Advertisement

Synthesis of Observations

Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Based on Neil Divine’s (1993) ‘Five Population of Interplanetary Meteoroids’- model, a description of the interplanetary meteoroid complex is given in terms of distinct meteoroid populations. Each population has separable distributions in particle mass, orbital inclination, eccentricity and perihelion distance. The model matches particle concentrations and fluxes as derived from radar meteors and zodiacal light observations as well as from measurements by impact detectors on various spacecraft. This model has been expanded to include a comparison with directional and impact speed information obtained by the Galileo and Ulysses detectors. Small particle orbits that are affected by radiation pressure are newly included in the model. Particle populations on heliocentric hyperbolic orbits have to be considered in order to match recent spacecraft measurements.

Keywords

Radiation Pressure Heliocentric Distance Ecliptic Plane Phase Space Density Interstellar Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baggaley, W. J. 1996. The meteoroid orbit facility AMOR: Recent developments. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 65–70.Google Scholar
  2. Baguhl, M., Grün, E., Hamilton, D. P., Linkert, G., Staubach, P. 1995. The flux of interstellar dust observed by Ulysses and Galileo. Space Sci. Rev., 72, pp. 471–476.ADSCrossRefGoogle Scholar
  3. Baguhl, M., Grün, E., Linkert, G., Linkert, D., Siddique, N. 1993. Identification of’ small’ dust impacts in the Ulysses dust detector data. Planet. Space Sci., 41 (No. 11/12), pp. 1085–1098. H.ADSCrossRefGoogle Scholar
  4. Baguhl, M., Grün E. and Landgraf M. 1996. In-situ measurements of interstellar dust with the Ulysses and Galileo spaceprobes. Space Sci. Rev., 78, pp. 165–172.ADSCrossRefGoogle Scholar
  5. Banderman, L. W. 1968. Physical properties and dynamics of interplanetary dust. Thesis (Univ. Maryland).Google Scholar
  6. Berg, O. E., Grün, E. 1973. Evidence of hyperbolic cosmic dust particles. Space Res., XIII, pp. 1047–1055.ADSGoogle Scholar
  7. Bradley, J. P., Ireland T 1996. The search for interstellar components in interplanetary dust particles. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 275–282.Google Scholar
  8. Brownlee, D. E. 1996. The elemental composition of interplanetary dust. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 261–264.Google Scholar
  9. Burns J. A., Lamy, P. L., Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, pp. 1–48.ADSCrossRefGoogle Scholar
  10. Cour-Palais, B. G. 1969. Meteoroid Environment Model - 1969 (Near Earth to Lunar Surface). NASA SP-8013.Google Scholar
  11. Dauba, 0., Drolshagen, G. 1995. Meteoroids and debris flux predictions for Eureca, the Hubble Space Telescope and LDEF. ESA/ESTEC WP 1874.Google Scholar
  12. Divine, N. 1992. Meteoroid focusing at a Planet. JPL-IOM 527-92-86.Google Scholar
  13. Divine, N. 1993. Five populations of interplanetary meteoroids. J. Geophys. Res., 98, pp. 17029–17048.ADSCrossRefGoogle Scholar
  14. Divine, N., Grün, E., Staubach, P. 1993. Modelling the Meteoroid Distributions in Interplanetary Space and near-Earth. Proc. First Europ. Conf. on Space Debris, ESA SD-01.Google Scholar
  15. Drolshagen, G. 1994. Material Densities of Meteoroid and Space Debris Particles. ESA/ESTEC/WMA, WMA/94-035/GD/DENS.Google Scholar
  16. Dumont, R, Levasseur-Regourd, A. C. 1987. The symmetry plane of the zodiacal dust cloud retrieved from IRAS data. In Interplanetary Matter, Proc. 10th European Regional Meeting of the IAU 2, 67, ed. Z. Ceplecha and P. Pecina (Publ. Astron. Inst. Czech. Acad. Sci.), pp. 281–284.Google Scholar
  17. Garrett, H. B., Drouilhet, S. J., Oliver, J. P., Evans, R. W. 1999. Interplanetary meteoroid environment model update. J. Spacecraft and Rockets, 36 (No.1), pp. 124–132.ADSCrossRefGoogle Scholar
  18. Greenberg, J. M., Hage, J. I. 1990. From Interstellar dust to comets: A unification of observational constraints. Astrophys. J., 361, pp. 260–274.ADSCrossRefGoogle Scholar
  19. Grün, E., Baguhl, M., Staubach, P., Dermott, S., Fechtig, H., Gustafson, B. Å., Hamilton, D. P., Hanner, M. S., Horányi, M., Kissel, J., Lindblad, B. Å., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Schwehm, G., Srama, R, Zook, H. A. 1997. South-North and radial traverses through the zodiacal cloud. Icarus, 129, pp. 270–288.ADSCrossRefGoogle Scholar
  20. Grün, E., Fechtig, H., Giese, R H., Kissel, J., Linkert, D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G., Zook, H. A. 1992b. The Ulysses Dust Experiment. Astron. Astrophys. Suppl., 92, pp. 411–423.ADSGoogle Scholar
  21. Grün, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B. Å., Linkert, D., Morfill, G. E., Zook, H. A. 1992a. The Galileo dust detector. Space Sci. Rev., 60, pp. 317–340.ADSCrossRefGoogle Scholar
  22. Grün, E., Gustafson, B., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., Zook, H. A. 1994. Interstellar dust in the heliosphere. Astron. Astrophys., 286, pp. 915–924.ADSGoogle Scholar
  23. Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R, Hanner, M. S., Horányi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., Taylor, A. 1993. Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.ADSCrossRefGoogle Scholar
  24. Grün, E., Zook, H. A., Fechtig, H., Giese, R. H. 1985. Collisional Balance of the Meteoritic Complex. Icarus, 62, pp. 244–272.ADSCrossRefGoogle Scholar
  25. Gustafson B. Å. S. 1994. Physics of zodiacal dust. Ann. Rev. Earth. Planet. Sci., 22, pp. 553–595.ADSCrossRefGoogle Scholar
  26. Gustafson B. Å. S., Misconi, N. Y. 1979. Streaming of interstellar grains in the solar system. Nature, 282, pp. 276–278.ADSCrossRefGoogle Scholar
  27. Gustafson, B. Å. S., Grün, E., Dermott, S. F., Durda, D. D. 1991. Collisional and dynamic evolution of dust from the asteroid belt. In Asteroids, Comets, Meteors, ed. A. W. Harris and E. Bowell (Houston: Lunar and Planet. Inst.).Google Scholar
  28. Hamilton, D. P., Grün, E. and Baguhl, M. 1996. Electromagnetic escape of dust from the solar system. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 31–34.Google Scholar
  29. Hanner, M. S., Weinberg, J. L., DeShields II, L. M., Green, B. Å., Toller, G. N. 1974. Zodiacal light and the asteroid belt: The view from Pioneer 10. J. Geophys. Res., 79, pp. 3671–3675.ADSCrossRefGoogle Scholar
  30. Haug U. 1958. Üiber die Häufigkeitsverteilung der Bahneelemente bei den interplanetaren Staubteilchen. Zeitschrift f. Astrophysik, 44, pp. 71–97.ADSzbMATHGoogle Scholar
  31. Hauser M. G., Gillett, F. C., Low, F. J., Gautier, T. N., Beichman, C. A., Neugebauer, G., Aumann, H. H., Baud, B., Boggess, N., Emerson, J. P., Houck, J. R., Soiffer, B. T., Walker, R. G. 1984. Astrohys. J., 278, pp. L15–L18.ADSCrossRefGoogle Scholar
  32. Hauser, M. G. 1996. COBE observations of zodiacal emission. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 309–314.Google Scholar
  33. Hörz, F., Brownlee, D. E., Fechtig, H., Hartung, J. B., Morrison, D. A., Neukum, G., Schneider, E., Vedder, J. F., Gault, D. E. 1975. Lunar microcraters: implications for the micrometeoroid complex. Planet. Space Sci., 23, pp. 151–172.ADSCrossRefGoogle Scholar
  34. Humes, D. H., Alvarez, J. M., O’Neal, R. L., Kinrad, W. H. 1974. The interplanetary and near Jupiter environment. J. Geophys. Res., 79, pp. 3677–3684.ADSCrossRefGoogle Scholar
  35. Kelsall, T., Weiland, J. L., Franz, B. Å., Reach, W. T., Arendt, R. G., Dwek, E., Freudenreich, H. T., Hauser, M. G., Mosley, S. H., Odegard, N. P., Silverberg, R. F., Wright, E. L. 1998. The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. Astrophys. J., 508, pp. 44–73.ADSCrossRefGoogle Scholar
  36. Kessler, D. J. 1970. Meteoroid Environment Model-1970. NASA SP-8038.Google Scholar
  37. Kessler D. J. 1981. Derivation of collision probability between orbiting objects: The lifetimes of Jupiter’s outer moons. Icarus, 48, pp. 39–48.ADSCrossRefGoogle Scholar
  38. Kessler, D. J. 1990. Update of Meteoroid and Orbital Debris Environment Definition Space Station Level II’, Change Request. Marshall Space Flight Center AL, BB 000883A 1990.Google Scholar
  39. Lallement, R. 1993. Measurements of the interstellar gas. Adv. in Space Res. 13, pp. (6)113–120.ADSCrossRefGoogle Scholar
  40. Leinert C. and Grün, E. 1990. Interplanetary dust. In Physics of the Inner Heliosphere 1 Large-Scale Phenomena, eds. R. Schwenn and E. Marsch (Heidelberg: Springer), pp. 207–275.Google Scholar
  41. Leinert C., Richter, I., Pitz, E., Planck, B. 1981. The zodiacal light from 1.0 to 0.3 AU as observed by the Helios space probes. Astron. Astrophys., 103, pp. 177–188.ADSGoogle Scholar
  42. Levasseur-Regourd, A. C. 1996. Optical and thermal properties of zodiacal dust. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 301–308.Google Scholar
  43. Levasseur-Regourd A. C. and Dumont, R. 1980. Absolute photometry of zodiacal light. Astron. Astrophys., 84, pp. 277–279.ADSGoogle Scholar
  44. Matney, M. J., Kessler, D. J. 1996. A Reformulation of Divine’s Interplanetary Model. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 15–18.Google Scholar
  45. Morfill, G. E., Grün, E. 1979a. The motion of charged dust particles in interplanetary space. I. The zodiacal dust cloud. Planet. Space Sci., 27, pp. 1269–1282.ADSCrossRefGoogle Scholar
  46. Morfill, G. E., Grün, E. 1979b. The motion of charged dust particles in interplanetary space - 2. Interstellar grains. Planet. Space Sci., 27, pp. 1283–1292.ADSCrossRefGoogle Scholar
  47. Morfill, G. E., Grün, E., Leinert, C. 1986. The interaction of solid particles with the interplanetary medium. The Sun and the Heliosphere in three Dimensions, ed. R. G. Marsden, D. Reidel (Dordrecht, Boston, Lancaster, Tokyo), pp. 455–474.Google Scholar
  48. Naumann, R. J., Jex, D. W., Johnson, C. L. 1996. Calibration of Pegasus and Explorer XXIII Detector panels. NASA TR-R-321.Google Scholar
  49. Sekanina, Z., Southworth, R. B. 1975. Physical and dynamical studies of meteors: Meteor fragmentation and stream-distribution studies. NASA CR-2615.Google Scholar
  50. Southworth R. B. and Sekanina Z. 1973. Physical and dynamical studies of meteors. NASA CR-2316.Google Scholar
  51. Staubach, P., Divine, N., Grün, E. 1993. Temperatures of zodiacal dust. Planet. Space Sci., 41 (No. 11/12), pp. 1099–1108.ADSCrossRefGoogle Scholar
  52. Staubach, P., Grün, E. 1995. Development of an upgraded meteoroid model. Adv. Space Res., 16 (No. 11), pp. 103–106.ADSCrossRefGoogle Scholar
  53. Staubach, P., Grün, E., Jehn, R. 1997. The meteoroid environment near Earth. Adv. Space Res., 19 (No.2), pp. 301–308.ADSCrossRefGoogle Scholar
  54. Svedhem, H., Milnzenmayer, R., Iglseder, H. 1996. Detection of possible interstellar particles by the HITEN spacecraft. In Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, 104, eds. B. Å. S. Gustafson and M. S. Hanner, pp. 27–30.Google Scholar
  55. Taylor, A. D. 1995. The Harvard Radio Meteor Project Meteor Velocity Distribution Reappraised. Icarus, 116, pp. 154–158.ADSCrossRefGoogle Scholar
  56. Taylor, A. D., Baggaley, W. J., Steel, D. I. 1996. Discovery of interstellar dust entering the Earth’s atmosphere. Nature, 380, pp. 323–325.ADSCrossRefGoogle Scholar
  57. Temi, P., De Bernadis, B., Masi, S., Moreno, G., Salama, A. 1989. Infrared emission from interplanetary dust. Astron. J., 337, pp. 529–535.Google Scholar
  58. Verniani, F. 1964. II nuovo cimento, 33 (No.4), pp. 4453–4464.Google Scholar
  59. Whipple, F. L. 1963. On meteoroids and penetration. J. Geophys. Res., 68 (No. 17), pp. 4929–4939.ADSCrossRefGoogle Scholar
  60. Witte, M., Rosenbauer, H., Banaskiewicz, M., Fahr, H. 1993. The Ulysses neutral gas experiment: Determination of the velocity and temperature of the neutral interstellar helium, Adv. in Space Res. 13, pp. (6)121–130.ADSCrossRefGoogle Scholar
  61. Zook, H. A. 1990. Flux vs. direction of impacts on LDEF by meteoroids and orbital debris. Lunar and Planet. Sci. Conf. XXI, pp. 1385–1386.ADSGoogle Scholar
  62. Zook, H. A. 1991a. Deriving the velocity distribution of meteoroids from the measured meteoroid impact directionality on the various LDEF surfaces. LDEF-69 months in space, First Post Retrieval Symposium, NASA CP-3134, Part 1.Google Scholar
  63. Zook, H. A. 1991b. Meteoroid directionality on LDEF and asteroidal versus cometary sources. Lunar and Planet. Sci. Conf. XXII, pp. 1577–1578.ADSGoogle Scholar
  64. Zook, H. A., Berg, O. E. 1975. A source of hyperbolic cosmic dust particles. Planet. Space Sci., 23, pp. 183–203.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.DREGIS Dresdner globalFrankfurtGermany
  2. 2.Saupfercheckweg 1 Max-Planck-Institut fü;r KernphysikGermany
  3. 3.Lockheed Martin Space OperationsHoustonUSA

Personalised recommendations