Advertisement

Instrumentation

Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Information on the dynamics and properties of interplanetary dust is obtained from in-situ detectors on board Earth satellites and deep space probes. This chapter reviews the methods of detection and discusses their strengths and limitations. Detailed descriptions are given for those detectors which have significantly advanced the state of the art of interplanetary dust research. Also reviewed are laboratory facilities required for the calibration of the detectors with fast (1 to 100 km S-l) dust particles and for the simulation of electrical charging of dust in space.

Keywords

Solar Wind Dust Particle Impact Ionization Impact Speed Interplanetary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ang, J. A. 1990. Impact flash jet initiation phenomenology. Int. J. Impact Eng., 10, pp. 23–33.ADSCrossRefGoogle Scholar
  2. Auer, S. 1972. Cosmic dust impact location detector. U.S. Patent no. 3,694,655.Google Scholar
  3. Auer, S. 1974. The asteroid belt: Doubts about the particle concentration measured with the Asteroid/Meteoroid Detector on Pioneer 10. Science, 186, pp. 650–652.ADSCrossRefGoogle Scholar
  4. Auer, S. 1975. Two high resolution velocity vector analyzers for cosmic dust particles. Rev. Sci. Instrum., 46, pp. 127–135.ADSCrossRefGoogle Scholar
  5. Auer, S. 1982. Imaging by dust rays: a dust ray camera. Optica Acta, 29/10, pp. 1421–1426.Google Scholar
  6. Auer, S. 1984. Space debris monitor. Feasibility study. Final Report to NASA Johnson Space Center under contract NAS9-17028.Google Scholar
  7. Auer, S. 1994a. Plasma produced by impacts of fast dust particles on a thin film. LPI Tech. Rpt. 94–05, pp. 21-25.Google Scholar
  8. Auer, S. 1994b. CDCF trajectory sensor development and calibration. Final Report for NASA Johnson Space Center under purchase order no. T-2899T.Google Scholar
  9. Auer, S. 1996. Accuracy of a velocity/trajectory sensor for charged dust particles. In Physics, Chemistry, and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner (Provo, Utah: Astronomical Soc. of the Pacific Press), pp. 251–254.Google Scholar
  10. Auer, S. 1998. Impact ionization from silica aerogel. Int. J. Impact Eng., 21, pp. 89–95.CrossRefGoogle Scholar
  11. Auer, S. and Berg, O.E. 1975. Composition analyzer for microparticles using a spark ion source. Rev. Sci. Instrum., 46, pp. 1530–1534.ADSCrossRefGoogle Scholar
  12. Auer, S., and Sitte, K. 1968. Detection technique for micrometeoroids using impact ionization. Earth Planet. Sci. Leiters, 4, pp. 178–183.ADSCrossRefGoogle Scholar
  13. Auer, S., and von Bun, F. O. 1994. Highly transparent and rugged sensor for velocity determinations of cosmic dust particles. LPI Tech. Rpt., 94-05, pp. 25–29.Google Scholar
  14. Beard, R. 1991. Impacts on the meteoroid and rear shields of the Giotto spacecraft at the GEM encounter with Grigg-Skjellerup. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: Univ. of Kent), pp. 94–99.Google Scholar
  15. Berg, O. E., and Grün, E. 1973. Evidence of hyperbolic cosmic dust particles. Space Research, XIII, (Berlin: Akademie-Verlag), pp. 1047–1055.Google Scholar
  16. Berg, O. E., and Meredith, L. H. 1956. Meteorite impacts to altitude of 103 kilometers. J. Geophys. Res., 61, pp. 751–754.ADSCrossRefGoogle Scholar
  17. Berg, O. E., and Richardson, F. F. 1969. The Pioneer 8 Cosmic Dust Experiment. Rev. Sci. Instrum., 40, pp. 1333–1337.ADSCrossRefGoogle Scholar
  18. Berg, O. E., Richardson, F. F., and Burton, H. 1973. Lunar ejecta and meteorites experiment. Apollo 17 Prelim. Science Report, NASA SP-330, 16-1.Google Scholar
  19. Berg, O. E., Wolf, H., and Rhee, J. 1975. Lunar soil movement registered by the Apollo cosmic dust experiment. Proc. IA U Colloq., 31, pp. 233–238.ADSGoogle Scholar
  20. Bohn, J. L., and Nadig, F.H. 1950. Researches in the physical properties of the upper atmosphere with special emphasis on acoustical studies with V-2 rockets. Report No.8 (Research Institute of Temple University), pp. 1–26.Google Scholar
  21. Boehnhardt, H., and Fechtig, H. 1987. Electrostatic charging and fragmentation of dust near P /Giacobini-Zinner and P /Halley. Astron. Astrophys., 187, pp. 824–828.ADSGoogle Scholar
  22. Burchell, M. J., Kay, L., and Ratcliff, P. R. 1996. Use of combined light flash and plasma measurements to study hypervelocity impact processes. Adv. Space Res., 17/12, pp. (12)141–(12)145.ADSGoogle Scholar
  23. Burton, W. M. 1983. Cometary particle impact simulation using pulsed lasers. Adv. Space Res., 2/12, pp. 255–258.ADSGoogle Scholar
  24. Cable, A. J. 1970. Hypervelocity accelerators. In High-velocity impact phenomena, ed. Ray Kinslow (New York, London: Academic Press), pp. 1–21.Google Scholar
  25. Capaccioni, F., and McDonnell, J. A. M. 1986. Experimental measurement of particle deceleration and survival in multiple thin foil targets. Adv. Space Res., 6/7, pp. 17–20.ADSCrossRefGoogle Scholar
  26. čermák, I., Grün, E., and Švestka;, J. 1995. New results in studies of electric charging of dust particles. Adv. Space Res., 15, pp. (10)59–(10)64.CrossRefGoogle Scholar
  27. Chow, V. W., Mendis, D. A., and Rosenberg, M. 1993. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res., 98, pp. 19,065–19,076.ADSCrossRefGoogle Scholar
  28. Christiansen, E. L. 1993. Design and performance equations for advanced meteoroid and debris shields. Int. J. Impact Eng., 14, pp. 145–156.CrossRefGoogle Scholar
  29. Christiansen, E. L., and Kerr, J. H. 1993. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection. Int. J. Impact Eng., 14, pp. 169–180.CrossRefGoogle Scholar
  30. Crozier, W. D., and Hume, W. 1957. High-velocity, light1gas gun. J. Appl. Phys., 28, pp. 892–894.ADSCrossRefGoogle Scholar
  31. Cour-Palais, B. G., and Crews, J. L. 1990. A multi-shock concept for spacecraft shielding. Int. J. Impact Eng., 10, pp. 135–146.CrossRefGoogle Scholar
  32. Dalmann, B.-K., Griln, E., Kissel, J., and Dietzel, H. 1977. The ion composition of the plasma produced by impact of fast particles. Planet. Space Sci., 25, pp. 135–147.ADSCrossRefGoogle Scholar
  33. Dietzel, H., Neukum, G., and Rauser, P. 1972. Micrometeoroid simulation studies on metal targets. J. Geophys. Res., 77, pp. 1375–1395.ADSCrossRefGoogle Scholar
  34. Dietzel, H., Eichhorn, G., Fechtig, H., Griln, E., Hoffmann, H.-J., and Kissel, J. 1973. The HEOS 2 and Helios micro meteoroid experiments. J. Phys. (E) Scientific Instrum., 6, pp. 209–217.ADSCrossRefGoogle Scholar
  35. Dow, K. L., Sykes, M. V., Low, F. J., and Vilas, F. 1990. The detection of Earth orbiting objects by IRAS. Adv. Space Res., 10, pp. (3)381–(3)384.ADSGoogle Scholar
  36. Draine, B. T., and Salpeter, E. E. 1979. On the physics of dust grains in a hot gas. Astrophys. J., 231, pp. 77–94.ADSCrossRefGoogle Scholar
  37. Drapatz, G., and Michel, K. W. 1974. Theory of shock-wave ionization upon high-velocity impact of micrometeorites. Z. Naturforsch., 29 a, pp. 870–879.ADSGoogle Scholar
  38. Edenhofer, P., Bird, M. K., Brenkle, J. P., Buschert, H., Esposito, P. B., Porsche, H., and Volland, H. 1986. First results from the Giotto radio-science experiment. Nature, 321, pp. 355–357.ADSCrossRefGoogle Scholar
  39. Eichhorn, G. 1974. Untersuchung der Lichtemission bei Hochgeschwindigkeitseinschlagen. Dissertation (University of Heidelberg, Germany).Google Scholar
  40. Eichhorn, G. 1975. Measurements of the light flash produced by high velocity particle impact. Planet. Space Sci., 23, pp. 1519–1525.ADSCrossRefGoogle Scholar
  41. Eichhorn, G. 1976. Analysis of the hypervelocity impact process from impact flash measurements. Planet. Space Sci., 24, pp. 771–78l.ADSCrossRefGoogle Scholar
  42. Eichhorn, G. 1978a. Heating and vaporization during hypervelocity particle impact. Planet. Space Sci., 26, pp. 463–467.ADSCrossRefGoogle Scholar
  43. Eichhorn, G. 1978 b. Primary velocity dependence of impact ejecta parameters. Planet. Space Sci., 26, pp. 469–47l.ADSCrossRefGoogle Scholar
  44. Fechtig, H., Griln, E., and Morfill, G. 1979. Micrometeoroids within ten Earth radii. Planet. Space Sci., 27, pp. 511–531.ADSCrossRefGoogle Scholar
  45. Friichtenicht, J. F. 1962. Two-million-Volt electrostatic accelerator for hypervelocity research. Rev. Sci. Instrum., 34, pp. 209–212.ADSCrossRefGoogle Scholar
  46. Friichtenicht, J. F. 1964. Micrometeoroid simulation using nuclear accelerator techniques. Nucl. Instrum. Meth., 28, pp. 70–78.ADSCrossRefGoogle Scholar
  47. Goller, J. R., and Griln, E. 1989. Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles. Planet. Space Sci., 37, pp. 1197–1206.ADSCrossRefGoogle Scholar
  48. Griln, E. 1981. Physikalische und chemische Eigenschaften des interplanetaren Staubes - Messungen des Mikrometeoritenexperimentes auf Helios. Bundesministerium fü;r Forschung und Technologie, Report BMFT-FB-?W 81-034.Google Scholar
  49. Griln, E. 1984. Impact ionization from gold, aluminium and PCB-Z. In The Giotto Spacecraft, eds. E. Wolfe and B. Battrick, ESA SP-224, pp. 39–41.Google Scholar
  50. Griln, E., Berg, O. E., and Dohnanyi, J. S. 1973. Reliability of cosmic dust data from Pioneers 8 and 9. Space Research, XIII, (Akademia- Verlag), pp. 1057–1062.Google Scholar
  51. Griln, E., Fechtig, H., Gammelin, P., and Kissel, J. 1975. Das Staubexperiment auf Helios (E10). Raumfahrtforschung, 19, pp. 268–269.ADSGoogle Scholar
  52. Griln, E., Fechtig, H., Gammelin, P., Kissel, J., Auer, S., Braun, G., Dalman, B.-K., Dietzel, H., and Hoffmann, H.-J. 1979. Das Helios-Mikrometeoritenexperiment (Sonnensonde Helios A und B - Experiment 10). Bundesministerium fü;r Forschung und Technologie, Report BMFT-FB-W 79-09.Google Scholar
  53. Griln, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Maas, D., Morfill, G. E. and Zook, H. A. 1992 a. The Galileo dust detector. Space Sci. Rev., 60, pp. 317–340.ADSGoogle Scholar
  54. Grün, E., Fechtig, H., Giese, R. H., Kissel, J., Linkert, D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G. and Zook, H. A. 1992b. The Ulysses dust experiment. Astron. Astrophys. Suppl. Ser., 92, pp. 411–423.ADSGoogle Scholar
  55. Grün, E., Morfill, G. E., and Mendis, D. A. 1984. Dust-magnetosphere interactions. In Planetary Rings, eds. R. Greenberg and A. Brahic (Tucson: Univ. of Arizona Press), pp. 275–332.Google Scholar
  56. Grün, E. and Rauser, P. 1969. Penetration studies of iron dust particles in thin foils. Space Research, IX, eds. K.S.W. Champion et al., pp. 147–154.Google Scholar
  57. Grün, E. and 22 co-authors 1993. Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.ADSCrossRefGoogle Scholar
  58. Gurnett, D. A., Grün, E., Gallagher, D., Kurth, W. S., and Scarf, F. L. 1983. Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus, 53, pp. 236–254.ADSCrossRefGoogle Scholar
  59. Gurnett, D. A., Kurth, W. S., Scarf, F. L., Burns, J. A., Cuzzi, J. N., and Grün, E. 1987. Micron-sized particle impacts detected near Saturn by the Voyager 2 plasma wave instrument. J. Geophys. Res., 92, pp. 14,959–14,968.ADSCrossRefGoogle Scholar
  60. Hansen, D. O. 1968. Mass analysis of ions produced by hypervelocity impact. Appl. Phys. Letters, 13, pp. 89–91.ADSCrossRefGoogle Scholar
  61. Hastings, E. C. 1964. The Explorer XVI micrometeoroid satellite. Supplement III, preliminary results for period May 27, 1963 through July 22, 1963. NASA TM X-949.Google Scholar
  62. Hoffmann, H.-J., Fechtig, H., Grün, E. and Kissel, J. 1975a. First results of the micrometeoroid experiment S 215 on the HEOS 2 satellite. Planet. Space Sci., 23, pp. 215–224.ADSCrossRefGoogle Scholar
  63. Hoffmann, H.-J., Fechtig, H., Grün, E., and Kissel, J. 1975b. Temporal fluctuations and anisotropy of the micrometeoroid flux in the Earth-moon system measured by HEOS 2. Planet. Space Sci., 23, pp. 985–991.ADSCrossRefGoogle Scholar
  64. Hornung, K., and Kissel, J. 1994. On shock wave impact ionization of dust particles. Astron. Astrophys., 291, pp. 324–336.ADSGoogle Scholar
  65. Hornung, K., Malama, Yu. G., and Thomas, K. 1996. Modeling of the very high velocity impact process with respect to in-situ ionization measurements. Adv. Space Res., 17/12, pp. (12)77–(12)86.ADSGoogle Scholar
  66. Harz, F., Cintala, M. J., Bernhard, R. P. and See, T. H. 1994. Dimensionally scaled penetration experiments: aluminum targets and glass projectiles 50 /Lm to 3.175 mm in diameter. Int. J. Impact Eng., 15, pp. 257–280.CrossRefGoogle Scholar
  67. Harz, F., Cintala, M. J., Bernhard, R. P., Cardenas, F., Davidson, W. E., Haynes, G., See, T. H., and Winkler, J. L. 1995. Penetration experiments in aluminium 1100 targets using soda-lime glass projectiles. NASA Technical Memorandum 104813.Google Scholar
  68. Humes, D. H., Alvarez, J. M., O’Neal, R. L., and Kinard, W. H. 1974. The interplanetary and near-Jupiter meteoroid environments. J. Geophys. Res., 79, 25, pp. 3677–3684.ADSCrossRefGoogle Scholar
  69. Hudepohl, A., Rott, M., and Igenbergs, E. 1989. Coaxial plasma accelerator with compression coil and radial gas injection. IEEE Trans. Magnetics, 25, pp. 232–237.ADSCrossRefGoogle Scholar
  70. Igenbergs, E., Aigner, S., Hudepohl, A., Iglseder, H., Kuczera, H., Rott, M., and Weishaupt, U. 1987. Launcher technology, in-flight velocity measurement and impact diagnostics at the TUM/LRT. Int. J. Impact Eng., 5, pp. 371–380.CrossRefGoogle Scholar
  71. Igenbergs, E., Hudepohl, A., Uesugi, K., Hayashi, T., Svedhem, H., Iglseder, H., Koller, G., Glasmachers, A., Grün, E., Schwehm, G., Mizutani, H., Yamamoto, T., Fujimura, A., Ishii, N., Araki, H., Yamakoshi, K. and Nogami, K. 1991. The Munich dust counter-A cosmic dust experiment on board of the MUSES-A mission of Japan. In Origin and evolution of interplanetary dust, eds. A. C. Levasseur-Regourd et al., (Kluwer Academic Publishers), pp. 45–48.Google Scholar
  72. Isbell, W. M. 1987. Historical overview of hypervelocity impact diagnostic technology. Int. J. Impact Eng., 5, pp. 389–410.CrossRefGoogle Scholar
  73. Jean, B. and Rollins, T. L. 1970. Radiation from hypervelocity impact generated plasma. AIAA Journal, 8, pp. 1742–1748.ADSCrossRefGoogle Scholar
  74. Kassel, P. C., Jr. 1973. Characteristics of capacitor-type micrometeoroid flux detectors when impacted with simulated micrometeoroids. Technical Note D-7359, NASA, Washington.Google Scholar
  75. Keaton, P. W., Idzorek, G. C., Rowton Sr., L. J., Seagrave, J. D., Stradling, G. L., Bergeson, S. D., Collopy, M. T., Curling Jr., H. L., McColl, D. B., and Smith, J. D. 1990. A hypervelocity-microparticle-impacts laboratory with 100 km/s projectiles. Int. J. Impact Eng., 10, pp. 295–308.CrossRefGoogle Scholar
  76. Kern, H. E., and McKenzie, J. M. 1970. Noise studies of ceramic encapsulated junction field effect transistors (JFETs). IEEE Trans. Nucl. Sci., 17/3, pp. 425–432.ADSCrossRefGoogle Scholar
  77. Kissel, J. 1986. The Giotto particulate impact analyser. ESA SP-1077, pp. 67–83.Google Scholar
  78. Kissel, J., and Krueger, F. R. 1987. Ion formation by impact of fast dust particles and comparison with related techniques. Appl. Phys. A, 42, pp. 69–85.ADSCrossRefGoogle Scholar
  79. Knabe and Krueger 1982. Ion formation from alkali iodide solids by swift dust particle impact. Z. Naturforsch., 37a, pp. 1335–1340.ADSGoogle Scholar
  80. Krueger, F. R. 1996. Ion formation by high- and medium-velocities dust impacts from laboratory measurements and Halley results. Adv. Space Res., 17/12, pp. (12)71–(12)75.ADSGoogle Scholar
  81. Leese, M. R., McDonnell, J. A. M., Green, S. F., Busoletti, E., Clark, B. C., Colangeli, L., Crifo, J. F., Eberhardt, P., Giovane, F., Grün, E., Gustafson, B., Hughes, D. W., Jackson, D., Lamy, P., Langevin, Y., Mann, I., McKenna-Lawlor, S., Tanner, W. G., Weissman, P. R., and Zarnecki, J. C. 1996. Dust flux analyser experiment for the Rosetta mission. Adv. Space Res., 17/12, pp. 137–140.ADSCrossRefGoogle Scholar
  82. Leinert, C., and Kliippelberg, D. 1974. Stray light suppression in optical space experiments. Applied Optics, 13, pp. 556–564.ADSCrossRefGoogle Scholar
  83. Leinert, C., Link, H., Pitz, E., Salm, N., and Kliippelberg, D. 1975. The Helios zodiacal light experiment (E9). Raumfahrtforschung, 19/5, pp. 264–267.ADSGoogle Scholar
  84. Leinert, C., Pitz, E., Link, H., and Salm, N. 1981. Calibration and in-flight performance of the zodiacal light experiment on Helios. Space Science Instrumentation, 5, pp. 257–270.ADSGoogle Scholar
  85. Mamyrin, B. A., Karataev, V. I., Shmikk, D. V., and Zagulin, V. A. 1973. The massreflect ron, a new non-magnetic time-of-flight mass spectrometer with high resolution. Zh. Eksp. Teor. Fiz., 64, pp. 82–89, and Sov. Phys.-JETP, 37, pp. 45-48 (in English).Google Scholar
  86. Martelli, G., and Cerroni, P. 1983. Hypervelocity acceleration techniques: a review of existing capabilities and prospects for future developments. Adv. Space Res., 2, pp. 259–268.ADSCrossRefGoogle Scholar
  87. McDonnell, J. A. M. 1970. Factors affecting the choice of foils for penetration experiments in space. Space Research, X, (North Holland), pp. 314–325.Google Scholar
  88. McDonnell, J. A. M., and Abellanas, C. 1972. A technique for position sensing and improved momentum evaluation of microparticle impacts in space. Rev. Sci. Instrum., 43, pp. 1214–1216.CrossRefGoogle Scholar
  89. McDonnell, J. A. M., Alexander, M., Lyons, D., Tanner, W., Anz, P., Hyde, T., Chen, A.L., Stevenson, T. J., and Evans, S. T. 1984. The impact of dust grains on fast fly-by spacecraft: momentum multiplication, measurements and theory. Adv. Space Res., 4/9, pp. 297–301.ADSCrossRefGoogle Scholar
  90. McDonnell, J. A. M., and 24 co-authors 1986a. The Giotto dust impact detection system. ESA SP-1077, pp. 85–107.Google Scholar
  91. McDonnell, J. A. M. and 27 co-authors 1986b. Dust density and mass distribution near comet Halley from Giotto observations. Nature, 321, pp. 338–341.ADSCrossRefGoogle Scholar
  92. McDonnell, J. A. M., and Sullivan, K. 1992. Hypervelocity impacts on space detectors: decoding the projectile parameters. Proc. Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: Univ. of Kent, 1-5 July 1991), pp. 39–47.Google Scholar
  93. McMillan, A. R. 1968. Experimental investigations of simulated meteoroid damage to various spacecraft structures. Contractor Report, contract no. NAS9-3081, NASA CR-915, p. 89.Google Scholar
  94. Meshejian, W. K., Ramamurti, K., Trower, W. P., and Wollan, D. S. 1970. A gas density detector for use in space. J. Spacecr. Rockets, 7, pp. 1228–1233.ADSCrossRefGoogle Scholar
  95. Miller, M. S., Evans, D. C., Moseley, H., and Ludwig, U. W., 1982. Optical design of the Diffuse Infrared Background Experiment for NASA’s Cosmic Background Explorer. SPIE 331 Instrumentation in Astronomy, IV, pp. 483–489.ADSGoogle Scholar
  96. Miinzenmayer, R. 1995. Beiträge zur experimentellen Erforschung des Staubes im Weltall. Ph. D. Thesis, (Mü;nchen: Technische Universität).Google Scholar
  97. Naumann, R. J., Jex, D. W., and Johnson, C. L. 1969. Calibration of Pegasus and Explorer XXIII detector panels. NASA Technical Report R-321.Google Scholar
  98. Oberc, P. 1996. Electric antenna as a dust detector. Adv. Space Res., 17/12, pp. 105–110.ADSCrossRefGoogle Scholar
  99. Perruchot, S., Lamy, P. L., Giovane, F., and Gustafson, B. Å. S. 1996. Concepts for dust velocity measurements on a cometary orbiter. Proceedings, IAU Colloquium 150.Google Scholar
  100. Peterson, R. 1994. Charge collection during hypervelocity penetrations of thin foils. LPI Tech. Rpt. 94-05. pp. 64–76.Google Scholar
  101. Ratcliff, P. R., McDonnell, J. A. M., Firth, J. G., and Grün, E. 1992. The cosmic dust analyser. J. Brit. Interplan. Soc., 45q, pp. 375–380.Google Scholar
  102. Ratcliff, P. R., Gogu, F., Grün, E., and Srama, R. 1996. Plasma produced by secondary impacts: implications for velocity measurements by in-situ dust detectors. Adv. Space Res., 17/12, pp. (12)111–(12)115.Google Scholar
  103. Rudolph, V. 1966. Massen-Geschwindigkeitsfilter fiir kiinstlich beschleunigten Staub. Z. Naturforsch., 21a, pp. 1993–1996.ADSGoogle Scholar
  104. Schleicher, B., Burtscher, H., and Siegmann, H.C. 1994. Photoelectric quantum yield of nanometer metal particles. Applied Phys. Letters, 63(9), p. 1191.Google Scholar
  105. Seigel, A. E. 1979. Theory of high-muzzle-velocity guns. In Interior ballistics of guns, eds. H. Krier and M. Summerfield, ctProgress in Astronautics and Aeronautics, vol. 66, (published by the AIAA), pp. 135–175 (Eq. 23).Google Scholar
  106. Shelton, H., Hendricks Jr., C. D., and Wuerker, R. F. 1960. Electrostatic acceleration of microparticles to hypervelocities. J. Appl. Phys., 31, pp. 1243–1246.ADSCrossRefGoogle Scholar
  107. Simpson, J. A., Rabinowitz, D., Tuzzolino, A. J., Ksanfomality, L. V., and Sagdeev, R. Z. 1987. The dust coma of comet P /Halley: measurements on the VeGa-1 and VeGa-2 spacecraft. Astron. Astrophys., 187, pp. 742–752.ADSGoogle Scholar
  108. Simpson, J. A., Rabinowitz, D., and Tuzzolino, A. J. 1989. Cosmic dust investigations I. PVDF detector signal dependence on mass and velocity for penetrating particles. Nucl. Instr. and Meth., A279, pp. 611–624.ADSGoogle Scholar
  109. Simpson, J. A., and Tuzzolino, A. J. 1985. Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nucl. Instr. and Meth., A236, pp. 187–202.ADSGoogle Scholar
  110. Simpson, J. A., and Tuzzolino, A. J. 1989. Cosmic dust investigations II. Instruments for measurement of particle trajectory, velocity and mass. Nucl. Instr. and Meth., A279, pp. 625–639.ADSGoogle Scholar
  111. Singer, S. F., Stanley, J. E., and Kassel, P. C. 1985. The LDEF interplanetary dust experiment. In Properties and Interactions of Interplanetary Dust, eds. R. H. Giese and P. Lamy (Dordrecht: Reidel), pp. 117–120.Google Scholar
  112. Slattery, J. C., Becker, D. G., Hammermesh, B., and Roy, N. L. 1973. A linear accelerator for simulated micrometeors. Rev. Sci. Instrum., 44, pp. 755–762.ADSCrossRefGoogle Scholar
  113. Soberman, R. K., Neste, S. L., and Lichtenfeld, K. 1974a. Particle concentration in the asteroidal belt from Pioneer 10. Science, 183, pp. 320–321.ADSCrossRefGoogle Scholar
  114. Soberman, R. K., Neste, S. L., and Lichtenfeld, K. 1974b. Optical measurement of interplanetary particulates from Pioneer 10. J. Geophys. Res., 79, 25, pp. 3685–3694.ADSCrossRefGoogle Scholar
  115. Srama, R., Grün, E., and the Cassini Dust Science Team 1996. The cosmic dust analyzer for the Cassini mission to Saturn. In Physics, Chemistry, and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner (Provo, Utah: Astronomical Soc. of the Pacific Press), pp. 227–231.Google Scholar
  116. Srama, R., Bradley, J. G., Grün, E., Ahrens, T. J., Auer, S., Cruise, M., Fechtig, H., Graps, A., Havnes, o., Heck, A., Helfert, S., Igenbergs, E., Jessberger, E. K., Johnson, T. V., Kempf, S., Krü;ger, H., Lamy, P., Landgraf, M., Linkert, D., Lura, F., McDonnell, J. A. M., Möhlmann, D., Morfill, G. E., Schwehm, G. H., Stü;big, M., Švestka;, J., Tuzzolino, A. J., Wäsch, R., and Zook, H. A. 2001. The Cassini Cosmic Dust Analyser. Space Science Reviews, special issue on Cassini, submitted.Google Scholar
  117. Stilp, A. 1987. Review of modern hypervelocity impact facilities. Int. J. Impact Eng., 5, pp. 613–621.CrossRefGoogle Scholar
  118. Stradling, G. L., Idzorek, G. C., Keaton, P. W., Studebaker, J. K., Blossom, A. A. H., Collopy, M. T., Curling Jr. H. L., and Bergeson, S. D. 1990. Searching for momentum enhancement in hypervelocity impacts. Int. J. Impact Eng., 10, pp. 555–570.CrossRefGoogle Scholar
  119. Svedhem, H., and Pedersen, A. 1992. Behaviour of ejecta particles and generated plasma at hypervelocity impact. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: University of Kent), pp. 72–77.Google Scholar
  120. Švestka;, J., and Grün, E. 1991. Methods, difficulties and first results in laboratory simulation of cosmic dust electric charging. In Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regourd and H. Hasegawa (Dordrecht: Kluwer Acad. Publ.), pp. 367–370.Google Scholar
  121. Švestka;, J., and Grün, E. 1992a. Electrostatic fragmentation of dust particles. In Hypervelocity Impacts in Space, ed. J. A. M. McDonnell (Canterbury: Univ. of Kent), pp. 139–143.Google Scholar
  122. Švestka;, J., and Grün, E. 1992b. Electrostatic fragmentation of dust particles in laboratory. In Astrochemistry of Cosmic Phenomena, ed. P. D. Singh (Dordrecht: Kluwer Acad. Publ.), pp. 17–18.Google Scholar
  123. Švestka;, J., Cermak, I., and Grün, E. 1993. Electric charging and electrostatic fragmentation of dust particles in laboratory. Adv. Space Res., 13, pp. (10)199–(10)202.CrossRefGoogle Scholar
  124. Swift, H. F. 1987. High-speed image-forming instrumentation for hypervelocity impact studies. Int. J. Impact Eng., 5, pp. 623–634.CrossRefGoogle Scholar
  125. Swift, H. F., Bamford, R., and Chen, R. 1983. Designing space vehicle shields for meteoroid protection: a new analysis. Adv. Space Res., 2/12, pp. 219–234.ADSGoogle Scholar
  126. Timmermann, R. and Grün, E. 1991. Plasma emission from high velocity impacts of microparticles onto water ice. In Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regourd et al., (Kluwer), pp. 375–378.Google Scholar
  127. Tuzzolino, A. J. 1983. Pulse amplitude method for determining the pyroelectric coefficient of pyroelectric materials. Nucl. Instr. Meth., 212, pp. 505–516.CrossRefGoogle Scholar
  128. Tuzzolino, A. J. 1991. Two-dimensional position-sensing PVDF dust detectors for measurement of dust particle trajectory, velocity, and mass. Nucl. Instr. Meth., A301, pp. 558–567.ADSGoogle Scholar
  129. Tuzzolino, A. J. 1992. PVDF copolymer dust detectors: particle response and penetration characteristics. Nucl. Instr. and Meth., A316, pp. 223–237.ADSGoogle Scholar
  130. Tuzzolino, A. J. 1996. Applications of PVDF dust sensor systems in space. Adv. Space Res., 17/12, pp. (12)123–(12)132.ADSGoogle Scholar
  131. Vedder, J. F. 1963. Charging and acceleration of microparticles. Rev. Sci. Instrum., 34, pp. 1175-1183.Google Scholar
  132. Weishaupt, U. 1987. Hypervelocity impact of small masses on large surfaces of piezoelectric ceramics. Int. J. Impact Eng., 5, pp. 663–670.CrossRefGoogle Scholar
  133. Welford, W. T., and Winston, R. 1989. High collection nonimaging optics. (San Diego: Academic Press).Google Scholar
  134. Whipple, E. C. 1981. Potentials of surfaces in space. Rep. Prog. Phys., 44, pp. 1197-1250.Google Scholar
  135. Whipple, F. L. 1947. Meteorites and space travel. Astron. J., 52/1161, p. 131.Google Scholar
  136. Wiley, W. C., and McLaren, T. H. 1955. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum., 26, pp. 1150–1157.ADSCrossRefGoogle Scholar
  137. Wolfe, J. H., Ballard, R. W., Carle, G. C., and Bunch, T. E. 1986. A micrometeoroid deceleration and capture experiment: conceptual experiment design description. In Trajectory Determinations and Collection of Micrometeoroids on the Space Station, LPI Tech. Rpt. 86-05 (Houston TX), pp. 91–93.Google Scholar
  138. Zel’dovich, Ya. B. 1968. EMF produced by a shock wave moving in a dielectric. Soviet Physics JETP, 26, pp. 159-162. (Russian original in: Zh. Eksp. Teor. Fiz., 53, 1967, pp. 237-243).Google Scholar
  139. Zolensky, M. E., Barrett, R. A., and Harz, F. 1994. The use of silica aerogel to collect interplanetary dust in space. LPI Tech. Rpt. 94-05, pp. 94-98.Google Scholar
  140. Zscheeg, H., Kissel, J., Natour, Gh., and Vollmer, E. 1992. COMA - advanced space experiment for in situ analysis of cometary matter. Astrophysics and Space Sciences, pp. 447-461.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.BayseUSA

Personalised recommendations