Skip to main content

Properties of Interplanetary Dust: Information from Collected Samples

  • Chapter

Part of the book series: Astronomy and Astrophysics Library ((AAL))

Abstract

The properties of hundreds of interplanetary particles have been determined by direct laboratory analysis of recovered samples. The particles that span the 1 μm to 1 mm size range have been collected from the stratosphere, from polar ice, and from deep sea sediments. Typically, these particles are black, somewhat porous and have chondritic elemental compositions. They are rather complex mineral assemblages in that they are mixtures of very large numbers of sub-micrometer-sized components. While the data are not totally representative of small interplanetary meteoroids at 1 AU they provide significant insight into the common physical properties of meteoroids. These properties can be used as guidelines for analysis of spacecraft and astronomical observations and for modeling solar system dust as well as some circumstellar dust in systems around other stars.

1 Institut für Planetologie, Munster, Germany

2 Max-Planck-Institut für Kernphysik, Heidelberg, Germany

3 Washington University, St. Louis, U.S.A.

4 University of Washington, Seattle, U.S.A.

5 MVA. Inc. and Georgia Institute of Technology, Atlanta, U.S.A.

6 Naturhistorisches Museum, Wien, Austria

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E., and Grevesse, N. 1989. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, pp. 197–214.

    Article  ADS  Google Scholar 

  • Anders, E., and Zinner, E. 1993. Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics, 28, pp. 490–514.

    ADS  Google Scholar 

  • Antz, C., Bavdaz, M., Jessberger, E. K., Knöchel, A., and Wallenwein, R. 1987. Chemical analysis of interplanetary dust particles with synchrotron radiation. Proc. 10th Eump. Reg. Astmn. Meeting IAU, 2, pp. 249–252.

    Google Scholar 

  • Arndt, P., and Flynn, G. J. 1995. On the reliability of PIXE and SXRF microanalyses of interplanetary dust particles. Meteoritics, 30, p. 482.

    ADS  Google Scholar 

  • Arndt, P., Bohsung, J., Maetz, M., and Jessberger, E. K. 1996a. The elemental abundances in interplanetary dust particles. Meteoritics Planet. Sci., 31, pp. 817–834.

    Article  ADS  Google Scholar 

  • Arndt, P., Jessberger, E. K., Warren, J., and Zolensky, M. 1996b. Bromine contamination of IDPs during collection. Meteoritics Planet. Sci., 31, p. A8.

    Google Scholar 

  • Arndt, P., Jessberger, E. K., Maetz, M., Reimold, D., and Traxel, K. 1997. On the Accuracy of element and mass analyses of micron sized samples determined with the Heidelberg proton microprobe with the Heidelberg proton microprobe. Nucl. Instr. Meth. Phys. Res. B, 130, pp. 192–198.

    Article  ADS  Google Scholar 

  • Beck, P., and Kissel, J. 1994. COMA: a cometary matter analyzer for in situ analysis with high mass resolution. Lunar Planet. Sci., bf XXV, pp. 75–76.

    ADS  Google Scholar 

  • Beckerling, W., and Bischoff, A. 1995. Occurrence and composition of relict minerals in micrometeorites from Greenland and Antarctica — implications for their origins. Planet. Space Sci., 43, pp. 435–449.

    Article  ADS  Google Scholar 

  • Benninghoven, A. 1994. Surface analysis by secondary ion mass spectroscopy SIMS. Surface Sci., 299/300, pp. 246–260.

    Article  ADS  Google Scholar 

  • Bohsung, J., Arndt, P., and Jessberger, E. K. 1994. Bromine in interplanetary dust particles. Lunar Planet Sci., XXV, pp. 139–140.

    ADS  Google Scholar 

  • Bohsung, J., Arndt, P., and Jessberger, E. K. 1995a. Comment on “The bromine content of micrometeorites: Arguments for stratospheric contamination” by F. J. M. Rietmeijer. J. Geophys. Res., 100, pp. 7549-7550.

    Google Scholar 

  • Bohsung, J., Arndt, P., Jessberger, E. K., Maetz, M., Traxel, K., and Wallianos, A. 1995b. High resolution PIXE analyses of interplanetary dust particles with the New Heidelberg Proton Microprobe. Planet. Space Sci., 43, pp. 411–428.

    Article  ADS  Google Scholar 

  • Bonny, Ph., Balageas, D., and Maurette, M. 1988. Entry corridor of micrometeorites containing organic material. Lunar Planet. Sci., XXI, p. 111.

    ADS  Google Scholar 

  • Bradley, J. P. 1988. Analysis of chondritic interplanetary dust thin-sections. Geochim. Cosmochim. Acta, 52, pp. 889–900.

    Article  ADS  Google Scholar 

  • Bradley, J. P. 1994. Mechanisms of grain formation, post-accretional alteration, and likely parent body environments of interplanetary dust particles (IDPs). In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 89–104.

    Google Scholar 

  • Bradley, J. P. 1995. GEMS and new pre-accretionally irradiated relict grains in interplanetary dust - the plot thickens. Meteoritics, 30, p. 491.

    ADS  Google Scholar 

  • Bradley, J. P., Brownlee, D. E., Fraundorf, P. 1984. Discovery of nuclear tracks in interplanetary dust. Science, 226, pp. 1432–1434.

    Article  ADS  Google Scholar 

  • Bradley, J. P., Sandford, S. A., and Walker, R. M. 1988. Interplanetary dust particles. In Meteorites and the Early Solar System, eds. J. F. Kerridge and M. S. Matthews (Tucson: U. Arizona Press), pp. 861–898.

    Google Scholar 

  • Bradley, J. P., Germani, M. S., Brownlee, D. E. 1989. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microprobe. Earth Planet. Sci. Lett., 93, pp. 1–13.

    Article  ADS  Google Scholar 

  • Bradley, J. P., Humecki, H. J., and Germani, M. S. 1992. Combined infrared and analytical microscope studies of interplanetary dust particles. Astmphys. J., 394, pp. 643–651.

    Article  ADS  Google Scholar 

  • Bradley, J. P., Veblen, D. R., Brownlee, D. E. 1993. Pyroxene whiskers and platelets in interplanetary dust: evidence of vapor phase growth. Nature, 301, pp. 473–477.

    Article  ADS  Google Scholar 

  • Bradley, J. P., Keller, L. P., Brownlee, D. E., and Thomas, K. L. 1996. Reflectance spectroscopy of interplanetary dust particles. Meteoritics Planet. Sci., 31, pp. 394–402.

    Article  ADS  Google Scholar 

  • Brownlee, D. E. 1981. Extraterrestrial components. In The Sea, vol. 7, (John Wiley & Sons), p. 773.

    Google Scholar 

  • Brownlee, D. E. 1985. Cosmic dust: collection and research. Ann. Rev. Earth Planet. Sci., 13, pp. 147–173.

    Article  ADS  Google Scholar 

  • Brownlee, D. E. 1994. The origin and role of dust in the Early Solar System. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst. Physics), pp. 5–8.

    Google Scholar 

  • Brownlee, D. E. 1996. The elemental composition of interplanetary dust. In Physics, Chemistry and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. Hanner, ASP Conf. Ser., 104, (Astron. Soc. Pacific), pp. 261–264.

    Google Scholar 

  • Brownlee, D. E. 1997. The elemental composition of cosmic spherules. Meteoritics Planet. Sci., 32, pp. 157–176.

    Article  ADS  Google Scholar 

  • Brownlee, D. E., Tomandl, D. A., and Olszewski, E. 1977. Interplanetary dust: A new source of extraterrestrial material for laboratory studies. Proc. Lunar Sci. Conf. VIII, pp. 149–160.

    Google Scholar 

  • Butner, H. M., Walker, H. J., Wooden, D. H., and Witteborn, F. C. 1994. Evidence for cometary dust in the disks around beta-Pic-like stars. Bull. American Astron. Soc., 187, p. 10.

    Google Scholar 

  • Ceplecha, Z. 1977. Meteoroid populations and orbits. In Comets, Asteroids, Meteorites, ed. A. H. Delsemme (University of Toledo Press), pp. 143–152.

    Google Scholar 

  • Christoffersen, R., and Busek, P. R. 1983. Epsilon carbide: a low temperature component of interplanetary dust particles. Science, 222, pp. 1327–1328.

    Article  ADS  Google Scholar 

  • Christoffersen, R., and Busek, P. R. 1986. Mineralogy of interplanetary dust particles from the “olivine” infrared class. Earth Planet. Sci. Lett., 78, pp. 53–66.

    Article  ADS  Google Scholar 

  • Cicerone, R. J. 1981. Halogens in the atmosphere. Rev. Geophys. Space Phys., 19, pp. 123–139.

    Article  ADS  Google Scholar 

  • Engrand, C., Christophe Michel-Levy, M., Jouret, J., Kurat G., Maurette, M., and Perreau, M. 1994. Are the most C-rich Antarctic micrometeorites exotic? Meteoritics, 29, p. 464.

    ADS  Google Scholar 

  • Engrand, C., Deloule, E., Hoppe, P., Kurat, G., Maurette, M., and Robert, F. 1996. Water contents of micrometeorites from Antarctica. Lunar Planet. Sci., XXVII, pp. 337–338.

    ADS  Google Scholar 

  • Esat, T. M., Brownlee, D. E., Papanastassiou, D. A., and Wasserburg, G. J. 1979. Magnesium isotopic composition of interplanetary dust particles. Science, 206, pp. 190–197.

    Article  ADS  Google Scholar 

  • Esat, T. M., and Taylor, S. R. 1987. Mg isotopic systematics of some interplanetary dust particles. Lunar Planet. Sci. Conf. XVIII, pp. 269–270.

    Google Scholar 

  • Fleming, R. H., Meeker, G. P., di Brozolo, F. R., and Blake, D. F. 1989. Isotope ratio imaging of interplanetary dust particles. In Secondary Ion Mass Spectrometry (SIMS VII), eds. A. Benninghoven, C. A. Evans, K. D. McKeegan, H. A. Storms, and H. W. Werner (John Wiley & Sons), pp. 389–392.

    Google Scholar 

  • Flynn, G. J. 1989. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus, 77, pp. 287–310.

    Article  ADS  Google Scholar 

  • Flynn, G. J. 1994. Interplanetary dust particles collected from the stratosphere: Physical, chemical, and mineralogical properties and implications for their sources. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. lnst. Physics), pp. 127–143.

    Google Scholar 

  • Flynn, G. J., and Sutton, S. R. 1987. First cosmic dust trace element analyses with the Synchrotron XRF microprobe. Lunar Planet. Sci., XVIII, pp. 296–297.

    ADS  Google Scholar 

  • Flynn, G. J., and Sutton, S. R. 1988. Cosmic dust particle densities inferred from SXRF elemental measurements. Meteoritics, 23, pp. 268–269.

    ADS  Google Scholar 

  • Flynn, G. J., and Sutton, S. R. 1990. Synchrotron X-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and low-nickel particles. Proc. Lunar Planet. Sci. Conf. XX, pp. 335–342.

    Google Scholar 

  • Flynn, G. J., and Sutton, S. R. 1991. Chemical characterization of seven large area collector particles by SXRF. Proc. Lunar Planet. Sci. Conf. XXI, pp. 549–556.

    Google Scholar 

  • Flynn, G. J., and Sutton, S. R. 1992a. Trace elements in chondritic stratospheric particles: Zinc depletion as a possible indicator of atmospheric entry heating. Proc. Lunar Planet. Sci. Conf. XXII, pp. 171–184.

    Google Scholar 

  • Flynn, G. J., and Sutton, S. R. 1992b. Element abundances in stratospheric cosmic dust: Indications for a new chemical type of chondritic material. Lunar Planet. Sci., XXIII, pp. 373–374.

    ADS  Google Scholar 

  • Flynn, G. J., Sutton, S. R., Bajt, S., Klöck, W., Thomas, K. L., and Keller, L. P. 1993. The volatile content of anhydrous interplanetary dust. Meteoritics, 28, p. 349.

    ADS  Google Scholar 

  • Flynn, G. J., Sutton, S. R., Bajt, S., Klöck, W., Thomas, K. L., and Keller, L. P. 1994. Hydrated interplanetary dust particles: Element abundances, mineralogies, and possible relationships to anhydrous IDPs. Lunar Planet. Sci., XXV, pp. 381–382.

    ADS  Google Scholar 

  • Fraundorf, P., Hints, O., Lowry, P., Keegan, K. D., and Sandford, S. A. 1982. Determination of the mass, surface density and volume density of individual interplanetary dust particles. Lunar Planet. Sci., XII, pp. 225–226.

    ADS  Google Scholar 

  • Germani, M. S., Bradley, J. P., and Brownlee, D. E. 1990. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope. Earth Planet. Sci. Lett., 101, pp. 162–179.

    Article  ADS  Google Scholar 

  • Greenberg, J. M., and Gustafson, B. Å. S. 1981. A comet fragment model for the Zodiacal light particles. Astron. Astrophys., 93, pp. 35–42.

    ADS  Google Scholar 

  • Greenberg, J. M., and Hage, J. 1. 1990. From interstellar dust to comets: a unification of observational constraints. Astrophys. J., 361, pp. 260–274.

    Article  ADS  Google Scholar 

  • Greshake, A., Hoppe, P., and Bischoff, A. 1996. Mineralogy, chemistry, and oxygen isotopes of refractory inclusions from stratospheric interplanetary dust particles and micrometeorites. Meteoritics Planet. Sci., 31, pp. 739–748.

    Article  ADS  Google Scholar 

  • Greshake, A., Klöck, W., Arndt, P., Maetz, M., Flynn, G. J., Bajt, S., and Bischoff, A. 1998. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteoritics Planet. Sci., 33, pp. 267–290.

    Article  ADS  Google Scholar 

  • Guan, Y. 1998. Trace and minor elements in ureilites and deuterium-enrichments in several primitive meteorites: Characteristics and geochemical implications. Ph. D. Thesis (St. Louis: Washington University).

    Google Scholar 

  • Hagemann, R., Nief, G., and Roth, E. 1970. Absolute isotopic scale for deuterium analysis of natural waters, absolute D/H ratios for SMOW. Tellus, 22, pp. 712–715.

    Article  ADS  Google Scholar 

  • Hanner, M. S. 1999. The silicate material in comets. Space Sci. Rev., 90, pp. 99–108.

    Article  ADS  Google Scholar 

  • Hanner, M. S., Gehrz, R. D., Harker, D. E., Hayward, T. L., Lynch, D. K., Mason, C. G., Russell, R. W., Wooden, D. H., and Woodward, C. E. 1998. Thermal emission from the dust coma of comet Hale-Bopp and the composition of the silicate grains. Earth, Moon and Planets, in press.

    Google Scholar 

  • Hanner, M. S., Lynch, D. K., and Russell, R. W. 1994. The 8-13 micron spectra of comets and the composition of silicate grains. Astrophys. J., 425, p. 274.

    Article  ADS  Google Scholar 

  • Hoefs, J. 1980. Stable Isotope Geochemistry. (Heidelberg: Springer Verlag), 140 pp.

    Book  Google Scholar 

  • Hoppe, P., Kurat, G., Walter, J., and Maurette, M. 1995. Trace elements and oxygen isotopes in a CAl-bearing micrometeorite from Antarctica. Lunar Planet. Sci., XXVI, pp. 623–624.

    ADS  Google Scholar 

  • Jackson, A. A., and Zook, H. A. 1992. Orbital evolution of dust particles from comets and asteroids. Icarus, 97, pp. 70–84.

    Article  ADS  Google Scholar 

  • Jessberger, E. K. 1991. Discussion: New techniques on the horizon for the analysis of the inorganic cometary components. In Analysis of Samples from Solar System Bodies, ed. E. K. Jessberger, Space Science Reviews, 56, pp. 227–231.

    ADS  Google Scholar 

  • Jessberger, E. K. 1999. Rocky cometary particulates: Their elemental, isotopic and mineralogical ingredients. Space Sci. Rev., 90, pp. 91–97.

    Article  ADS  Google Scholar 

  • Jessberger, E. K., and Kissel, J. 1991. Chemical properties of cometary dust and a note on carbon isotopes. In Comets in the Post-Halley Era, eds. R. Newburn, M. Neugebauer, and J. Rahe (Heidelberg: Springer Verlag), pp. 1075–1092.

    Google Scholar 

  • Jessberger, E. K., Christoforidis, A., and Kissel, J. 1988. Aspects of the major element composition of Halley’s dust. Nature, 332, pp. 691–695.

    Article  ADS  Google Scholar 

  • Jessberger, E. K., Kissel, J., and Rahe, J. 1989. The composition of comets. In Origin and Evolution of Planetary and Satellite Atmospheres, eds. S. K. Atreya, J. B. Pollak, and M. S. Matthews (Tucson: The University of Arizona Press), pp. 167–191.

    Google Scholar 

  • Jessberger, E. K., Bohsung, J., Chakaveh, S., and Traxel, K. 1992. The volatile element enrichment of chondritic interplanetary dust particles. Earth Planet. Sci. Lett., 112, pp. 91–99.

    Article  ADS  Google Scholar 

  • Keller, L. P., Thomas, K. L., and McKay, D. S. 1994. Carbon in primitive interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst. Physics), pp. 159–164.

    Google Scholar 

  • Klöck, W., and Stadermann, F. J. 1994. Mineralogical and chemical relationships of interplanetary dust particles, micrometeorites and meteorites. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst.), pp. 51–88.

    Google Scholar 

  • Klöck, W., Thomas, K. L., McKay, D. S., and Palme, H. 1989. Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites. Nature, 339, pp. 126–128.

    Article  ADS  Google Scholar 

  • Klöck, W., Flynn, G. J., Sutton, S. R., and Nier, A. O. 1992. Magnetite as evidence of entry heating. Meteoritics, 27, pp. 243–244.

    ADS  Google Scholar 

  • Kornblum, J. J. 1969. Micrometeoroid interaction with the atmosphere. J. Ceophys. Res., 74, pp. 1893–1906.

    Article  ADS  Google Scholar 

  • Kortenkamp, P., and Dermott, S. F. 1998. Accretion of interplanetary dust particles by the Earth. Icarus, 135, pp. 469–495.

    Article  ADS  Google Scholar 

  • Krueger, F. R., Korth, A., and Kissel, J. 1991. The organic matter of comet Halley by joint gas phase and solid phase analysis. Space Sci. Rev., 56, pp. 167–175.

    Article  ADS  Google Scholar 

  • Kurat, G., Presper, T., Brandstätter, F., and Koeberl, C. 1992. CI-like micrometeorites from Cap Prudhomme, Antarctica. Lunar Planet. Sci., XXIII, pp. 747–748.

    ADS  Google Scholar 

  • Kurat, G., Brandstätter, F., Presper, T., Koeberl, C., and Maurette, M. 1993. Micrometeorites. Russ. Ceol. Ceophys., 34, pp. 132–147.

    Google Scholar 

  • Kurat, G., Koeberl, C., Presper, T., Brandstaetter, F., and Maurette, M. 1994a. Antarctic micrometeorites. In Workshop on the Analysis of Interplanetary Dust Particles, (Lunar Planetary Inst.), p. 36.

    Google Scholar 

  • Kurat, G., Koeberl, C., Presper, T., Brandstätter, F., and Maurette, M. 1994b. Petrology and geochemistry of Antarctic micrometeorites. Ceochim. Cosmochim. Acta, 58, pp. 3879–3904.

    Article  ADS  Google Scholar 

  • Kurat, G., Hoppe, P., Walter, J., Engrand, C., and Maurette, M. 1994c. Oxygen isotopes in spinels from Antarctic micrometeorites. Meteoritics, 29, pp. 487–488.

    ADS  Google Scholar 

  • Kurat, G., Hoppe, P., and Maurette, M. 1994d. Preliminary report on spinel-rich CAls in an Antarctic micrometeorite. Lunar Planet. Sci., XXV, pp. 763–764.

    ADS  Google Scholar 

  • Kyte, F. T., and Wasson, J. T. 1986. Accretion rate of extraterrestrial matter - iridium deposited 33 to 67 million years ago. Science, 232, pp. 1223–1229.

    Article  ADS  Google Scholar 

  • Lefevre, H. W., Schofield, R. M. S., Overley, J. C., and MacDonald, J. D. 1987. Scanning transmission ion microscopy as it complements particle induced X-ray emission microanalysis. Scanning Microscopy, 3, pp. 879–889.

    Google Scholar 

  • Leinert, C., and Grün, E., 1990. Interplanetary dust. In Physics and Chemistry in Space, eds. R. Schwenn and E. Marsch (Berlin: Springer), Space and Solar Physics, pp. 204–275.

    Google Scholar 

  • Lindstrom, D. J., and Zolensky, M. E. 1990. INA of cosmic dust particles from large area collector. Lunar Planet. Sci., XXI, pp. 700–701.

    ADS  Google Scholar 

  • Love, S. G., and Brownlee, D. E. 1991. Heating and thermal transformation of micrometeorites entering the Earth’s atmosphere. Icarus, 89, pp. 26–43.

    Article  ADS  Google Scholar 

  • Love, S. G., Joswiak, D. J., and Brownlee, D. E. 1994. Densities of stratospheric micrometeorites Icarus, 111, pp. 227–236.

    Article  ADS  Google Scholar 

  • Maas, D., Krueger, F. R., and Kissel, J. 1989. Mass and density of silicate and CHON-type dust particles released by comet p/Halley. In Asteroids Comets Meteors III, eds. C.-I. Lagerkvist, H. Rickmann, B. A. Lindblad, and M. Lindgren (Uppsala: Reprocentralen HSC), pp. 389–392.

    Google Scholar 

  • Mackinnon, I. D. R., and Rietmeijer, F. J. M. 1987. Mineralogy of chondritic interplanetary dust particles. Rev. Ceophys., 25, pp. 1527–1553.

    Article  ADS  Google Scholar 

  • Maetz, M. 1994. Scanning Transmission Ion Microscopy zur Bestimmung von Dichteprofilen von Interplanetaren Staubteilchen. Diploma Thesis (University of Heidelberg), 89 pp.

    Google Scholar 

  • Maetz, M., Arndt, P., Bohsung J., Jessberger, E. K., and Traxel, K. 1994. Comprehensive analysis of six IDPs with the Heidelberg proton microprobe. Meteoritics Planet. Sci., 29, pp. 494–495.

    Google Scholar 

  • Maetz, M., Arndt, P., Greshake, A., Jessberger, E. K., Klöck, W., and Traxel, K. 1996. Structural and chemical modifications of microsamples induced during PIXE analyses. Nucl. Instr. Methods, B 109/110, pp. 192–196.

    Google Scholar 

  • Massart, D. L., and Kaufman, L. 1983. The interpretation of analytical chemical data by the use of cluster analysis. (John Wiley & Sons), 235 pp.

    Google Scholar 

  • Maurette, M., Hammer, C., Brownlee, D. E., Reeh, N., and Thomsen, H. H. 1986. Placers of cosmic dust in the blue ice lakes of Greenland. Science, 233, pp. 869–872.

    Article  ADS  Google Scholar 

  • Maurette, M., Olinger, C., Christophe Michel-Levy, M., Kurat, G., Pourchet, M., Brandstätter, F., and Bourot-Denise, M. 1991. A collection of diverse micrometeorites recovered from 100 tons of Antarctic blue ice. Nature, 351, pp. 44–47.

    Article  ADS  Google Scholar 

  • Maurette, M., Kurat, G., Perreau, M., and Engrand, C. 1993. Microanalysis of Cap Prudhomme Antarctic meteorites. Microbeam Analysis, 2, pp. 239–251.

    Google Scholar 

  • Maurette, M., Immel, G., Hammer, C., Harvey, R., Kurat, G., and Taylor, S. 1994. Collection and curation of IDPs from the Greenland and Antarctic ice sheets. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 277–289.

    Google Scholar 

  • Maurette, M., Engrand, C., and Kurat, G. 1996. Collection and Microanalysis of Antarctic Micrometeorites. In Physics, Chemistry, and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner, ASP Conf. Ser., Vol. 104, pp. 265–273.

    Google Scholar 

  • McKeegan, K. D. 1987a. Ion microprobe measurements of H, C, 0, Mg, and Si isotopic abundances in individual interplanetary dust particles. Ph. D. thesis (Washington University).

    Google Scholar 

  • McKeegan, K. D. 1987b. Oxygen isotopes in refractory stratospheric dust particles: proof of extraterrestrial origin. Science, 237, pp. 1468–1471.

    Article  ADS  Google Scholar 

  • McKeegan, K. D., Walker, R. M., and Zinner, E. 1985. Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta, 49, pp. 1971–1987.

    Article  ADS  Google Scholar 

  • McKeegan, K. D., Swan, P., Walker, R. M., Wopenka, B., and Zinner, E. 1987. Hydrogen isotopic variations in interplanetary dust particles. Lunar Planet. Sci., XVIII, pp. 627–628.

    ADS  Google Scholar 

  • Messenger, S. R. 1997. Combined molecular and isotopic analysis of circumstellar and interplanetary dust. Ph. D. thesis (Saint Louis: Washington University).

    Google Scholar 

  • Messenger, S., and Walker, R. M. 1997. Evidence for molecular cloud material in meteorites and interplanetary dust. In Astrophysical implications of the laboratory study of presolar materials, eds. T. J. Bernatowicz and E. Zinner (New York: Amer. Inst. Physics), pp. 545–564.

    Google Scholar 

  • Messenger, S., Walker, R. M., Clemett, S. J., and Zare, R. N. 1996. Deuterium enrichments in cluster IDPs. Lunar Planet. Sci., XXVII, pp. 867–868.

    ADS  Google Scholar 

  • Nier, A. O. 1994. Helium and neon in interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 115–126.

    Google Scholar 

  • Nier, A. O., and Schlutter, D. J. 1990. He and Ne isotopes in individual stratospheric particles - a further study. Lunar Planet. Sci., XXI, pp. 883–884.

    ADS  Google Scholar 

  • Nier, A. O., and Schlutter, D. J. 1993. The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, pp. 675–681.

    Article  ADS  Google Scholar 

  • Olinger, C. T., Maurette, M., Walker, R. M., and Hohenberg, C. M. 1990. Neon measurements of individual Greenland sediment particles: proof of an extraterrestrial origin and comparison with EDX and morphological analyses. Earth Planet. Sci. Lett., 100, pp. 77–93.

    Article  ADS  Google Scholar 

  • Perreau, M., Engrand, C., Maurette, M., Kurat, G., and Presper, T. 1993. C/O atomic ratios in micrometer-sized crushed grains from Antarctic micrometeorites and two carbonaceous meteorites. Lunar Planet. Sci., XXIV, pp. 1125–1126.

    ADS  Google Scholar 

  • Presper, T., Kurat, G., Koeberl, C., Palme, H., and Maurette, M. 1993. Elemental depletions in Antarctic micrometeorites and Arctic cosmic spherules: comparison and relationships. Lunar Planet. Sci., XXIV, pp. 1177–1178.

    ADS  Google Scholar 

  • Rietmeijer, F. J. M. 1993. The bromine content of micrometeorites: Arguments for stratospheric contamination. J. Geophys. Res., 98, pp. 7409–7414.

    Article  ADS  Google Scholar 

  • Rietmeijer, F. J. M. 1994. A proposal for a petrological classification scheme of carbonaceous chondritic micrometeorites. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 231–240.

    Google Scholar 

  • Rost, D., Stephan, T., and Jessberger, E. K. 1996. Surface analysis of stratospheric dust particles with TOF-SIMS: New results. Meteoritics Planet. Sci., 31, pp. A118–A119.

    ADS  Google Scholar 

  • Rost, D., Stephan, T., and Jessberger, E. K. 1999. Surface analysis of stratospheric dust particles, Meteoritics Planet. Sci., 34, pp. 637–646.

    Article  ADS  Google Scholar 

  • Sandford, S. A., and Walker, R. M. 1985. Laboratory and infrared transmission spectra of interplanetary dust particles from 2.5 to 25 microns. Astrophys. J., 291, pp. 838–851.

    Article  ADS  Google Scholar 

  • SAS Institute Inc. 1988 SAS/STAT User’s Guide. SAS Institute Inc. Cary, NC.

    Google Scholar 

  • Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. 1989. Major element composition of stratospheric micrometeorites. Meteoritics, 24, pp. 99–112.

    Article  ADS  Google Scholar 

  • Schwieters, J., Cramer, H.-G., Heller, T., Jürgens, U., Niehuis, E., Zehnpfenning, J., and Benninghoven, A. 1991. High mass resolution surface imaging with a time-of-flight secondary ion mass spectroscopy scanning microprobe. J. Vac. Sci. Technol., A9, pp. 2864–2871.

    ADS  Google Scholar 

  • Sekanina, S., Hanner, M., Jessberger, E. K., and Fomekova, M. 1998. The chemical and isotopic composition of cometary dust. In Interplanetary Dust, eds. E. Grun, H. Fechtig, and B. Å. S. Gustafson, this volume.

    Google Scholar 

  • Stadermann, F. J. 1990. Messung von Isotopen und Elementhaufigkeiten in einzelnen Interplanetaren Staubteilchen mittels Sekundarionen-Massenspektrometrie. Ph. D. Thesis (Universität Heidelberg), 97 pp.

    Google Scholar 

  • Stephan, T., Klöck, W., Jessberger, E. K., Thomas, K. L., Keller, L. P., and Behla, F. 1993. Multielement analysis of carbon-rich interplanetary dust particles with TOFSIMS. Meteoritics, 28, pp. 443–444.

    ADS  Google Scholar 

  • Stephan, T., Jessberger, E. K., Klöck, W., Rulle, H., and Zehnpfenning, J. 1994a. TOF-SIMS analysis of interplanetary dust. Earth Planet. Sci. Lett., bf 128, pp. 453–467.

    Google Scholar 

  • Stephan, T., Jessberger, E. K., Rulle, H., Thomas, K. L., and Klöck, W. 1994b. New TOFSIMS results on hydrated interplanetary dust particles. Lunar Planet. Sci., XXV, pp. 1341–1342.

    ADS  Google Scholar 

  • Stephan, T., Thomas, K. L., and Warren, J. L. 1994c. Comprehensive consortium study of stratospheric particles from one collector. Meteoritics, 29, pp. 536–537.

    ADS  Google Scholar 

  • Stephan, T., Thomas, K. L., and Warren, J. L. 1995. Particles from collection flag U2071. Stratospheric dust catalog, vol. 1, (Heidelberg: MPI-Kernphysik), 121 pp.

    Google Scholar 

  • Strait, M. M., Thomas, K. L., McKay, D. S. 1995. Porosity of an anhydrous chondritic interplanetary dust particle. Meteoritics, 30, pp. 583–584.

    ADS  Google Scholar 

  • Sutton, S. R. and Flynn, G. J. 1988. Stratospheric particles: Synchrotron X-ray fluorescence determination of trace element contents. Proc. Lunar. Planet. Sci. Conf. 18, pp. 607–614.

    ADS  Google Scholar 

  • Thomas, K. L., Blanford, G. E., Keller, L. P., Klöck, W., and McKay, D. S. 1993. Carbon abundance and silicate mineralogy of hydrous interplanetary dust particles. Geochim. Cosmochim. Acta, 57, pp. 1551–1566.

    Article  ADS  Google Scholar 

  • Thomas, K. L., Keller, L. P., Blanford, G. E., and McKay, D. S. 1994. Quantitative analyses of carbon in anhydrous and hydrated interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 165–172.

    Google Scholar 

  • Thomas, K. L., Blanford, G. E., Clemett, S. J., Flynn, G. J., Keller, L. P., Klöck, W., Maechling, C. R., McKay, D. S., Messenger, S., Nier, A. O., Schlutter, D. J., Sutton, S. R., Warren, J. L., and Zare, R. N. 1995. An asteroidal breccia: The anatomy of a cluster IDP. Geochim. Cosmochim. Acta, 59, pp. 2797–2815.

    Article  ADS  Google Scholar 

  • Tielens, A. G. G. M. 1997. Deuterium and interstellar chemical processes. In Astrophysical Implications of the Laboratory Study of Presolar Materials, Vol. CP402, eds. T. J. Bernatowicz and E. Zinner (New York: Amer. Inst. Physics), pp. 523–544.

    Google Scholar 

  • van der Stap, C. C. A. H., Vis, R. D., and Verheul, H. 1986. Interplanetary dust: Arguments in favour of a late stage nebular origin of the chondritic aggregates. Lunar Planet. Sci., XVII, pp. 1013–1014.

    ADS  Google Scholar 

  • Walker, R. M. 1991. Comments on the analysis of returned cometary samples. In Analysis of Samples from Solar System Bodies, ed. E. K. Jessberger, Space Science Reviews, 56, pp. 213–226.

    Google Scholar 

  • Wallenwein, R., Antz, C., Jessberger, E. K., and Traxel, K. 1987. Proton microprobe analysis of interplanetary dust particles. In Proc. 10th Europ. Reg. Astron. Meeting IA U 2, pp. 245–248.

    Google Scholar 

  • Waiter, J., Kurat, G., Brandstätter, F., Presper, T., Koeberl, C., and Maurette, M. 1994. The chemical compositions of olivines and pyroxenes from Antarctic micrometeorites. Meteoritics, 29, pp. 545–546.

    ADS  Google Scholar 

  • Walter, J., Kurat, G., Brandstätter, F., Presper, T., Koeberl, C., and Maurette, M. 1995. The abundance of ordinary chondrite debris among Antarctic micrometeorites. Meteoritics, 30, pp. 592–593.

    ADS  Google Scholar 

  • Warren, J. L., and Zolensky, M. E. 1994. Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn (New York: Amer. Inst. Physics), pp. 245–254.

    Google Scholar 

  • Wasson, J. T. 1985. Meteorites: Their record of early Solar-System history. (New York: Freeman Co.), 267 pp.

    Google Scholar 

  • Weissman, P. R. 1984. The Vega particulate shell - comets or asteroids? Science, 224, pp. 987–989.

    Article  ADS  Google Scholar 

  • Xu, Y., Song, L., Zhang, Y., and Fan, C. Y. (1994). 6Li/7Li, 20B/11B and 7Li/11B /28 Si in individual interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst.), pp. 211–222.

    Google Scholar 

  • Zinner, E. 1988. Interstellar cloud material in meteorites. In Meteorites and the Early Solar System eds. J. F. Kerridge and M. S. Matthews (University of Arizona Press), pp. 956–983.

    Google Scholar 

  • Zinner, E. K., McKeegan, K. D., and Walker, R. M. 1983. Laboratory measurements of D/H ratios in interplanetary dust. Nature, 305, pp. 119–121.

    Article  ADS  Google Scholar 

  • Zolensky, M. E., and Barrett, R. 1994. Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. In Analysis of Interplanetary Dust, eds. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer and G. J. Flynn (New York: Amer. Inst. Physics), pp. 1–90.

    Google Scholar 

  • Zolensky, M. E., and Thomas, K. L. 1995. Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochim. Cosmochim. Acta, 59, pp. 4707–4712.

    Article  ADS  Google Scholar 

  • Zolensky, M. E., Lindstrom, D. J., Thomas, K. L., Lindstrom, R. M., and Lindstrom, M. M. 1989. Trace element compositions of six “chondritic” stratospheric dust particles. Lunar Planet. Sci., XIX, pp. 1255–1256.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jessberger, E.K. et al. (2001). Properties of Interplanetary Dust: Information from Collected Samples. In: Grün, E., Gustafson, B.Å.S., Dermott, S., Fechtig, H. (eds) Interplanetary Dust. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56428-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56428-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62647-0

  • Online ISBN: 978-3-642-56428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics