Advertisement

Properties of Interplanetary Dust: Information from Collected Samples

Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

The properties of hundreds of interplanetary particles have been determined by direct laboratory analysis of recovered samples. The particles that span the 1 μm to 1 mm size range have been collected from the stratosphere, from polar ice, and from deep sea sediments. Typically, these particles are black, somewhat porous and have chondritic elemental compositions. They are rather complex mineral assemblages in that they are mixtures of very large numbers of sub-micrometer-sized components. While the data are not totally representative of small interplanetary meteoroids at 1 AU they provide significant insight into the common physical properties of meteoroids. These properties can be used as guidelines for analysis of spacecraft and astronomical observations and for modeling solar system dust as well as some circumstellar dust in systems around other stars.

Keywords

Isotopic Composition Carbonaceous Chondrite Ordinary Chondrite Interplanetary Dust Hydrated Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E., and Grevesse, N. 1989. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, pp. 197–214.ADSCrossRefGoogle Scholar
  2. Anders, E., and Zinner, E. 1993. Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics, 28, pp. 490–514.ADSGoogle Scholar
  3. Antz, C., Bavdaz, M., Jessberger, E. K., Knöchel, A., and Wallenwein, R. 1987. Chemical analysis of interplanetary dust particles with synchrotron radiation. Proc. 10th Eump. Reg. Astmn. Meeting IAU, 2, pp. 249–252.Google Scholar
  4. Arndt, P., and Flynn, G. J. 1995. On the reliability of PIXE and SXRF microanalyses of interplanetary dust particles. Meteoritics, 30, p. 482.ADSGoogle Scholar
  5. Arndt, P., Bohsung, J., Maetz, M., and Jessberger, E. K. 1996a. The elemental abundances in interplanetary dust particles. Meteoritics Planet. Sci., 31, pp. 817–834.ADSCrossRefGoogle Scholar
  6. Arndt, P., Jessberger, E. K., Warren, J., and Zolensky, M. 1996b. Bromine contamination of IDPs during collection. Meteoritics Planet. Sci., 31, p. A8.Google Scholar
  7. Arndt, P., Jessberger, E. K., Maetz, M., Reimold, D., and Traxel, K. 1997. On the Accuracy of element and mass analyses of micron sized samples determined with the Heidelberg proton microprobe with the Heidelberg proton microprobe. Nucl. Instr. Meth. Phys. Res. B, 130, pp. 192–198.ADSCrossRefGoogle Scholar
  8. Beck, P., and Kissel, J. 1994. COMA: a cometary matter analyzer for in situ analysis with high mass resolution. Lunar Planet. Sci., bf XXV, pp. 75–76.ADSGoogle Scholar
  9. Beckerling, W., and Bischoff, A. 1995. Occurrence and composition of relict minerals in micrometeorites from Greenland and Antarctica — implications for their origins. Planet. Space Sci., 43, pp. 435–449.ADSCrossRefGoogle Scholar
  10. Benninghoven, A. 1994. Surface analysis by secondary ion mass spectroscopy SIMS. Surface Sci., 299/300, pp. 246–260.ADSCrossRefGoogle Scholar
  11. Bohsung, J., Arndt, P., and Jessberger, E. K. 1994. Bromine in interplanetary dust particles. Lunar Planet Sci., XXV, pp. 139–140.ADSGoogle Scholar
  12. Bohsung, J., Arndt, P., and Jessberger, E. K. 1995a. Comment on “The bromine content of micrometeorites: Arguments for stratospheric contamination” by F. J. M. Rietmeijer. J. Geophys. Res., 100, pp. 7549-7550.Google Scholar
  13. Bohsung, J., Arndt, P., Jessberger, E. K., Maetz, M., Traxel, K., and Wallianos, A. 1995b. High resolution PIXE analyses of interplanetary dust particles with the New Heidelberg Proton Microprobe. Planet. Space Sci., 43, pp. 411–428.ADSCrossRefGoogle Scholar
  14. Bonny, Ph., Balageas, D., and Maurette, M. 1988. Entry corridor of micrometeorites containing organic material. Lunar Planet. Sci., XXI, p. 111.ADSGoogle Scholar
  15. Bradley, J. P. 1988. Analysis of chondritic interplanetary dust thin-sections. Geochim. Cosmochim. Acta, 52, pp. 889–900.ADSCrossRefGoogle Scholar
  16. Bradley, J. P. 1994. Mechanisms of grain formation, post-accretional alteration, and likely parent body environments of interplanetary dust particles (IDPs). In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 89–104.Google Scholar
  17. Bradley, J. P. 1995. GEMS and new pre-accretionally irradiated relict grains in interplanetary dust - the plot thickens. Meteoritics, 30, p. 491.ADSGoogle Scholar
  18. Bradley, J. P., Brownlee, D. E., Fraundorf, P. 1984. Discovery of nuclear tracks in interplanetary dust. Science, 226, pp. 1432–1434.ADSCrossRefGoogle Scholar
  19. Bradley, J. P., Sandford, S. A., and Walker, R. M. 1988. Interplanetary dust particles. In Meteorites and the Early Solar System, eds. J. F. Kerridge and M. S. Matthews (Tucson: U. Arizona Press), pp. 861–898.Google Scholar
  20. Bradley, J. P., Germani, M. S., Brownlee, D. E. 1989. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microprobe. Earth Planet. Sci. Lett., 93, pp. 1–13.ADSCrossRefGoogle Scholar
  21. Bradley, J. P., Humecki, H. J., and Germani, M. S. 1992. Combined infrared and analytical microscope studies of interplanetary dust particles. Astmphys. J., 394, pp. 643–651.ADSCrossRefGoogle Scholar
  22. Bradley, J. P., Veblen, D. R., Brownlee, D. E. 1993. Pyroxene whiskers and platelets in interplanetary dust: evidence of vapor phase growth. Nature, 301, pp. 473–477.ADSCrossRefGoogle Scholar
  23. Bradley, J. P., Keller, L. P., Brownlee, D. E., and Thomas, K. L. 1996. Reflectance spectroscopy of interplanetary dust particles. Meteoritics Planet. Sci., 31, pp. 394–402.ADSCrossRefGoogle Scholar
  24. Brownlee, D. E. 1981. Extraterrestrial components. In The Sea, vol. 7, (John Wiley & Sons), p. 773.Google Scholar
  25. Brownlee, D. E. 1985. Cosmic dust: collection and research. Ann. Rev. Earth Planet. Sci., 13, pp. 147–173.ADSCrossRefGoogle Scholar
  26. Brownlee, D. E. 1994. The origin and role of dust in the Early Solar System. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst. Physics), pp. 5–8.Google Scholar
  27. Brownlee, D. E. 1996. The elemental composition of interplanetary dust. In Physics, Chemistry and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. Hanner, ASP Conf. Ser., 104, (Astron. Soc. Pacific), pp. 261–264.Google Scholar
  28. Brownlee, D. E. 1997. The elemental composition of cosmic spherules. Meteoritics Planet. Sci., 32, pp. 157–176.ADSCrossRefGoogle Scholar
  29. Brownlee, D. E., Tomandl, D. A., and Olszewski, E. 1977. Interplanetary dust: A new source of extraterrestrial material for laboratory studies. Proc. Lunar Sci. Conf. VIII, pp. 149–160.Google Scholar
  30. Butner, H. M., Walker, H. J., Wooden, D. H., and Witteborn, F. C. 1994. Evidence for cometary dust in the disks around beta-Pic-like stars. Bull. American Astron. Soc., 187, p. 10.Google Scholar
  31. Ceplecha, Z. 1977. Meteoroid populations and orbits. In Comets, Asteroids, Meteorites, ed. A. H. Delsemme (University of Toledo Press), pp. 143–152.Google Scholar
  32. Christoffersen, R., and Busek, P. R. 1983. Epsilon carbide: a low temperature component of interplanetary dust particles. Science, 222, pp. 1327–1328.ADSCrossRefGoogle Scholar
  33. Christoffersen, R., and Busek, P. R. 1986. Mineralogy of interplanetary dust particles from the “olivine” infrared class. Earth Planet. Sci. Lett., 78, pp. 53–66.ADSCrossRefGoogle Scholar
  34. Cicerone, R. J. 1981. Halogens in the atmosphere. Rev. Geophys. Space Phys., 19, pp. 123–139.ADSCrossRefGoogle Scholar
  35. Engrand, C., Christophe Michel-Levy, M., Jouret, J., Kurat G., Maurette, M., and Perreau, M. 1994. Are the most C-rich Antarctic micrometeorites exotic? Meteoritics, 29, p. 464.ADSGoogle Scholar
  36. Engrand, C., Deloule, E., Hoppe, P., Kurat, G., Maurette, M., and Robert, F. 1996. Water contents of micrometeorites from Antarctica. Lunar Planet. Sci., XXVII, pp. 337–338.ADSGoogle Scholar
  37. Esat, T. M., Brownlee, D. E., Papanastassiou, D. A., and Wasserburg, G. J. 1979. Magnesium isotopic composition of interplanetary dust particles. Science, 206, pp. 190–197.ADSCrossRefGoogle Scholar
  38. Esat, T. M., and Taylor, S. R. 1987. Mg isotopic systematics of some interplanetary dust particles. Lunar Planet. Sci. Conf. XVIII, pp. 269–270.Google Scholar
  39. Fleming, R. H., Meeker, G. P., di Brozolo, F. R., and Blake, D. F. 1989. Isotope ratio imaging of interplanetary dust particles. In Secondary Ion Mass Spectrometry (SIMS VII), eds. A. Benninghoven, C. A. Evans, K. D. McKeegan, H. A. Storms, and H. W. Werner (John Wiley & Sons), pp. 389–392.Google Scholar
  40. Flynn, G. J. 1989. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus, 77, pp. 287–310.ADSCrossRefGoogle Scholar
  41. Flynn, G. J. 1994. Interplanetary dust particles collected from the stratosphere: Physical, chemical, and mineralogical properties and implications for their sources. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. lnst. Physics), pp. 127–143.Google Scholar
  42. Flynn, G. J., and Sutton, S. R. 1987. First cosmic dust trace element analyses with the Synchrotron XRF microprobe. Lunar Planet. Sci., XVIII, pp. 296–297.ADSGoogle Scholar
  43. Flynn, G. J., and Sutton, S. R. 1988. Cosmic dust particle densities inferred from SXRF elemental measurements. Meteoritics, 23, pp. 268–269.ADSGoogle Scholar
  44. Flynn, G. J., and Sutton, S. R. 1990. Synchrotron X-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and low-nickel particles. Proc. Lunar Planet. Sci. Conf. XX, pp. 335–342.Google Scholar
  45. Flynn, G. J., and Sutton, S. R. 1991. Chemical characterization of seven large area collector particles by SXRF. Proc. Lunar Planet. Sci. Conf. XXI, pp. 549–556.Google Scholar
  46. Flynn, G. J., and Sutton, S. R. 1992a. Trace elements in chondritic stratospheric particles: Zinc depletion as a possible indicator of atmospheric entry heating. Proc. Lunar Planet. Sci. Conf. XXII, pp. 171–184.Google Scholar
  47. Flynn, G. J., and Sutton, S. R. 1992b. Element abundances in stratospheric cosmic dust: Indications for a new chemical type of chondritic material. Lunar Planet. Sci., XXIII, pp. 373–374.ADSGoogle Scholar
  48. Flynn, G. J., Sutton, S. R., Bajt, S., Klöck, W., Thomas, K. L., and Keller, L. P. 1993. The volatile content of anhydrous interplanetary dust. Meteoritics, 28, p. 349.ADSGoogle Scholar
  49. Flynn, G. J., Sutton, S. R., Bajt, S., Klöck, W., Thomas, K. L., and Keller, L. P. 1994. Hydrated interplanetary dust particles: Element abundances, mineralogies, and possible relationships to anhydrous IDPs. Lunar Planet. Sci., XXV, pp. 381–382.ADSGoogle Scholar
  50. Fraundorf, P., Hints, O., Lowry, P., Keegan, K. D., and Sandford, S. A. 1982. Determination of the mass, surface density and volume density of individual interplanetary dust particles. Lunar Planet. Sci., XII, pp. 225–226.ADSGoogle Scholar
  51. Germani, M. S., Bradley, J. P., and Brownlee, D. E. 1990. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope. Earth Planet. Sci. Lett., 101, pp. 162–179.ADSCrossRefGoogle Scholar
  52. Greenberg, J. M., and Gustafson, B. Å. S. 1981. A comet fragment model for the Zodiacal light particles. Astron. Astrophys., 93, pp. 35–42.ADSGoogle Scholar
  53. Greenberg, J. M., and Hage, J. 1. 1990. From interstellar dust to comets: a unification of observational constraints. Astrophys. J., 361, pp. 260–274.ADSCrossRefGoogle Scholar
  54. Greshake, A., Hoppe, P., and Bischoff, A. 1996. Mineralogy, chemistry, and oxygen isotopes of refractory inclusions from stratospheric interplanetary dust particles and micrometeorites. Meteoritics Planet. Sci., 31, pp. 739–748.ADSCrossRefGoogle Scholar
  55. Greshake, A., Klöck, W., Arndt, P., Maetz, M., Flynn, G. J., Bajt, S., and Bischoff, A. 1998. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteoritics Planet. Sci., 33, pp. 267–290.ADSCrossRefGoogle Scholar
  56. Guan, Y. 1998. Trace and minor elements in ureilites and deuterium-enrichments in several primitive meteorites: Characteristics and geochemical implications. Ph. D. Thesis (St. Louis: Washington University).Google Scholar
  57. Hagemann, R., Nief, G., and Roth, E. 1970. Absolute isotopic scale for deuterium analysis of natural waters, absolute D/H ratios for SMOW. Tellus, 22, pp. 712–715.ADSCrossRefGoogle Scholar
  58. Hanner, M. S. 1999. The silicate material in comets. Space Sci. Rev., 90, pp. 99–108.ADSCrossRefGoogle Scholar
  59. Hanner, M. S., Gehrz, R. D., Harker, D. E., Hayward, T. L., Lynch, D. K., Mason, C. G., Russell, R. W., Wooden, D. H., and Woodward, C. E. 1998. Thermal emission from the dust coma of comet Hale-Bopp and the composition of the silicate grains. Earth, Moon and Planets, in press.Google Scholar
  60. Hanner, M. S., Lynch, D. K., and Russell, R. W. 1994. The 8-13 micron spectra of comets and the composition of silicate grains. Astrophys. J., 425, p. 274.ADSCrossRefGoogle Scholar
  61. Hoefs, J. 1980. Stable Isotope Geochemistry. (Heidelberg: Springer Verlag), 140 pp.CrossRefGoogle Scholar
  62. Hoppe, P., Kurat, G., Walter, J., and Maurette, M. 1995. Trace elements and oxygen isotopes in a CAl-bearing micrometeorite from Antarctica. Lunar Planet. Sci., XXVI, pp. 623–624.ADSGoogle Scholar
  63. Jackson, A. A., and Zook, H. A. 1992. Orbital evolution of dust particles from comets and asteroids. Icarus, 97, pp. 70–84.ADSCrossRefGoogle Scholar
  64. Jessberger, E. K. 1991. Discussion: New techniques on the horizon for the analysis of the inorganic cometary components. In Analysis of Samples from Solar System Bodies, ed. E. K. Jessberger, Space Science Reviews, 56, pp. 227–231.ADSGoogle Scholar
  65. Jessberger, E. K. 1999. Rocky cometary particulates: Their elemental, isotopic and mineralogical ingredients. Space Sci. Rev., 90, pp. 91–97.ADSCrossRefGoogle Scholar
  66. Jessberger, E. K., and Kissel, J. 1991. Chemical properties of cometary dust and a note on carbon isotopes. In Comets in the Post-Halley Era, eds. R. Newburn, M. Neugebauer, and J. Rahe (Heidelberg: Springer Verlag), pp. 1075–1092.Google Scholar
  67. Jessberger, E. K., Christoforidis, A., and Kissel, J. 1988. Aspects of the major element composition of Halley’s dust. Nature, 332, pp. 691–695.ADSCrossRefGoogle Scholar
  68. Jessberger, E. K., Kissel, J., and Rahe, J. 1989. The composition of comets. In Origin and Evolution of Planetary and Satellite Atmospheres, eds. S. K. Atreya, J. B. Pollak, and M. S. Matthews (Tucson: The University of Arizona Press), pp. 167–191.Google Scholar
  69. Jessberger, E. K., Bohsung, J., Chakaveh, S., and Traxel, K. 1992. The volatile element enrichment of chondritic interplanetary dust particles. Earth Planet. Sci. Lett., 112, pp. 91–99.ADSCrossRefGoogle Scholar
  70. Keller, L. P., Thomas, K. L., and McKay, D. S. 1994. Carbon in primitive interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst. Physics), pp. 159–164.Google Scholar
  71. Klöck, W., and Stadermann, F. J. 1994. Mineralogical and chemical relationships of interplanetary dust particles, micrometeorites and meteorites. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst.), pp. 51–88.Google Scholar
  72. Klöck, W., Thomas, K. L., McKay, D. S., and Palme, H. 1989. Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites. Nature, 339, pp. 126–128.ADSCrossRefGoogle Scholar
  73. Klöck, W., Flynn, G. J., Sutton, S. R., and Nier, A. O. 1992. Magnetite as evidence of entry heating. Meteoritics, 27, pp. 243–244.ADSGoogle Scholar
  74. Kornblum, J. J. 1969. Micrometeoroid interaction with the atmosphere. J. Ceophys. Res., 74, pp. 1893–1906.ADSCrossRefGoogle Scholar
  75. Kortenkamp, P., and Dermott, S. F. 1998. Accretion of interplanetary dust particles by the Earth. Icarus, 135, pp. 469–495.ADSCrossRefGoogle Scholar
  76. Krueger, F. R., Korth, A., and Kissel, J. 1991. The organic matter of comet Halley by joint gas phase and solid phase analysis. Space Sci. Rev., 56, pp. 167–175.ADSCrossRefGoogle Scholar
  77. Kurat, G., Presper, T., Brandstätter, F., and Koeberl, C. 1992. CI-like micrometeorites from Cap Prudhomme, Antarctica. Lunar Planet. Sci., XXIII, pp. 747–748.ADSGoogle Scholar
  78. Kurat, G., Brandstätter, F., Presper, T., Koeberl, C., and Maurette, M. 1993. Micrometeorites. Russ. Ceol. Ceophys., 34, pp. 132–147.Google Scholar
  79. Kurat, G., Koeberl, C., Presper, T., Brandstaetter, F., and Maurette, M. 1994a. Antarctic micrometeorites. In Workshop on the Analysis of Interplanetary Dust Particles, (Lunar Planetary Inst.), p. 36.Google Scholar
  80. Kurat, G., Koeberl, C., Presper, T., Brandstätter, F., and Maurette, M. 1994b. Petrology and geochemistry of Antarctic micrometeorites. Ceochim. Cosmochim. Acta, 58, pp. 3879–3904.ADSCrossRefGoogle Scholar
  81. Kurat, G., Hoppe, P., Walter, J., Engrand, C., and Maurette, M. 1994c. Oxygen isotopes in spinels from Antarctic micrometeorites. Meteoritics, 29, pp. 487–488.ADSGoogle Scholar
  82. Kurat, G., Hoppe, P., and Maurette, M. 1994d. Preliminary report on spinel-rich CAls in an Antarctic micrometeorite. Lunar Planet. Sci., XXV, pp. 763–764.ADSGoogle Scholar
  83. Kyte, F. T., and Wasson, J. T. 1986. Accretion rate of extraterrestrial matter - iridium deposited 33 to 67 million years ago. Science, 232, pp. 1223–1229.ADSCrossRefGoogle Scholar
  84. Lefevre, H. W., Schofield, R. M. S., Overley, J. C., and MacDonald, J. D. 1987. Scanning transmission ion microscopy as it complements particle induced X-ray emission microanalysis. Scanning Microscopy, 3, pp. 879–889.Google Scholar
  85. Leinert, C., and Grün, E., 1990. Interplanetary dust. In Physics and Chemistry in Space, eds. R. Schwenn and E. Marsch (Berlin: Springer), Space and Solar Physics, pp. 204–275.Google Scholar
  86. Lindstrom, D. J., and Zolensky, M. E. 1990. INA of cosmic dust particles from large area collector. Lunar Planet. Sci., XXI, pp. 700–701.ADSGoogle Scholar
  87. Love, S. G., and Brownlee, D. E. 1991. Heating and thermal transformation of micrometeorites entering the Earth’s atmosphere. Icarus, 89, pp. 26–43.ADSCrossRefGoogle Scholar
  88. Love, S. G., Joswiak, D. J., and Brownlee, D. E. 1994. Densities of stratospheric micrometeorites Icarus, 111, pp. 227–236.ADSCrossRefGoogle Scholar
  89. Maas, D., Krueger, F. R., and Kissel, J. 1989. Mass and density of silicate and CHON-type dust particles released by comet p/Halley. In Asteroids Comets Meteors III, eds. C.-I. Lagerkvist, H. Rickmann, B. A. Lindblad, and M. Lindgren (Uppsala: Reprocentralen HSC), pp. 389–392.Google Scholar
  90. Mackinnon, I. D. R., and Rietmeijer, F. J. M. 1987. Mineralogy of chondritic interplanetary dust particles. Rev. Ceophys., 25, pp. 1527–1553.ADSCrossRefGoogle Scholar
  91. Maetz, M. 1994. Scanning Transmission Ion Microscopy zur Bestimmung von Dichteprofilen von Interplanetaren Staubteilchen. Diploma Thesis (University of Heidelberg), 89 pp.Google Scholar
  92. Maetz, M., Arndt, P., Bohsung J., Jessberger, E. K., and Traxel, K. 1994. Comprehensive analysis of six IDPs with the Heidelberg proton microprobe. Meteoritics Planet. Sci., 29, pp. 494–495.Google Scholar
  93. Maetz, M., Arndt, P., Greshake, A., Jessberger, E. K., Klöck, W., and Traxel, K. 1996. Structural and chemical modifications of microsamples induced during PIXE analyses. Nucl. Instr. Methods, B 109/110, pp. 192–196.Google Scholar
  94. Massart, D. L., and Kaufman, L. 1983. The interpretation of analytical chemical data by the use of cluster analysis. (John Wiley & Sons), 235 pp.Google Scholar
  95. Maurette, M., Hammer, C., Brownlee, D. E., Reeh, N., and Thomsen, H. H. 1986. Placers of cosmic dust in the blue ice lakes of Greenland. Science, 233, pp. 869–872.ADSCrossRefGoogle Scholar
  96. Maurette, M., Olinger, C., Christophe Michel-Levy, M., Kurat, G., Pourchet, M., Brandstätter, F., and Bourot-Denise, M. 1991. A collection of diverse micrometeorites recovered from 100 tons of Antarctic blue ice. Nature, 351, pp. 44–47.ADSCrossRefGoogle Scholar
  97. Maurette, M., Kurat, G., Perreau, M., and Engrand, C. 1993. Microanalysis of Cap Prudhomme Antarctic meteorites. Microbeam Analysis, 2, pp. 239–251.Google Scholar
  98. Maurette, M., Immel, G., Hammer, C., Harvey, R., Kurat, G., and Taylor, S. 1994. Collection and curation of IDPs from the Greenland and Antarctic ice sheets. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 277–289.Google Scholar
  99. Maurette, M., Engrand, C., and Kurat, G. 1996. Collection and Microanalysis of Antarctic Micrometeorites. In Physics, Chemistry, and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner, ASP Conf. Ser., Vol. 104, pp. 265–273.Google Scholar
  100. McKeegan, K. D. 1987a. Ion microprobe measurements of H, C, 0, Mg, and Si isotopic abundances in individual interplanetary dust particles. Ph. D. thesis (Washington University).Google Scholar
  101. McKeegan, K. D. 1987b. Oxygen isotopes in refractory stratospheric dust particles: proof of extraterrestrial origin. Science, 237, pp. 1468–1471.ADSCrossRefGoogle Scholar
  102. McKeegan, K. D., Walker, R. M., and Zinner, E. 1985. Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta, 49, pp. 1971–1987.ADSCrossRefGoogle Scholar
  103. McKeegan, K. D., Swan, P., Walker, R. M., Wopenka, B., and Zinner, E. 1987. Hydrogen isotopic variations in interplanetary dust particles. Lunar Planet. Sci., XVIII, pp. 627–628.ADSGoogle Scholar
  104. Messenger, S. R. 1997. Combined molecular and isotopic analysis of circumstellar and interplanetary dust. Ph. D. thesis (Saint Louis: Washington University).Google Scholar
  105. Messenger, S., and Walker, R. M. 1997. Evidence for molecular cloud material in meteorites and interplanetary dust. In Astrophysical implications of the laboratory study of presolar materials, eds. T. J. Bernatowicz and E. Zinner (New York: Amer. Inst. Physics), pp. 545–564.Google Scholar
  106. Messenger, S., Walker, R. M., Clemett, S. J., and Zare, R. N. 1996. Deuterium enrichments in cluster IDPs. Lunar Planet. Sci., XXVII, pp. 867–868.ADSGoogle Scholar
  107. Nier, A. O. 1994. Helium and neon in interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 115–126.Google Scholar
  108. Nier, A. O., and Schlutter, D. J. 1990. He and Ne isotopes in individual stratospheric particles - a further study. Lunar Planet. Sci., XXI, pp. 883–884.ADSGoogle Scholar
  109. Nier, A. O., and Schlutter, D. J. 1993. The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, pp. 675–681.ADSCrossRefGoogle Scholar
  110. Olinger, C. T., Maurette, M., Walker, R. M., and Hohenberg, C. M. 1990. Neon measurements of individual Greenland sediment particles: proof of an extraterrestrial origin and comparison with EDX and morphological analyses. Earth Planet. Sci. Lett., 100, pp. 77–93.ADSCrossRefGoogle Scholar
  111. Perreau, M., Engrand, C., Maurette, M., Kurat, G., and Presper, T. 1993. C/O atomic ratios in micrometer-sized crushed grains from Antarctic micrometeorites and two carbonaceous meteorites. Lunar Planet. Sci., XXIV, pp. 1125–1126.ADSGoogle Scholar
  112. Presper, T., Kurat, G., Koeberl, C., Palme, H., and Maurette, M. 1993. Elemental depletions in Antarctic micrometeorites and Arctic cosmic spherules: comparison and relationships. Lunar Planet. Sci., XXIV, pp. 1177–1178.ADSGoogle Scholar
  113. Rietmeijer, F. J. M. 1993. The bromine content of micrometeorites: Arguments for stratospheric contamination. J. Geophys. Res., 98, pp. 7409–7414.ADSCrossRefGoogle Scholar
  114. Rietmeijer, F. J. M. 1994. A proposal for a petrological classification scheme of carbonaceous chondritic micrometeorites. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 231–240.Google Scholar
  115. Rost, D., Stephan, T., and Jessberger, E. K. 1996. Surface analysis of stratospheric dust particles with TOF-SIMS: New results. Meteoritics Planet. Sci., 31, pp. A118–A119.ADSGoogle Scholar
  116. Rost, D., Stephan, T., and Jessberger, E. K. 1999. Surface analysis of stratospheric dust particles, Meteoritics Planet. Sci., 34, pp. 637–646.ADSCrossRefGoogle Scholar
  117. Sandford, S. A., and Walker, R. M. 1985. Laboratory and infrared transmission spectra of interplanetary dust particles from 2.5 to 25 microns. Astrophys. J., 291, pp. 838–851.ADSCrossRefGoogle Scholar
  118. SAS Institute Inc. 1988 SAS/STAT User’s Guide. SAS Institute Inc. Cary, NC.Google Scholar
  119. Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. 1989. Major element composition of stratospheric micrometeorites. Meteoritics, 24, pp. 99–112.ADSCrossRefGoogle Scholar
  120. Schwieters, J., Cramer, H.-G., Heller, T., Jürgens, U., Niehuis, E., Zehnpfenning, J., and Benninghoven, A. 1991. High mass resolution surface imaging with a time-of-flight secondary ion mass spectroscopy scanning microprobe. J. Vac. Sci. Technol., A9, pp. 2864–2871.ADSGoogle Scholar
  121. Sekanina, S., Hanner, M., Jessberger, E. K., and Fomekova, M. 1998. The chemical and isotopic composition of cometary dust. In Interplanetary Dust, eds. E. Grun, H. Fechtig, and B. Å. S. Gustafson, this volume.Google Scholar
  122. Stadermann, F. J. 1990. Messung von Isotopen und Elementhaufigkeiten in einzelnen Interplanetaren Staubteilchen mittels Sekundarionen-Massenspektrometrie. Ph. D. Thesis (Universität Heidelberg), 97 pp.Google Scholar
  123. Stephan, T., Klöck, W., Jessberger, E. K., Thomas, K. L., Keller, L. P., and Behla, F. 1993. Multielement analysis of carbon-rich interplanetary dust particles with TOFSIMS. Meteoritics, 28, pp. 443–444.ADSGoogle Scholar
  124. Stephan, T., Jessberger, E. K., Klöck, W., Rulle, H., and Zehnpfenning, J. 1994a. TOF-SIMS analysis of interplanetary dust. Earth Planet. Sci. Lett., bf 128, pp. 453–467.Google Scholar
  125. Stephan, T., Jessberger, E. K., Rulle, H., Thomas, K. L., and Klöck, W. 1994b. New TOFSIMS results on hydrated interplanetary dust particles. Lunar Planet. Sci., XXV, pp. 1341–1342.ADSGoogle Scholar
  126. Stephan, T., Thomas, K. L., and Warren, J. L. 1994c. Comprehensive consortium study of stratospheric particles from one collector. Meteoritics, 29, pp. 536–537.ADSGoogle Scholar
  127. Stephan, T., Thomas, K. L., and Warren, J. L. 1995. Particles from collection flag U2071. Stratospheric dust catalog, vol. 1, (Heidelberg: MPI-Kernphysik), 121 pp.Google Scholar
  128. Strait, M. M., Thomas, K. L., McKay, D. S. 1995. Porosity of an anhydrous chondritic interplanetary dust particle. Meteoritics, 30, pp. 583–584.ADSGoogle Scholar
  129. Sutton, S. R. and Flynn, G. J. 1988. Stratospheric particles: Synchrotron X-ray fluorescence determination of trace element contents. Proc. Lunar. Planet. Sci. Conf. 18, pp. 607–614.ADSGoogle Scholar
  130. Thomas, K. L., Blanford, G. E., Keller, L. P., Klöck, W., and McKay, D. S. 1993. Carbon abundance and silicate mineralogy of hydrous interplanetary dust particles. Geochim. Cosmochim. Acta, 57, pp. 1551–1566.ADSCrossRefGoogle Scholar
  131. Thomas, K. L., Keller, L. P., Blanford, G. E., and McKay, D. S. 1994. Quantitative analyses of carbon in anhydrous and hydrated interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 165–172.Google Scholar
  132. Thomas, K. L., Blanford, G. E., Clemett, S. J., Flynn, G. J., Keller, L. P., Klöck, W., Maechling, C. R., McKay, D. S., Messenger, S., Nier, A. O., Schlutter, D. J., Sutton, S. R., Warren, J. L., and Zare, R. N. 1995. An asteroidal breccia: The anatomy of a cluster IDP. Geochim. Cosmochim. Acta, 59, pp. 2797–2815.ADSCrossRefGoogle Scholar
  133. Tielens, A. G. G. M. 1997. Deuterium and interstellar chemical processes. In Astrophysical Implications of the Laboratory Study of Presolar Materials, Vol. CP402, eds. T. J. Bernatowicz and E. Zinner (New York: Amer. Inst. Physics), pp. 523–544.Google Scholar
  134. van der Stap, C. C. A. H., Vis, R. D., and Verheul, H. 1986. Interplanetary dust: Arguments in favour of a late stage nebular origin of the chondritic aggregates. Lunar Planet. Sci., XVII, pp. 1013–1014.ADSGoogle Scholar
  135. Walker, R. M. 1991. Comments on the analysis of returned cometary samples. In Analysis of Samples from Solar System Bodies, ed. E. K. Jessberger, Space Science Reviews, 56, pp. 213–226.Google Scholar
  136. Wallenwein, R., Antz, C., Jessberger, E. K., and Traxel, K. 1987. Proton microprobe analysis of interplanetary dust particles. In Proc. 10th Europ. Reg. Astron. Meeting IA U 2, pp. 245–248.Google Scholar
  137. Waiter, J., Kurat, G., Brandstätter, F., Presper, T., Koeberl, C., and Maurette, M. 1994. The chemical compositions of olivines and pyroxenes from Antarctic micrometeorites. Meteoritics, 29, pp. 545–546.ADSGoogle Scholar
  138. Walter, J., Kurat, G., Brandstätter, F., Presper, T., Koeberl, C., and Maurette, M. 1995. The abundance of ordinary chondrite debris among Antarctic micrometeorites. Meteoritics, 30, pp. 592–593.ADSGoogle Scholar
  139. Warren, J. L., and Zolensky, M. E. 1994. Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst. Physics), pp. 245–254.Google Scholar
  140. Wasson, J. T. 1985. Meteorites: Their record of early Solar-System history. (New York: Freeman Co.), 267 pp.Google Scholar
  141. Weissman, P. R. 1984. The Vega particulate shell - comets or asteroids? Science, 224, pp. 987–989.ADSCrossRefGoogle Scholar
  142. Xu, Y., Song, L., Zhang, Y., and Fan, C. Y. (1994). 6Li/7Li, 20B/11B and 7Li/11B /28 Si in individual interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst.), pp. 211–222.Google Scholar
  143. Zinner, E. 1988. Interstellar cloud material in meteorites. In Meteorites and the Early Solar System eds. J. F. Kerridge and M. S. Matthews (University of Arizona Press), pp. 956–983.Google Scholar
  144. Zinner, E. K., McKeegan, K. D., and Walker, R. M. 1983. Laboratory measurements of D/H ratios in interplanetary dust. Nature, 305, pp. 119–121.ADSCrossRefGoogle Scholar
  145. Zolensky, M. E., and Barrett, R. 1994. Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 1–90.Google Scholar
  146. Zolensky, M. E., and Thomas, K. L. 1995. Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochim. Cosmochim. Acta, 59, pp. 4707–4712.ADSCrossRefGoogle Scholar
  147. Zolensky, M. E., Lindstrom, D. J., Thomas, K. L., Lindstrom, R. M., and Lindstrom, M. M. 1989. Trace element compositions of six “chondritic” stratospheric dust particles. Lunar Planet. Sci., XIX, pp. 1255–1256.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.Wilhelm-Klemm-Str. 10Institut für PlanetologieGermany
  2. 2.Obere Kirchgasse 4Germany
  3. 3.Washington University One Brookings DriveLaboratory for Space Sciences Physics DepartmentUSA
  4. 4.University of WashingtonAstronomy DepartmentSeattleUSA
  5. 5.MVA Inc.NorcrossUSA
  6. 6.Postfach 417Naturhistorisches MuseumAustria

Personalised recommendations