Advertisement

Historical Perspectives

Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

This chapter outlines the historical development of the field. There are two intentions in this: first, to follow a path through the scientific developments from the early zodiacal light observations to the late spaceprobe experiments, which directly explore the properties of the solar system dust grains. Secondly and not to forget the human side, we look at the personal aspects of the dust researchers, their organization on the scientific international scene. We also reflect on the science politics of national funding agencies, which partly has led towards and partly against a fruitful scientific work.

Keywords

Dust Particle Lunar Surface Heliocentric Distance Cosmic Dust Interplanetary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. d’Aiutolo, C. T. 1964. Satellite measurements of the meteoroid environment. In Annals of the New York Academy of Sciences, 119, Cosmic Dust, ed. W. A. Cassidy (New York: published by the Academy), pp. 82–97.Google Scholar
  2. Alexander, W. M. 1962. Cosmic dust. Science, 138, pp. 1098–1099.ADSCrossRefGoogle Scholar
  3. Alexander, W. M., Arthur, C. W., and Bohn, J. L. 1971. Lunar Explorer 35 and OGO 3: dust particle measurements in selenocentric and cislunar space from 1967 to 1969. In Space Research, XI, eds. K. YA. Kondratyev, M. J. Rycroft, and C. Sagan (Berlin: Akademie-Verlag), pp. 279–285.Google Scholar
  4. Alexander, W. M., McCracken, C. W., Secretan, L., and Berg, O. E. 1963. Review of direct measurements of interplanetary dust from satellites and probes. In Space Research, III, ed. W. Priester (Amsterdam: North Holland Publ. Comp.), pp. 891–917.Google Scholar
  5. Allen, C. W. 1947. The spectrum of the corona at the eclipse of 1940 October 1. M.N.R.A.S., 106, pp. 137–150.Google Scholar
  6. Arndt, P., Bohsung, J., Maetz, M., and Jessberger, E. K. 1996. The elemental abundances in interplanetary dust particles. Meteoritics & Planetary Science, 31, pp. 817–833.ADSCrossRefGoogle Scholar
  7. Arnold, F., and Joos, W. 1979. Rapid growth of atmospheric cluster ions at the cold mesopause. Geophys. Res. Lett., 6, pp. 763–766.ADSCrossRefGoogle Scholar
  8. Asaad, A. S. 1979. Possible explanations for the variation of zodiacal light brightness as observed from ground base and outer space. J. Astron. Soc. Egypt., 1, pp. 84–95.ADSGoogle Scholar
  9. Ashworth, D. G. 1978. Lunar and planetary impact erosion. In Cosmic Dust, ed. J. A. M. McDonnell (New York: Wiley and Sons), pp. 427–526.Google Scholar
  10. Backhouse, T. W. 1857. On the aspect of the zodiacal light opposite the Sun. M.N.R.A.S., 36, pp. 46–48.ADSGoogle Scholar
  11. Banderman, L. W. 1968. Physical properties of interplanetary dust. Thesis. (University of Maryland).Google Scholar
  12. Barnard, E. E. 1883. Gegenschein. Sidereal Messenger, 2, p. 254.Google Scholar
  13. Beckers, J. M. 1959. The spectrum of the zodiacal light. Proc. Kon. Ned. Akad., Ser. B, 62, No. 4, pp. 248–262.Google Scholar
  14. Beckwith, St. V. W., Sargent, A. I., Chini, R. S., and Giisten, R. 1990. A survey for circumstellar disks around young stellar objects. Astron. J., 99, pp. 924–945.ADSCrossRefGoogle Scholar
  15. Bedford, D. K., Adams, N. G., and Smith, D. 1975. The flux and spatial distribution of micrometeoroids in the near-Earth environment. Planet. Space Sci., 23, pp. 1451–1456.ADSCrossRefGoogle Scholar
  16. Behr, A., and Siedentopf, H. 1953. Untersuchungen iiber Zodiakallicht und Gegenschein nach lichtelektrischen Messungen auf dem Jungfraujoch. Z. Astrophys., 32, pp. 19–50.ADSGoogle Scholar
  17. Berg, O. E.1978. A lunar terminator configuration. Earth Planet. Sci. Lett., 39, pp. 377–381.ADSCrossRefGoogle Scholar
  18. Berg, O. E., Alexander, W. M., and Secretan, L. 1965. Physical parameters of cosmic dust obtained from rocket collections. Proc. Symp. Meteors and Cosmic Dust, (SAO: Cambridge/Mass).Google Scholar
  19. Berg, O. E., and Gerloff, U. 1971. More than two years of micrometeorite data from two Pioneer satellites. In Space Research, XI, eds. K.Y.A. Kondratyev, M. J. Rycroft and C. Sagan (Berlin: Akademie-Verlag), pp. 225–235.Google Scholar
  20. Berg, O. E., and Grün, E. 1973. Evidence of hyperbolic cosmic dust particles. In Space Research, XIII, eds. M. J. Rycroft and S. K. Runcorn (Berlin: Akademie-Verlag), pp. 1047–1055.Google Scholar
  21. Berg, O. E., and Meredith, L. H. 1966. Micrometeorite impacts to an altitude of 103 km. J. Geophys. Res., 61, pp. 7511–7514.Google Scholar
  22. Berg, O. E., Richardson, F. F., Rhee, J. W., and Auer, S. 1974. Preliminary results of a cosmic dust experiment on the Moon. Geophys. Res. Lett., 1, pp. 289–290.ADSCrossRefGoogle Scholar
  23. Berg, O. E., and Secretan, L. 1967. Evidence of dust concentration in the mesosphere. The Zodiacal Light and the Interplanetary Medium, NASA SP-150.Google Scholar
  24. Berg, O. E., Wolf, H., and Rhee, J. W. 1976. Lunar soil movement. In Interplanetary Dust and Zodiacal Light, Lecture Notes, 48, eds. H. Elsässer and H. Fechtig (Berlin-Heidelberg-New York: Springer-Verlag), pp. 233–237.Google Scholar
  25. Blackwell, D. E., and Ingham, M. F. 1961a. Observations of the zodiacal light from a very high altitude station, I. The average zodiacal light. M.N.R.A.S., 122, pp. 113–127.ADSGoogle Scholar
  26. Blackwell, D. E., and Ingham, M. F. 1961b. Observations of the zodiacal light from a very high altitude station, II. Electron densities in interplanetary space. M.N.R.A.S., 122, pp. 129–141.ADSGoogle Scholar
  27. Blackwell, D. E., Ingham, M. F., and Petford, A. D. 1967. The distribution of dust in interplanetary space. M.N.R.A.S., 136, pp. 313–328.ADSGoogle Scholar
  28. Bloch, M. R., Fechtig, H., Gentner, W., Neukum, G., and Schneider, E. 1971. Meteorite impact craters, crater simulations, and the meteoroid flux in the early solar system. In Proc. 2nd Lunar Sci. Conf., 3, ed. A. A. Levinson (Cambridge: MIT-Press), pp. 2639–2652.Google Scholar
  29. Bohn, J. L., and Nadig, F. H. 1950. Acoustical studies with V-2 rockets. Report 8, Research Institute of Temple University.Google Scholar
  30. Bradley, J. P., Brownlee, D. E., and Fraundorf, P. 1984. Discovery of nuclear tracks in interplanetary dust. Science, 226, pp. 1432–1434.ADSCrossRefGoogle Scholar
  31. Briotta, D. A., Jr., Pipher, J. L., and Houck, J. R. 1976. Rocket infrared spectroscopy of the zodiacal dust cloud. Report No. AFGL-TR-76-0236.Google Scholar
  32. Brorsen, Th. 1854. Über eine neue Erscheinung am Zodiakkallicht. Unterhaltungen fü;r Dilettanten und Freunde der Astronomie. Geographic und Witterungskunde, 8, pp. 156–160.Google Scholar
  33. Brorsen, Th. 1859. Über die ringformige Gestalt des Zodiacallichtes. Astron. Nachrichten, 49, pp. 219–220.ADSCrossRefGoogle Scholar
  34. Brownlee, D. E. 1978. Microparticle studies by sampling techniques. In Cosmic Dust, ed. J. A. M. McDonnell (Chichester-New York-Brisbane-Toronto: John Wiley & Sons), pp. 295–336.Google Scholar
  35. Brownlee, D. E., Burnett, D., Clark, B., Hanner, M. S., Horz, F., Kissel, J., Newburn, R., Sandford, S., Sekanina, Z., Tsou, P., and Zolensky, M. 1996. Stardust: Comet and interstellar dust sample return mission. In Physics, Chemistry, and Dynamics of interplanetary dust, ASP Conference Series, eds. B. Å. S. Gustafson and M. S. Hanner (Astronomical Society, San Francisco), 104, pp. 223–226.Google Scholar
  36. Brownlee, D. E., Horz, F., Vedder, J. F., Gault, D. E., and Hartung, J. B. 1973. Some physical parameters of micrometeoroids. In Proc. 4tth Lunar Sci. Conf III., ed. W. A. Gose (New York-Oxford-Toronto-Sydney-Braunschweig: Pergamon Press), pp. 3197–3212.Google Scholar
  37. Burkhardt, G. 1986. Kollisionsfreie Dynamik von interplanetaren Staubteilchen. Thesis, Univ. Heidelberg, pp. 5–6.Google Scholar
  38. Cassini, G. D. 1683. Decouverte de la lumière celeste qui paroist dans le zodiaque. Mémoires de l’Académie Roy ale des Sciences depuis 1666 jusqu’a 1699, Tome VIII, Paris 1699, (Compagnie des Libraires, 1730), pp. 119–209.Google Scholar
  39. Cebula, R. P., and Feldman, P. D. 1982. Ultraviolet spectroscopy of zodiacal light. Astrophys. J., 263, pp. 987–992.ADSCrossRefGoogle Scholar
  40. Ceplecha, Z., and McCrosky, R. E. 1976. Fireball end heights: a diagnostic for the structure of meteoric material. J. Geophys. Res., 81, pp. 6257–6275.ADSCrossRefGoogle Scholar
  41. Ceplecha, Z., Spurny, P., Borovicka, J., and Keclikova, J. 1993. Atmospheric fragmentation of meteoroids. Astron. Astrophys., 279, pp. 615–626.ADSGoogle Scholar
  42. Childrey, J. 1661. Britannia Baconia or the Natural Rarities of England, Scotland, & Wales. Printed for the author, (London).Google Scholar
  43. Clifton, S., and Naumann, R. J. 1966. Pegasus satellite measurements of meteoroid penetrations Feb. 16-Dec. 31, 1965). NASA TM X-1316.Google Scholar
  44. Delsemme, A. H. 1976. The production rate of dust by comets. In Lecture Notes in Physics, 48, Interplanetary Dust and Zodiacal Light, eds. H. Elsässer and H. Fechtig (Berlin-Heidelberg-New York: Springer Verlag), pp. 314–318.Google Scholar
  45. Dermott, S. F., Nicholson, P. A., Burns, J. A., and Houck, J. R. 1984. Origin of the solar system dust band discovered by IRAS. Nature, 312, pp. 505–509.ADSCrossRefGoogle Scholar
  46. Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. Å. S., and Liou, J. C. 1994. A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature, 369, pp. 719–723.ADSCrossRefGoogle Scholar
  47. Divari, N. B. 1964. Lunar effects on zodiacal brightness. Soviet Astronomy- AJ, 7, pp. 547–548; Original: Astron. Zh., 40, pp. 717-718, 1963.ADSGoogle Scholar
  48. Dohnanyi, J. S. 1976. Sources of interplanetary dust: asteroids. In Lecture Notes in Physics, 48, Interplanetary Dust and Zodiacal Light, eds. H. Elsässer and H. Fechtig (Berlin-Heidelberg-New York: Springer Verlag), pp. 187–205.CrossRefGoogle Scholar
  49. Dufay, J. 1925. La polarization de la lumière zodiacale. Compt. Rend., 181, pp. 399–401.Google Scholar
  50. Dumont, R. 1965. Séparation des composantes atmosphérique, interplanetaire et stellaire du ciel nocturne á 5 000 Å. Application a la photométrie de la lumière zodiacale et du Gegenschein. Ann. d’Astrophys., 28, pp. 265–320.ADSGoogle Scholar
  51. East, I. R., and Reay, N. K. 1984. The motion of interplanetary dust particles. I. Radial velocity measurements on Fraunhofer line profiles in the zodiacal light spectrum. Astron. Astrophys., 139, pp. 512–516.ADSGoogle Scholar
  52. Eichhorn, G. 1975. Measurements of the light flash produced by high velocity particle impact. Planet. Space Sci., 23, pp. 1519–1525.ADSCrossRefGoogle Scholar
  53. Eichhorn, G. 1976. Analysis of the hypervelocity impact process from impact flash measurements. Planet. Space Sci., 24, pp. 771–781.ADSCrossRefGoogle Scholar
  54. El Goresy, A., Nagel, K., and Ramdohr, P. 1978. Fremdlinge and their noble relatives. In Proc. Lunar Planet. Sci. Conf. 9th, ed. R. B. Merrill (New York-Oxford-Toronto-Sydney-Frankfü;rt: Pergamon Press), pp. 1279–1303.Google Scholar
  55. Elsässer, H. 1954. Die räumliche Verteilung der Zodiakallichtmaterie. Z. Astrophys., 33, pp. 274–285.Google Scholar
  56. Elsässer, H. 1955. Fraunhoferkorona und Zodiakallicht. Z. f. Astrophys., 37, pp. 114–124.ADSGoogle Scholar
  57. Elsässer, H. 1958A. Neue Helligkeits- und Polarisationsmessungen am Zodiakallicht und ihre Interpretation. Die Sterne, 10, pp. 166–169.Google Scholar
  58. Elsässer, H. 1958B. Interplanetare Materie. Mitt. d. Astr. Inst. d. Univ. Tubingen, Nr. 35, pp. 61–88.Google Scholar
  59. Elsässer, H. 1963. The zodiacal light. Planetary Space Sci., 11, pp. 1015–1033.ADSCrossRefGoogle Scholar
  60. Elvey, C. T., and Roach, F. R. 1937. A photoelectric study of the light from the night sky. Astrophys. J., 85, pp. 213–241.ADSCrossRefGoogle Scholar
  61. Farlow, N. H., Blanchard, M. B., and Ferry, V. G. 1966. Sampling with a LUSTER Sounding Rocket. J. Geophys. Res., 71, pp. 5689–5693.ADSCrossRefGoogle Scholar
  62. Farlow, N. H., Ferry, G. V., and Blanchard, M. B. 1970. Examination of surfaces exposed to a noctilucent cloud on August 1, 1968. J. Geophys. Res., 75, pp. 6736–6750.ADSCrossRefGoogle Scholar
  63. Fechtig, H., and Feuerstein, M. 1970. Particle collection results from a rocket flight on August 1, 1968. J. Geophys. Res., 75, pp. 6751–6757.ADSCrossRefGoogle Scholar
  64. Fechtig, H., Gentner, W., Hartung, J. B., Nagel, K., Neukum, G., Schneider, E., and Storzer, D. 1977. Microcraters on lunar samples. In The Soviet-American Conference on Cosmochemistry of the Moon and Planets, eds. J. H. Pomeroy and N. J. Hubbard (Washington: NASA), pp. 585–603.Google Scholar
  65. Fechtig, H., Grün, E., and Kissel J. 1978. Laboratory simulation. In Cosmic Dust, ed. J. A. M. McDonnell (New York: Wiley and Sons), pp. 607–669.Google Scholar
  66. Frey, A., Hofmann, W., and Lemke, D. 1977. Spectrum of the zodiacal light in the middle UV. Astron. Astrophys. J., 54, pp. 853–855.ADSGoogle Scholar
  67. Fried, J. W. 1978. Doppler shifts in the zodiacal light spectrum. Astron. Astrophys., 68, pp. 259–264.ADSGoogle Scholar
  68. Friichtenicht, J. F. 1962. Two-million-volt electrostatic accelerator for hypervelocity research. Rev. Sci. Instr., 33, pp. 209–212.ADSCrossRefGoogle Scholar
  69. Gault, D. E. 1970. Saturation and equilibrium conditions for impact cratering on the lunar surface: criteria and implications. Radio Sci., 5, pp. 273–291.ADSCrossRefGoogle Scholar
  70. Gault, D. E., and Heitowit, E. D. 1963. The partition of energy for hypervelocity impact craters formed in rocks. In Proc. 6th Hypervelocity Impact Symposium, (Cleveland/ Ohio: Firestone Rubber Company), 2, pp. 419–427.Google Scholar
  71. Gerloff, U., Weihrauch, J. H., and Fechtig, H. 1967. Electron microscope and microprobe measurements on LUSTER-flight samples. In Space Research, VII, eds. R. L. Smith-Rose and J. W. King (Amsterdam: North Holland Publ. Comp.), pp. 1412–1420.Google Scholar
  72. Giese, R. H. 1962. Light scattering by small particles and models of interplanetary matter derived from the zodiacal light. Space Science Review, 1, pp. 589–611.ADSGoogle Scholar
  73. Giese, R. H. 1973. Optical properties of single-component zodiacal light models. Planet. Space Sci., 21, pp. 513–521.ADSCrossRefGoogle Scholar
  74. Giese, R. H., and Grün, E. 1976. The compatibility of recent micrometeoroid flux curves with observations and models of the zodiacal light. In Lecture Notes in Physics, 48, Interplanetary Dust and Zodiacal Light, eds. H. Elsässer and H. Fechtig (Berlin-Heidelberg-New York: Springer-Verlag), pp. 135–139.CrossRefGoogle Scholar
  75. Giese, R. H., Kneisel, B., and Rittich, U. 1986. Three-dimensional zodiacal dust cloud, a comparative study. Icarus, 68, pp. 395–411.ADSCrossRefGoogle Scholar
  76. Giese, R. H., Weiss K., Zerull, R. H., and Ono, T. 1978. Large fluffy particles: a possible explanation of the optical properties of interplanetary dust. Astron. Astrophys., 65, pp. 265–272.ADSGoogle Scholar
  77. Gillet, F. C. 1966. Zodiacal light and interplanetary dust. Thesis, University Minnesota.Google Scholar
  78. Gold, T. 1972. Erosion, transportation, and the nature of the maria on the moon. IAU Coll., 47, pp. 55–67.Google Scholar
  79. Greenberg, J. M. 1983. Laboratory dust experiments-tracing the composition of cometary dust. In Cometary Exploration, II, ed. T. I. Gombosi (Budapest: Hungarian Academy of Sciences), pp. 23–54.Google Scholar
  80. Grotrian, W. 1934. Über das Fraunhofersche Spektrum der Sonnenkorona. Z. Astrophys., 8, pp. 124–146.ADSGoogle Scholar
  81. Grün, E., Pailer, N., Fechtig, H., and Kissel, J. 1979. Orbital and physical characteristics of micrometeoroids in the inner solar system observed by Helios 1. Planet. Space Sci., 28, pp. 333–349.ADSCrossRefGoogle Scholar
  82. Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R., Hanner, M. S., Horanyi, M., Kissel, J., Lindblad B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A. 1993. Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.ADSCrossRefGoogle Scholar
  83. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. 1985. Collisional balance of the meteoritic complex. Icarus, 62, pp. 244–272.ADSCrossRefGoogle Scholar
  84. Hallgren, D. S., Hemenway, C. L., Mohnen, V. A., and Tackett, D. C. 1973. Preliminary results from the Noctilucent cloud sampling by a multi-experiment payload. In Space Research, XIII, eds. M. J. Rycroft and S. K. Runcorn (Berlin: Akademie-Verlag), pp. 1099–1104.Google Scholar
  85. Hanner, M. S. 1980. On the albedo of the interplanetary dust. Icarus, 43, pp. 373–380.ADSCrossRefGoogle Scholar
  86. Hanner, M. S. 1995. Dust around young stars: how related to solar system dust? In Highlights of Astronomy, ed. I. Appenzeller, (IAU: printed in the Netherlands), 10, pp. 351–392.Google Scholar
  87. Hanner, M. S., and Weinberg, J. L. 1973. Gegenschein observations from Pioneer 10. Sky and Telescope, 45, pp. 217–218.ADSGoogle Scholar
  88. Hanner, M. S., Weinberg, J. L., DeShields II, L. M., Green, B. A., and Toller, G. N. 1974. Zodiacal light and the asteroidal belt: the view from Pioneer 10. J. Geophys. Res., 79, pp. 3671–3675.ADSCrossRefGoogle Scholar
  89. Hawkins, G. S., and Upton, E. K. L. 1958. The influx rate of meteors in the Earth’s atmosphere. Astrophys. J., 128, pp. 727–735.ADSCrossRefGoogle Scholar
  90. Hemenway, C. L., Fullam, E. F., Skrivanek, R. A., Soberman, R. K., and Witt, G. 1964. Electron microscope studies of noctilucent clouds particles. Tellus, 16, pp. 96–102.ADSCrossRefGoogle Scholar
  91. Hemenway, C. L., Hallgren, D. S., and Coon, R. E. 1967. High altitude balloon-top collections of cosmic dust. In Space Research, VII, eds. R. L. Smith-Rose and J. W. King (Amsterdam: North Holland Publ. Comp.), pp. 1423–1431.Google Scholar
  92. Hemenway, C. L., Hallgren, D. S., and Kerridge, J. F. 1968. Results from the GEMINI S-10 and S-12 micrometeorite experiments. In Space Research, VIII, eds. A. P. Mitra, L. G. Jacchia and W. S. Newman (Amsterdam: North Holland Publ. Comp.), pp. 521–535.Google Scholar
  93. Hemenway, C. L., Hallgren, D. S., and Schmalberger, D. C. 1972. Stardust. Nature, 238, pp. 256–260.ADSCrossRefGoogle Scholar
  94. Hemenway, C. L., and Soberman, R. K. 1962. Studies of micrometeorites obtained from a recoverable sounding rocket. Astron. J., 67, pp. 256–266.ADSCrossRefGoogle Scholar
  95. Hicks, T. R., May, B., and Reay, N. K. 1974. An investigation of the motion of zodiacal dust particles, I. Radial velocity measurements on Fraunhofer line profiles. M.N.R.A.S., 166, pp. 439–448.ADSGoogle Scholar
  96. Hinners, N. 1977. Personal communication.Google Scholar
  97. Hodapp, K.-W., MacQueen, R. M., and Hall, D., W. B. 1992. A search during the 1991 solar eclipse for the infrared signature of circumsolar dust. Nature, 355, pp. 707–710.ADSCrossRefGoogle Scholar
  98. Hodge, P. W., and Rinehart, T. S. 1958. High altitude collection of extraterrestrial particulate material. Astron. J., 63, p. 306.ADSCrossRefGoogle Scholar
  99. Hoffmann, H.-J., Fechtig, H., Grün, E., and Kissel, J. 1975a. First results of the micrometeoroid experiment S 215 on the HEOS 2 satellite. Planet. Space Sci., 23, pp. 215–224.ADSCrossRefGoogle Scholar
  100. Hoffmann, H.-J., Fechtig, H., Grün, E., and Kissel, J. 1975b. Temporal Fluctuations and anisotropy of the micrometeoroid flux in the Earth-Moon system measured by HEOS 2. Planet. Space Sci., 23, pp. 985–991.ADSCrossRefGoogle Scholar
  101. Hofmann, W., Lemke, D., Thum, C., and Fahrbach, U. 1973. Observations of the zodiacal light at 2.4 μ, m. Nature, 243, pp. 140–141.ADSCrossRefGoogle Scholar
  102. Horz, F., Brownlee, D. E., Fechtig, H., Hartung, J. B., Morrison, D. A., Neukum, G., Schneider, E., Vedder, J. F., and Gault, D. E. 1975. Lunar microcraters: implications for the micrometeoroid complex. Planet. Space Sci., 23, pp. 151–172.ADSCrossRefGoogle Scholar
  103. van de Hulst, H. C. 1947. Zodiacal light in the solar corona. Astrophys. J., 105, pp. 471–488.MathSciNetADSCrossRefGoogle Scholar
  104. von Humboldt, A. 1816. Voyage de Humboldt et Bonpland. 1. Voyage aux regions equinoctiales du nouveau continent, fait en 1799, 1800, 1801, 1802, 1803 et 1804. 4. Atlas pittorescque (vue des Cordilleres et monuments des peuples de l’Amerique 1810) l’ed. Paris 1814-34, p. 282.Google Scholar
  105. Humes, D. H. 1980. Results of Pioneer 10 and 11 meteoroid experiments: interplanetary and near Saturn. J. Geophys. Res., 85, pp. 5841–5852.ADSCrossRefGoogle Scholar
  106. Huruhata, M. 1948. Polarization of the night sky light and the zodiacal light. Tokyo Astr. Bull., (Tokyo Astron. Obs.), Second Series, No. 10, pp. 77–79.Google Scholar
  107. Huruhata, M. 1951. Photoelectric study of the zodiacal light. Publ. Astr. Soc. Japan, 2, pp. 156–171.ADSGoogle Scholar
  108. Ingham, M. F. 1963. Interplanetary matter. Space Sci. Rev., 1, pp. 576–588.ADSCrossRefGoogle Scholar
  109. Jackson, B. C., Buffington, A., Hick, P. L., Kahler, S. W., Altrock, R. C., Gold, R. E., and Webb, D. F. 1995. The solar mass ejection imager. In Solar Wind Eight, eds. D. Winterhalter, J. T. Gosling, S. R. Habbal, W. S. Kurth, and M. Neugebauer, AIP Conference Proceedings 382, (Woodbury), pp. 536–539.Google Scholar
  110. Jackson, B. V., and Leinert, Ch. 1985. Helios images of solar mass ejections. J. Geophys. Res., 90, pp. 10759–10768.ADSCrossRefGoogle Scholar
  111. James, J. F., and Smeethe, M. J. 1970. Motion of the interplanetary dust cloud. Nature, 227, pp. 588–589.ADSCrossRefGoogle Scholar
  112. Jennison, R. C., McDonnell, J. A. M., and Rodger, I. 1967. The Ariel II micrometeorite penetration measurements. Proc. Roy. Soc., 300, pp. 251-....ADSCrossRefGoogle Scholar
  113. Jessberger, E. K., and Kissel, J. 1991. Chemical properties of cometary dust and a note on carbon isotopes. In Comets in the Post-Halley Era, 2, eds. R. L. Newburn Jr., M. Neugebauer and J. Rahe (Dordrecht-Boston-London: Kluwer Academic Publ.), pp. 1075–1092.Google Scholar
  114. Johnson, W. G., Heller, G. B., Smith, M. J., Dozier, J. B., and Shelton, P. D. 1966. The meteoroid satellite project PEGASUS-First summary report. NASA TN D-3505.Google Scholar
  115. Jones, G. 1856. Observations on the zodiacal light, (Washington: B. Tucker, Senate Printer).Google Scholar
  116. Junge, C. E., and Mason, J. E. 1961. Stratospheric aerosol studies. J. Geophys. Res., 66, pp. 2163–2182.ADSCrossRefGoogle Scholar
  117. Kaiser, T. R. 1961. The determination of the incident flux of radio meteors vs. sporadic meteors. M. N. R. A. S., 123, pp. 265–271.ADSGoogle Scholar
  118. Kissel, J., and Krueger, F. R. 1987. The organic component in dust from Comet Halley as measured by the PUMA mass-spectrometer on board VeGa 1. Nature, 326, pp. 755–760.ADSCrossRefGoogle Scholar
  119. Lamy, P. L., and Perrin, J. M. 1980. Zodiacal light models with a bimodal population. In Solid Particles in the Solar System, IAU-Symposium No. 90, eds. I. Halliday and B. A. Mcintosh (Dordrecht: Reidel Publ. Comp.), pp. 75–80.Google Scholar
  120. Leinert, Ch. 1975. Zodiacal light-a measure of the interplanetary environment. Space Sci. Rev., 18, pp. 281–339.ADSCrossRefGoogle Scholar
  121. Leinert, Ch. and Grün, E. 1990. Interplanetary dust. In Physics of the inner Heliosphere, eds. R. Schwenn and E. Marsch (Berlin-Heidelberg-New York: Springer Verlag), pp. 207–275.Google Scholar
  122. Leinert, Ch., Link, H., and Pitz, E. 1974. Rocket photometry in the inner zodiacal light. Astron. Astrophys., 30, pp. 411–422.ADSGoogle Scholar
  123. Leinert, Ch., and Pitz, E. 1989. Zodiacal light observed by Helios throughout solar cycle no. 21: stable dust and varying plasma. Astron. Astrophys., 210, pp. 399–402.ADSGoogle Scholar
  124. Leinert, Ch., Pitz, E., Hanner, M. S., and Link, H. 1977. Observations of zodiacal light from Helios 1 and 2. J. Geophys. Res., 42, pp. 699–704.Google Scholar
  125. Leinert, Ch., Pitz, E., and Link, H. 1984. Zodiakallicht - ein Abbild der interplanetaren Staubwolke. In Helios, ed. H. Porsche (Oberpfaffenhofen: DFVLR), pp. 50–57.Google Scholar
  126. Leinert, Ch., Richter, I., Pitz, E., and Planck, B. 1981. The zodiacal light from 1.0 to 0.3 AU as observed by the Helios space probes. Astron. Astrophys., 103, pp. 177–188.ADSGoogle Scholar
  127. Léna, P., Viala, Y., Hall, D., and SoufRot, A. 1974. The thermal emission of the dust corona during the eclipse of June 30, 1973, II. Photometric and spectral observations. Astron. Astrophys., 37, pp. 81–86.ADSGoogle Scholar
  128. Levasseur, A. C. 1976. Observations atmosphérique et astronomique au voisinage de 6563 Åa bord du satellite D2A: contribution à l’etude de la lumière zodiacale, de la géocouronne, des nébuleuses émissives et des aurores équatoriales. Thesis, Univ. Pierre et Marie Curie, Paris 1976, p. 51.Google Scholar
  129. Levasseur, A. C., and Blamont, J. E. 1973. Satellite observations of intensity variations of the zodiacal light. Nature, 246, pp. 26–28.ADSCrossRefGoogle Scholar
  130. Levasseur, A. C., and Blamont, J. E. 1976. Evidence for scattering particles in meteor streams. In Lecture Notes in Physics, 48, Interplanetary Dust and Zodiacal Light, eds. H. Elsässer and H. Fechtig (Berlin-Heidelberg-New York: Springer Verlag), pp. 58–62.Google Scholar
  131. Levasseur-Regourd, A. C., and Dumont, R. 1980. Absolute photometry of zodiacal light. Astron. Astrophys., 84, pp. 277–279.ADSGoogle Scholar
  132. Levasseur-Regourd, A. C., Renard, J. B., and Dumont, R. 1991. The zodiacal cloud complex. In Origin and Evolution of Interplanetary Dust, eds. A.-C. Levasseur-Regourd and H. Hasegawa (Dordrecht-Boston-London: Kluwer Academic Publ.) pp. 131–138.Google Scholar
  133. Lillie, F. C. 1972. OAO-2 observations of the zodiacal light. In The Scientific Results from OA0-2, ed. A. O. Code, NASA SP-310, pp. 95–108.Google Scholar
  134. Lindblad, B. A. 1976. Meteor radar rates and the solar cycle. Nature, 259, pp. 99–101.ADSCrossRefGoogle Scholar
  135. Lindblad, B. A. 1978. Meteor radar rates, geomagnetic activity and solar wind sector structure. Nature, 273, pp. 732–734.ADSCrossRefGoogle Scholar
  136. Low, F. J., Beintema, D. A., Gautier, T. N., Gillett, F. C., Beichman, C. A., Neugebauer, G., Young, E., Aumann, H. H., Boggess, N., Emerson, J. P., Habing, H. J., Hauser, M. G., Houck, J. R., Rowan-Robinson, M., Soifer, B. T., Walker, R. G., and Wesselius, P. R. 1984. Infrared cirrus: new components of the extended infrared emission. Astrophys. J. Letters, 278, pp. L19–L22.ADSCrossRefGoogle Scholar
  137. Lumme, K., and Bowell, E. 1985. Photometric properties of zodiacal light particles. Icarus, 62, pp. 54–71.ADSCrossRefGoogle Scholar
  138. Maihara, T., Mizutani, K., Hiromoto, N., Takami, H., and Hasegawa, H. 1985. A balloon observation of the thermal radiation from the circumsolar dust cloud in the 1983 total eclipse. In Properties and Interactions of Interplanetary Dust, eds. R. H. Giese and P. Lamy (Dordrecht: Reidel Publ. Comp.), pp. 55–58.Google Scholar
  139. Mairan, J. J. Dortous de 1733. Traité physique et historique de l’aurore boreale. Suite de Mémoires de l’Académie royale des sciences, année M.DCCXXXI (Imprimerie royale Paris).Google Scholar
  140. Mann, I. 1996. Dust near the Sun. In Physics, Chemistry and Dynamics of Interplanetary Dust, eds B. Å. S. Gustafson and M. S. Hanner (Astronomical Society of the Pacific, San Francisco), pp. 315–320.Google Scholar
  141. Matsumoto, T., Kawada, M., Murakami, H., Noda, M., Matsuura, S., Tanaka, M., and Narita, K. 1996. IRTS observations of the near-infrared spectrum of the zodiacal light. Publ. Astr. Soc. Japan, 48, pp. L47–L51.ADSGoogle Scholar
  142. Matsuura, S., Matsumoto, M., Matsuhara, H., and Noda, M. 1996. Rocket-borne observations of the zodiacal light in the near-infrared. Icarus, 115, pp. 199–208.ADSCrossRefGoogle Scholar
  143. Maucherat-Joubert, M., Cruvellier, P., and Deharveng, J. M. 1979. Ultraviolet observations of the zodiacal light from D2B-Aura satellite. Astron. Astrophys., 74, pp. 218–224.ADSGoogle Scholar
  144. McCracken, C. W., Alexander, W. M., and Dubin, M. 1961. Direct measurements of interplanetary dust particles in the vicinity of Earth. Nature, 192, pp. 441–442.ADSCrossRefGoogle Scholar
  145. McDonnell, J. A. M. 1971. Review of in-situ measurements of cosmic dust particles in space. In Space Research, eds. K. Ya. Kontratyev, M. J. Rycroft and C. Sagan (Berlin: Akademie Verlag), pp. 415–433.Google Scholar
  146. McDonnell, J. A. M. ed. 1979. Cosmic Dust. (New York: Wiley and Sons)Google Scholar
  147. McDonnell, J. A. M., Lamy, P. L., and Pankiewicz, G. S. 1991. Physical properties of cometary dust. In Comets in the Post-Halley Era, eds. R. L. Newburn, M. Neugebauer, J. Rahe (Dordrecht, Boston, London: Kluwer Academic Publishers), Vol. 2, pp. 1043–1073.Google Scholar
  148. McQueen, R. M. 1968. Infrared observations of the outer solar corona. Astrophys. J., 154, pp. 1059–1076.ADSCrossRefGoogle Scholar
  149. Millman, P. M. 1957. The relative numbers of bright and faint meteors. J. Roy. Astron. Soc. Canada, 51, pp. 113–115.ADSGoogle Scholar
  150. Morgan, D. H. 1978. The zodiacal light at 1550 Å. Astron. Astrophys., 70, pp. 543–545.ADSGoogle Scholar
  151. Mukai, T., and Yamamoto, T. 1979. A model of the circumsolar dust cloud. Publ. Astron. Soc. Japan, 31, pp. 585–595.ADSGoogle Scholar
  152. Miiller, J. 1865. Atlas zum Lehrbuch der kosmischen Physik. (Braunschweig: Vieweg-Verlag), zweite Auflage.Google Scholar
  153. Murdock, Th. L., and Price, S. D. 1985. Infrared measurements of zodiacal light. Astron. J., 90, pp. 375–386.ADSCrossRefGoogle Scholar
  154. Nagel, K., and Fechtig, H. 1980. Diameter to depth dependence of impact craters. Planet. Space Sci., 28, pp. 567–573.ADSCrossRefGoogle Scholar
  155. Naumann, R. J. 1966. The near Earth meteoroid environment. NASA TN D-3717.Google Scholar
  156. Nazarova, T. N. 1968. Solid component of interplanetary matter from vehicle observations. Space Sci. Rev., 8, pp. 455–466.ADSCrossRefGoogle Scholar
  157. Nazarova, T. N., and Rybakov, A. K. 1974. The meteoritic particle space density near the Earth and Moon, according to data obtained by simultaneous observations of space vehicles. In Space Research, XIV, eds. M. J. Rycroft and R. D. Reasenberg (Berlin: Akademie Verlag), p. 773.Google Scholar
  158. Neukum, G., Konig, B., Fechtig, H., and Storzer, D. 1975. Cratering in the Earth-Moon system: consequences for age determination by crater counting. Proc. Lunar Sci. Conf. 6th, compiled by The Lunar Science Institute, Houston/Texas (New York: Pergamon Press), pp. 2597–2620.Google Scholar
  159. Neukum, G., Schneider, E., Mehl, A., Storzer, D., Wagner, G. A., Fechtig, H., and Bloch, M. R. 1972. Lunar craters and exposure ages derived from crater statistics and solar flare tracks. Proc. 3rd Lunar Sci. Conf, 3, ed. D. R. Criswell (Cambridge: MIT-Press), pp. 2793–2810.Google Scholar
  160. Nier, A. O., and Schlutter, D. J. 1993. The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, pp. 675–681.ADSCrossRefGoogle Scholar
  161. Nilsson, C. 1966. Some doubts about the Earth’s dust cloud. Science, 153, pp. 1242–1246.ADSCrossRefGoogle Scholar
  162. Noda, M., Christov, V. V., Matsuhara, H., Matsumoto, S., Noguchi, K., and Sato, S. 1992. Rocket observations of the near-infrared spectrum of the sky. Astrophys. J., 391, pp. 456–465.ADSCrossRefGoogle Scholar
  163. Öpik, E. J. 1958. Physics of meteor flight in the atmosphere. (New York: Wiley Interscience Publishers, Inc).zbMATHGoogle Scholar
  164. Peterson, A. W. 1967. Experimental detection of thermal radiation from interplanetary dust. Astrophys. J. Letters, 148, pp. L37–L39.ADSCrossRefGoogle Scholar
  165. Pézénas, E. 1731. Observations Astronomique Sz Meteorologiques faites à Marseille par le E. Pézénas, Professeur d’Hydrographie, pendant l’année 1730. Histoire de l’Académie Royale des Sciences avec les Mémoires de Mathématique et de Physique pour la méme année, tirés des registres de cette Académié, (Académie des Sciences: Paris), pp. 7–9.Google Scholar
  166. Piazzi-Smyth, C. 1872. Spectroscopic observations of the zodiacal light. M. N. R. A. S., 32, pp. 277–288.ADSGoogle Scholar
  167. Pitz, E., Leinert, Ch., Schulz, A., and Link, H. 1978. Ultraviolet zodiacal light observed by the Astro 7 rocket experiment. Astron. Astrophys., 69, pp. 297–304.ADSGoogle Scholar
  168. Pitz, E., Leinert, Ch., Schulz, A., and Link, H. 1979. Color and polarization of the zodiacal light from the ultraviolet to the near infrared. Astron. Astrophys., 74, pp. 15–20.ADSGoogle Scholar
  169. Poynting, I. H. 1903 Phil. Trans. Roy. Soc., A 202, p. 525, (reprinted in his “Collected Scientific Papers”, Cambridge 1920).Google Scholar
  170. Rajan, R. S., Brownlee, D. E., Tomandl, D., Hodge, P. W., Farrar IV, H., and Britten, R. A. 1977. Detection of He in stratospheric particles gives evidence of extraterrestrial origin. Nature, 267, pp. 133–134.ADSCrossRefGoogle Scholar
  171. Rauser, P., and Fechtig, H. 1972. Combined dust collection and detection experiment during a noctilucent cloud display above Kiruna, Sweden. In Space Research, XII, eds. S. A. Bowhill, L. D. Jaffe and M. J. Rycrodt (Berlin: Akademie-Verlag), pp. 391–402.Google Scholar
  172. Reach, T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W., and Spiesman, W. J. 1995. Observational confirmation of the circumstellar dust ring by the COBE satellite. Nature, 374, pp. 521–523.ADSCrossRefGoogle Scholar
  173. Richter, I., Leinert, Ch., and Planck, B. 1982. Search for short term variations of zodiacal light and optical detection of interplanetary plasma clouds. Astron. Astrophys., 110, pp. 115–120.ADSGoogle Scholar
  174. Roach, F. E. 1972. A photometric model of the zodiacal light. Astron. J., 77, pp. 887–891.ADSCrossRefGoogle Scholar
  175. Roosen, R. G. 1970. An annotated bibliography on the Gegenschein. Icarus, 13, pp. 523–539.ADSCrossRefGoogle Scholar
  176. Roosen, R. G. 1971. The Gegenschein. Rev. Geophys. and Space Phys., 9, pp. 275–304.ADSCrossRefGoogle Scholar
  177. Röser, S. 1976. Can short period comets maintain the zodiacal cloud?. In Lecture Notes in Physics, 48, Interplanetary Dust and Zodiacal Light, eds. H. Elsässer and H. Fechtig (Berlin-Heidelberg- New York), pp. 319–322.CrossRefGoogle Scholar
  178. Röser, S., and Staude, H. J. 1978. The zodiacal light from 1 500 A to 60 micron-Mie scattering and thermal emission. Astron. Astrophys., 67, pp. 381–394.ADSGoogle Scholar
  179. Searle, A. 1882. On certain zodiacal phenomena. Astron. Nachr., 102, pp. 263–266.ADSCrossRefGoogle Scholar
  180. Searle, A. 1893. The zodiacal light. Ann. Astr. Obs. Harvard Coll. Obs., 19, pp. 165–245.ADSGoogle Scholar
  181. Seeliger, H. 1901. Über kosmische Staubmassen und das Zodiacallicht. Sitzungsbericht d. bayer. Akad. d. Wiss., 31, pp. 265–292.Google Scholar
  182. Shapiro, I. C., Lautman, D. A., and Colombo, G. 1966. The Earth’s dust belt: fact or fiction? 1. Forces perturbing dust particle motion. J. Geophys. Res., 71, pp. 5695–5704.ADSCrossRefGoogle Scholar
  183. Shelton, H., Hendricks Jr., C. D., and Wuerker, R. F. 1960. Electrostatic acceleration of microparticles to hypervelocities. J. Appl. Phys., 31, pp. 1243–1246.ADSCrossRefGoogle Scholar
  184. Slipher, V. M. 1933. Spectra of the night sky, the zodiacal light, the Aurora, and the cosmic radiations of the sky. J. Roy. Astron. Soc. Can., 27, pp. 365–369.ADSGoogle Scholar
  185. Smith, L. L., Roach, F. E., and Owen, R. W. 1965. The absolute photometry of the zodiacal light. Plan. Space Sci., 13, pp. 207–217.ADSCrossRefGoogle Scholar
  186. Soberman, R. K., and Hemenway, C. L. 1965. Meteoric dust in the upper atmosphere. J. Geophys. Res., 70, pp. 4943–4949.ADSCrossRefGoogle Scholar
  187. Soifer, B. T., Houck, J. R., and Harwit, M. 1971. Rocket infrared observations of the interplanetary medium. Astrophys. J. Letters, 168, pp. L73–L78.ADSCrossRefGoogle Scholar
  188. Sparrow, J. G., and Ney, E. P. 1973. Temporal constancy of zodiacal light. Science, 181, pp. 438–440.ADSCrossRefGoogle Scholar
  189. Sparrow, J. G., Weinberg, J. L., and Hahn, R. C. 1977. Ten-color Gegenschein zodiacal light photometer. Appl. Opt., 16, pp. 978–982.ADSGoogle Scholar
  190. Sykes, M. V., Lebovsky, L. A., Hunt en, D. M., and Low, F. 1986. The discovery of dust trails in the orbits of periodic comets. Science, 232, pp. 1115–1117.ADSCrossRefGoogle Scholar
  191. Torr, M. R., Torr, D. G., and Stencel, R. 1979. Zodiacal light surface brightness measurements by Atmosphere Explorer-C. Icarus, 40, pp. 40–59.ADSCrossRefGoogle Scholar
  192. Tsou, P. 1996. Hypervelocity capture of meteoroids in aerogel. In Physics, Chemistry, and Dynamics of interplanetary dust, ASP Conference Series, eds. B. Å. S. Gustafson and M. S. Hanner (Astronomical Society San Francisco), 104, pp. 237–242.Google Scholar
  193. Vedder, J. F., and Mandeville, J.-C. 1974. Microcraters formed in glass by projectiles of various densities. J. Geophys. Res., 79, pp. 3247–3256.ADSCrossRefGoogle Scholar
  194. Watson, F. G. 1956. Between the planets. Harvard University Press Cambridge.Google Scholar
  195. Weihrauch, J. H., Gerloff, U., and Fechtig, H. 1968. Stereo scan investigations of metal plates exposed on LUSTER 1966, GEMINI 9 and 12. In Space Research, VIII, eds. A. P. Mitra, L. G. Jacchia and W. S. Newman (Amsterdam: North Holland Publ. Comp.), pp. 566–578.Google Scholar
  196. Weinberg, J. L. 1964. The zodiacal light at 5 300 Å. Ann. d’Astrophys., 27, pp. 718–738.ADSGoogle Scholar
  197. Weinberg, J. L. 1970. Current problems in the zodiacal light. In Space Research, X, eds. T. M. Donahue, P. A. Smith and L. Thomas (Amsterdam: North Holland Publ. Comp.), pp. 233–243.Google Scholar
  198. Weinberg, J. L. 1974. Polarization of the zodiacal light. In Planets, Stars and Nebulae studied with polarimetry, ed. T. Gehrels (Tucson: University of Arizona Press), pp. 781–793.Google Scholar
  199. Weinberg, J. L., Hanner, M. S., Beeson, D. E., DeShields II, L. M., and Green, B. A. 1974. Background starlight observed from Pioneer 10. J. Geophys. Res., 121, pp. 750–770.Google Scholar
  200. Weinberg, J. L., and Mann, H. M. 1968. Negative polarization in the zodiacal light. Astrophys. J., 152, pp. 665–666.ADSCrossRefGoogle Scholar
  201. Weiss-Wrana, K. 1983. Optical properties of interplanetary dust: comparison with light scattering by larger meteoritic and terrestrial grains. Astron. Astrophys., 126, pp. 240–250.ADSGoogle Scholar
  202. Whipple, F. L. 1955. A comet model, III. The zodiacal light. Astrophys. J., 121, pp. 750–770.ADSCrossRefGoogle Scholar
  203. Whipple F. L. 1961. Medical and biological aspects of the energies of space. Ed. P. Campbell (New York: Columbia University Press).Google Scholar
  204. Whipple, F. L. 1967. On maintaining the meteoritic complex. In The Zodiacal Light and the Interplanetary Medium, ed. J. L. Weinberg (Washington: US Government Printing Office), NASA SP-150, pp. 409–426.Google Scholar
  205. Whipple, F. L., and Gossner, J. L. 1949. An upper limit to the electron density near the Earth’s orbit. Astrophys. J., 109, pp. 380–390.ADSCrossRefGoogle Scholar
  206. Wolff, Ch. 1967. Optical environment about the OGO III satellite. Science, 158, pp. 1045–1046.ADSCrossRefGoogle Scholar
  207. Wolstencroft, R. D., and Rose, L. J. 1967. Observations of the zodiacal light from a sounding rocket. Astrophys. J., 147, pp. 271–292.ADSCrossRefGoogle Scholar
  208. Wright, A. W. 1874. On the polarization of the zodiacal light. American J. of Science and Arts, (Third Series) VII, pp. 451–459.Google Scholar
  209. Wyatt Jr., St. P., and Whipple, F. L. 1950. The Poynting-Robertson effect in meteor orbits. Astrophy. J., 111, pp. 134–141.ADSCrossRefGoogle Scholar
  210. Zerull, R. H. 1976. Scattering measurements of dielectric and absorbing nonspherical particles. Phys. Atmosph., 49, pp. 168–188.Google Scholar
  211. Zook, A. E., and Berg, O. E. 1975. A source for hyperbolic cosmic dust particles. Planet. Space Sci., 23, pp. 183–203.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.Max-Planck-Institut fü;r KernphysikSaupfercheckweg 1Germany
  2. 2.Konigstuhl 17Konigstuhl 17Germany
  3. 3.MiddletownUSA

Personalised recommendations