of Interplanetary Dust, eds. R. H. Giese and P. Lamy (Dordrecht: Reidel), pp. 117–120.

    Google Scholar 

  • Slattery, J. C., Becker, D. G., Hammermesh, B., and Roy, N. L. 1973. A linear accelerator for simulated micrometeors. Rev. Sci. Instrum., 44, pp. 755–762.

    Article  ADS  Google Scholar 

  • Soberman, R. K., Neste, S. L., and Lichtenfeld, K. 1974a. Particle concentration in the asteroidal belt from Pioneer 10. Science, 183, pp. 320–321.

    Article  ADS  Google Scholar 

  • Soberman, R. K., Neste, S. L., and Lichtenfeld, K. 1974b. Optical measurement of interplanetary particulates from Pioneer 10. J. Geophys. Res., 79, 25, pp. 3685–3694.

    Article  ADS  Google Scholar 

  • Srama, R., Grün, E., and the Cassini Dust Science Team 1996. The cosmic dust analyzer for the Cassini mission to Saturn. In Physics, Chemistry, and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner (Provo, Utah: Astronomical Soc. of the Pacific Press), pp. 227–231.

    Google Scholar 

  • Srama, R., Bradley, J. G., Grün, E., Ahrens, T. J., Auer, S., Cruise, M., Fechtig, H., Graps, A., Havnes, o., Heck, A., Helfert, S., Igenbergs, E., Jessberger, E. K., Johnson, T. V., Kempf, S., Krü;ger, H., Lamy, P., Landgraf, M., Linkert, D., Lura, F., McDonnell, J. A. M., Möhlmann, D., Morfill, G. E., Schwehm, G. H., Stü;big, M., Švestka;, J., Tuzzolino, A. J., Wäsch, R., and Zook, H. A. 2001. The Cassini Cosmic Dust Analyser. Space Science Reviews, special issue on Cassini, submitted.

    Google Scholar 

  • Stilp, A. 1987. Review of modern hypervelocity impact facilities. Int. J. Impact Eng., 5, pp. 613–621.

    Article  Google Scholar 

  • Stradling, G. L., Idzorek, G. C., Keaton, P. W., Studebaker, J. K., Blossom, A. A. H., Collopy, M. T., Curling Jr. H. L., and Bergeson, S. D. 1990. Searching for momentum enhancement in hypervelocity impacts. Int. J. Impact Eng., 10, pp. 555–570.

    Article  Google Scholar 

  • Svedhem, H., and Pedersen, A. 1992. Behaviour of ejecta particles and generated plasma at hypervelocity impact. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: University of Kent), pp. 72–77.

    Google Scholar 

  • Švestka;, J., and Grün, E. 1991. Methods, difficulties and first results in laboratory simulation of cosmic dust electric charging. In Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regourd and H. Hasegawa (Dordrecht: Kluwer Acad. Publ.), pp. 367–370.

    Google Scholar 

  • Švestka;, J., and Grün, E. 1992a. Electrostatic fragmentation of dust particles. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: Univ. of Kent), pp. 139–143.

    Google Scholar 

  • Švestka;, J., and Grün, E. 1992b. Electrostatic fragmentation of dust particles in laboratory. In Astrochemistry of Cosmic Phenomena, ed. P. D. Singh (Dordrecht: Kluwer Acad. Publ.), pp. 17–18.

    Google Scholar 

  • Švestka;, J., Cermak, I., and Grün, E. 1993. Electric charging and electrostatic fragmentation of dust particles in laboratory. Adv. Space Res., 13, pp. (10)199–(10)202.

    Article  Google Scholar 

  • Swift, H. F. 1987. High-speed image-forming instrumentation for hypervelocity impact studies. Int. J. Impact Eng., 5, pp. 623–634.

    Article  Google Scholar 

  • Swift, H. F., Bamford, R., and Chen, R. 1983. Designing space vehicle shields for meteoroid protection: a new analysis. Adv. Space Res., 2/12, pp. 219–234.

    ADS  Google Scholar 

  • Timmermann, R. and Grün, E. 1991. Plasma emission from high velocity impacts of microparticles onto water ice. In Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regourd et al., (Kluwer), pp. 375–378.

    Google Scholar 

  • Tuzzolino, A. J. 1983. Pulse amplitude method for determining the pyroelectric coefficient of pyroelectric materials. Nucl. Instr. Meth., 212, pp. 505–516.

    Article  Google Scholar 

  • Tuzzolino, A. J. 1991. Two-dimensional position-sensing PVDF dust detectors for measurement of dust particle trajectory, velocity, and mass. Nucl. Instr. Meth., A301, pp. 558–567.

    ADS  Google Scholar 

  • Tuzzolino, A. J. 1992. PVDF copolymer dust detectors: particle response and penetration characteristics. Nucl. Instr. and Meth., A316, pp. 223–237.

    ADS  Google Scholar 

  • Tuzzolino, A. J. 1996. Applications of PVDF dust sensor systems in space. Adv. Space Res., 17/12, pp. (12)123–(12)132.

    ADS  Google Scholar 

  • Vedder, J. F. 1963. Charging and acceleration of microparticles. Rev. Sci. Instrum., 34, pp. 1175-1183.

    Google Scholar 

  • Weishaupt, U. 1987. Hypervelocity impact of small masses on large surfaces of piezoelectric ceramics. Int. J. Impact Eng., 5, pp. 663–670.

    Article  Google Scholar 

  • Welford, W. T., and Winston, R. 1989. High collection nonimaging optics. (San Diego: Academic Press).

    Google Scholar 

  • Whipple, E. C. 1981. Potentials of surfaces in space. Rep. Prog. Phys., 44, pp. 1197-1250.

    Google Scholar 

  • Whipple, F. L. 1947. Meteorites and space travel. Astron. J., 52/1161, p. 131.

    Google Scholar 

  • Wiley, W. C., and McLaren, T. H. 1955. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum., 26, pp. 1150–1157.

    Article  ADS  Google Scholar 

  • Wolfe, J. H., Ballard, R. W., Carle, G. C., and Bunch, T. E. 1986. A micrometeoroid deceleration and capture experiment: conceptual experiment design description. In Trajectory Determinations and Collection of Micrometeoroids on the Space Station, LPI Tech. Rpt. 86-05 (Houston TX), pp. 91–93.

    Google Scholar 

  • Zel’dovich, Ya. B. 1968. EMF produced by a shock wave moving in a dielectric. Soviet Physics JETP, 26, pp. 159-162. (Russian original in: Zh. Eksp. Teor. Fiz., 53, 1967, pp. 237-243).

    Google Scholar 

  • Zolensky, M. E., Barrett, R. A., and Harz, F. 1994. The use of silica aerogel to collect interplanetary dust in space. LPI Tech. Rpt. 94-05, pp. 94-98.

    Google Scholar 

  • Zscheeg, H., Kissel, J., Natour, Gh., and Vollmer, E. 1992. COMA - advanced space experiment for in situ analysis of cometary matter. Astrophysics and Space Sciences, pp. 447-461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Auer, S. (2001). Instrumentation. In: Grün, E., Gustafson, B.Å.S., Dermott, S., Fechtig, H. (eds) Interplanetary Dust. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56428-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56428-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62647-0

  • Online ISBN: 978-3-642-56428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics