Advertisement

Interstellar Dust and Circumstellar Dust Disks

Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Interstellar dust research belongs to the young branches of astrophysics. With the establishment of sensitive observational techniques in the astronomical infrared spectroscopy in the 1960s, diagnostic circumstellar and interstellar dust bands were detected and induced an explosive development of the whole field. In this context, the branch of solid-state astrophysics (synonymous to laboratory astrophysics) was founded. Special dust populations attributed to characteristic phases of the interstellar medium and to special circumstellar environments could be defined. Dust turned out to be the key to the understanding of the evolution of the interstellar medium and, closely connected with this, to the early and the late stages of stellar evolution. In this review, the population scheme is used for the division of the text to the main chapters. Evolutionary dust characteristics on the galactic scale and in the context of the formation of stars and planetary systems are stressed. Relations between interstellar and interplanetary solids are pointed out.

Keywords

Molecular Cloud Interstellar Dust Interstellar Extinction Extinction Curve Young Stellar Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1987. Infrared absorption and emission characteristics of interstellar PAHs. In Interstellar Processes, eds. D. J. Hollenbach, H. A. Thronson (Dordrecht: Reidel), pp. 471–489.Google Scholar
  2. Allamandola, L. J., Sandford, S. A., Tielens, A. G. G. M., and Herbst, T. M. 1993. Diamonds in dense molecular clbuds: a challenge to the standard interstellar medium paradigm. Science, 260, pp. 64–66.ADSGoogle Scholar
  3. Anders, E., and Zinner, E. 1993. Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics, 28, pp. 490–514.ADSGoogle Scholar
  4. Andersen, A. C., Jäger, C., Mutschke, H., Braatz, A., Clément, D., Henning, Th., Jørgensen, U. G., and Ott, U. 1999. Infrared spectra of meteoritic SiC grains. Astron. Astrophys., 343, pp. 933–938.ADSGoogle Scholar
  5. Anderson, C. M., Weitenbeck, A. J., Code, A. D., Nordsieck, K. H., Meade, M. R., Babler, B., Zellner, N. E. B., Bjorkman, K. S., Fox, K. G., and Johnson, J. J. 1996. Ultraviolet interstellar polarization of galactic starlight. I. Observations by the Wisconsin Ultraviolet Photo Polarimeter Experiment. Astron. J., 112, pp. 2726–2743.ADSGoogle Scholar
  6. André, Ph. 1994. Disk-like structures around young stars. In Circumstellar Dust Disks and Planet Formation, eds. R. Ferlet and A. Vidal-Madjar (Gif sur Yvette: Editions Frontières), pp. 115–129.Google Scholar
  7. Artymowicz, P. 1994. Modeling and understanding the dust around beta Pictoris. In Circumstellar Dust Disks and Planet Formation, eds. R. Ferlet and A. Vidal-Madjar (Gif sur Yvette: Editions Frontières), pp. 47–65.Google Scholar
  8. Aumann, H. H., Gillett, F. C., Beichmann, C. A., de Jong, T., Houck, J. R., Low, F. J., Neugebauer, G., Walker, R. G., and Wesselius, P. R. 1984. Discovery of a shell around AIPha Lyrae. Astrophys. J., 278, pp. L23–L27.ADSGoogle Scholar
  9. Baas, F., Grim, R. J. A., Geballe, T. R., Schutte, W., and Greenberg, J. M. 1988. The detection of solid methanol in W 33A. Dust in the Universe, eds. M. E. Bailey and D. A. Williams (Cambridge: Cambridge Univ. Press), pp. 55–60.Google Scholar
  10. Backman, D. E. and Paresce, F. 1993. Main-sequence stars with circumstellar solid material: the Vega phenomenon. In Protostars and Planets III, eds. E. H. Levy, J. I. Lunine, and M. S. Matthews (Tucson: Univ. Arizona Press), pp. 1253–1304.Google Scholar
  11. Backman, D. E., Werner, M. W., Rieke, G. H., and Van Cleve, J. E. 1997. Exploring planetary debris disks around solar-type stars. In From Stardust to Planetesimals, eds. Y. J. Pendleton and A. G. G. M. Tielens (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser. Vol. 122, pp. 49–66.Google Scholar
  12. Baggaley, W. J. 2000. Advanced Meteor Orbit Radar observations of interstellar meteoroids. J. Geophys. Res., 105 No. A5, pp. 10353–10362.ADSGoogle Scholar
  13. Banhart, F. and Ajayan, P. M. 1996. Carbon onions as nanoscopic pressure cells for diamond formation. Nature, 382, pp. 433–435.ADSGoogle Scholar
  14. Beckwith, S. V. W. 1994. Protoplanetary disks. In NATO Advanced Research Workshop on Theory of Accretion Disks - 2., eds. W. J. Duschl, J. Frank, F. Meyer, E. MeyerHofmeister, and W. Tscharnuter (Dordrecht: Kluwer Academ. Publ.), pp. 1–18.Google Scholar
  15. Beckwith, S. V. W., Sargent, A. I. 1991. Particle emissivity in circumstellar disks. Astrophys. J., 381, pp. 250–258.ADSGoogle Scholar
  16. Beckwith, S. V. W., Sargent, A. I. 1996. Circumstellar disks and the search for neighboring planetary systems. Nature, 383, pp. 139–144.ADSGoogle Scholar
  17. Begemann, B., Dorschner, J., Henning, T., Mutschke H., and Thamm, E. 1994. A laboratory approach to the interstellar sulfide dust problem. Astrophys. J., 423, pp. L71–L74.ADSGoogle Scholar
  18. Begemann, B., Dorschner, J., Henning, Th., and Mutschke, H. 1996. Optical properties of glassy SiS2 and the 21 micron feature. Astrophys. J., 464, pp. L195–L198.ADSGoogle Scholar
  19. Begemann, B., Dorschner, J., Henning, Th., Mutschke, H., Gurtler, Kömpe, C., Nass, R. 1997. Aluminum oxide and the opacity of oxygen-rich circumstellar dust in the 12-17-μm range. Astrophys. J., 476, pp. 199–208.ADSGoogle Scholar
  20. Bernatowicz, T. J., Cowsik, R., Gibbons, P. C., Lodders, K., Fegley, Jr., B., Amari, S., and Lewis, R. S. 1996. Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophys. J., 472, pp. 760–782.ADSGoogle Scholar
  21. Beust, H., Lagrange, A.-M., Crawford, I. A., Goudard, C., Spyromilio, J., Vidal-Madjar, A. 1998. The β Pictoris circumstellar disk. XXV. The GaIl absorption lines and the Falling EvaporatiNg Bodies model revisited using UHRF observations. Astron. Astrophys., 338, pp 1015–1030.ADSGoogle Scholar
  22. Biermann, P., and Harwitt, M. 1980. On the origin of the grain-size size spectrum of interstellar dust. Astrophys. J. Lett., 241, pp. L105–L107.ADSGoogle Scholar
  23. Bless, R. C., and Savage, B. D. 1972. Ultraviolet photometry from the Orbiting Astronomical Observatory. II. Interstellar extinction. Astrophys. J., 171, pp. 293–308.ADSGoogle Scholar
  24. Blitz, L. 1993. Giant molecular clouds. In Protostars & Planets III, edse E. H. Levy and J. I. Lunine (Tucson: Univ. Arizona Press), pp. 125–161.Google Scholar
  25. Blum, J., Wurm, G. 2000. Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus, 143, pp. 138–146.ADSGoogle Scholar
  26. Blum, J., Wurm, G., Kempf, S. + 24 authors 2000. Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett., 85, pp. 2426–2429.Google Scholar
  27. Bohren, C. F., and Huffman, D. R. 1983. Absorption and Scattering of Light by Small Particles (New York: Wiley).Google Scholar
  28. Boogert, A. C. A., Schutte, W. A., Tielens, A. G. G. M., et al. 1996. Solid methane toward deeply embedded protostars. Astron. A strophys., 315, pp. L377–L380.ADSGoogle Scholar
  29. Boulanger,. F. 1994. Dust and gas in the infrared cirrus. In The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, eds. R. Cutri and W. B. Latter (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 58, pp. 101–114.Google Scholar
  30. Boulanger, F., Baud, B., and van Albada, G. D. 1985. Warm dust in the neutral interstellar medium. Astron. Astrophys., 144, pp. L9–L12.ADSGoogle Scholar
  31. Boulanger, F., Prévot, M. L., and Gry, C. 1994. The contribution of small particles to the extinction curve. Astron. Astrophys., 284, pp. 956–970.ADSGoogle Scholar
  32. Bouwman, J., de Koter, A., van den Ancker, M. E., and Waters, L. B. F. M. 2000. The composition of the circumstellar dust around the Herbig Ae stars AB Aur and HD 163296. Astron. Astrophys., 360, pp. 213–226.ADSGoogle Scholar
  33. Braatz, A., Dorschner, J., Henning, Th., Jäger, C., and Ott, U. 1998. Infrared spectroscopy of presolar diamonds: The influence of chemical preparation. Meteoritics Planet. Sci., 33, p. A21.ADSGoogle Scholar
  34. Braatz, A., Ott, U., Henning, Th., Jäger, C., and Jeschke, G. 2000. Infrared, ultraviolet, and electron paramagnetic resonance measurements on presolar diamonds: Implications for optical features and origin. Meteoritics Planet. Sci., 35, pp. 75–84.ADSGoogle Scholar
  35. Bradley, J. P. 1996. The search for interstellar components in interplanetary dust. In Physics, Chemistry, and Dynamics of Interplanetary Dust: Proc. IAU Coll. 150, ed. B. Å. S. Gustafson (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser. Vol. 104, pp. 275–282.Google Scholar
  36. Bradley, J. P. 1999. Interstellar dust: evidence from interplanetary dust particles. In Formation and Evolution of Solids in Space, eds. J. M. Greenberg, A. Li (Dordrecht: Kluwer Academ. Publ.), NATO ASI Ser. C, Vol. 523, pp. 485–504.Google Scholar
  37. Bü;rki, P. R. 1996. Low-pressure formation routes for interstellar microdiamonds: chemical vapor deposition vs. homogeneous nucleation. Meteoritics, 31, pp. A24–A25.Google Scholar
  38. Buss Jr., R. H., Cohen, M., Tielens, A. G. G. M., Werner, M. W., Bregman, J. D., Witteborn, F. C., Rank, D., and Sandford, S.A. 1990. Hydrocarbon emission features in the infrared spectrum of warm supergiants. Astrophys. J., 365; pp. L23–L26.ADSGoogle Scholar
  39. Butchart, I., McFadzean, A. D., Whittet, D. C. B., Geballe, T. R., Greenberg, J. M. 1986. Three micron spectroscopy of the galactic center source IRS7. Astron. Astrophys. Lett., 154, pp. L5–L7.ADSGoogle Scholar
  40. Cardelli, J. A. 1994. Variability of interstellar extinction and its relationship to environment. In The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, eds. R. Cutri and W. B. Latter (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser. Vol. 58, pp. 24–33.Google Scholar
  41. Cardelli, J. A., Clayton, G. C., Mathis, J. S. 1988. The determination of ultraviolet extinction from the optical and near-infrared. Astrophys. J. Lett., 329, pp. L33–L37.ADSGoogle Scholar
  42. Cesarsky, D., Jones, A. P., Lequeux, X., and Verstraete, L. 2000. Silicate emission in Orion. Astron. Astrophys., 358, pp. 708–716.ADSGoogle Scholar
  43. Cherchneff, I., and Barker, J. R. 1992. Polycyclic aromatic hydrocarbons and molecular equilibria in carbon-rich stars. Astrophys. J., 394, pp. 703–716.ADSGoogle Scholar
  44. Chiar, J. E., Tielens, A. G. G. M., Whittet, D. C. B., Schutte, W. A., Boogert, A. C. A., Lutz, D., van Dishoeck, E. F., and Bernstein, M. P. 2000. The composition and distribution of dust along the line of sight toward the Galactic center. Astrophys. J., 537, pp. 749–762.ADSGoogle Scholar
  45. Chlewicki, G., and Laureijs, R. J. 1988. Model of grain properties based on IRAS observations. I. Evidence for new particle populations. Astron. Astrophys., 207, pp. L11–L14.ADSGoogle Scholar
  46. Choi, B.-G., Huss, G. R., Wasserburg, G. J., Gallino, R. 1998. Presolar corundum and spinel in ordinary chondrites: origins from AGB stars and a supernova. Science, 282, pp. 1284–1289.ADSGoogle Scholar
  47. Cohen, M., Tielens, A. G. G. M., and Bregman, J. D. 1989. Mid-infrared spectra of WC9 stars: The composition of circumstellar and interstellar dust. Astrophys. J. Lett., 344, pp. L13–L16.ADSGoogle Scholar
  48. Colangeli, L., Mennella, V., Palumbo, P., and Rotundi, A. 1999. Cosmic dust and laboratory simulation: wishes, results and open problems. In Formation and Evolution of Solids in Space, eds. J. M. Greenberg, A. Li (Dordrecht: Kluwer Academ. Publ.), NATO ASI Ser. C, Vol. 523, pp. 203–228.Google Scholar
  49. Coulson, J. M., and Walther, D. M. 1995. SAO 206462 - a solar-type star with a dusty, organically rich environment. Mon. Not. Roy. Astron. Soc., 274, pp. 977–986.ADSGoogle Scholar
  50. Coulson, I. M., Walther, D. M., and Dent, W. R. F. 1998. Infrared and submillimetre studies of Vega-excess stars. Monthly Not. R. Astron. Soc., 296, pp. 934–942.ADSGoogle Scholar
  51. Cox, P. 1989. The line of sight towards AFGL 961: Detection of the librational band of water ice at 13.6 micron. Astron. Astrophys. Lett., 225, pp. L1–L4.ADSGoogle Scholar
  52. Cox, P. 1993. Far-infrared spectroscopy of solid state features. In Astronomical Infrared Spectroscopy: Future Observational Directions, ed. S. Kwok (San Francisco, Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 41, pp. 163–170.Google Scholar
  53. Cox, P., and Mezger, P. G. 1989. The galactic infrared/submillimeter dust radiation. Astron. Astrophys. Rev., 1, pp. 49–83.ADSGoogle Scholar
  54. Crovisier, J., Leech, K., Bockelee-Morvan, D., Brooke, T. Y., Hanner, M. S., Altieri, B., Keller, H. U., and Lellouch, E. 1997. The spectrum of Comet Hale-Bopp (C/1995 01) observed with the Infrared Space Observatory at 2.9 astronomical units from the Sun. Science, 275, pp. 1904–1907.ADSGoogle Scholar
  55. Dartois, E., Schutte, W., Geballe, T. R. Demyk, K., Ehrenfreund, P. d’Hendecourt, L. 1999. Methanol: the second most abundant ice species towards the high-mass protostars RAFGL7009S and W33A. Astron. Astrophys., 342, pp. L32–L35.ADSGoogle Scholar
  56. Davis, L., and Greenstein, J. L. 1951. The polarization of starlight by aligned dust grains. Astrophys. J., 114, pp. 206–240.ADSGoogle Scholar
  57. de Graauw, Th., Whittet, D. C. B., Gerakines, P. A. + 29 authors 1996. SWS observations of solid C02 in molecular clouds. Astron. A strophys., 315, pp. L345–L348.ADSGoogle Scholar
  58. de Heer, W. A., and Ugarte, D. 1993. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem. Phys. Lett., 207, p. 480.ADSGoogle Scholar
  59. Demyk, K., Jones, A. P., Dartois, E., Cox, P., and d’Hendecourt, L. 1999. The chemical composition of the silicate dust around RAFGL7009S and IRAS 19110+1045. Astron. Astrophys., 349, pp. 267–275.ADSGoogle Scholar
  60. Desert, F.-X., Boulanger, F., and Puget, J. L. 1990. Interstellar dust models for extinction and emission. Astron. Astrophys., 237, pp. 215–236.ADSGoogle Scholar
  61. d’Hendecourt, L. B., and Jourdain de Muizon, M. 1989. The discovery of interstellar carbon dioxide. Astron. Astrophys. Lett., 223, pp. L5–L8.ADSGoogle Scholar
  62. d’Hendecourt, L. B. 1997. The PAH hypothesis: Infrared spectroscopic properties of PAHs. In Prom Stardust to Planetesimals, eds. Y. J. Pendleton and A. G. G. M. Tielens (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 122, pp. 129–145.Google Scholar
  63. Donn, B. 1968. Polycyclic hydrocarbons, Platt particles, and interstellar extinction. Astrophys. J. Lett., 152, pp. L129–L133.ADSGoogle Scholar
  64. Dorschner, J. 1967. Theoretische Untersuchungen liber den interstellaren Staub. I. Vorschlag eines Staubmodells aus meteoritischen Silikaten. Astron. Nachr., 290, pp. 171–181.ADSGoogle Scholar
  65. Dorschner, J. 1982. Interstellar grain size spectrum and circumstellar grain-grain collisions. Astrophys. Space Sci., 81, pp. 323–328.ADSGoogle Scholar
  66. Dorschner, J. 1992. Interstellar dust, subject and agent of galactic evolution. Rev. Mod. Astron., 6, pp. 117–147.ADSGoogle Scholar
  67. Dorschner, J. 1999. Stardust mineralogy: the laboratory approach. In Formation and EvoluINTERSTELLAR tion of Solids in Space, ed. J. M. Greenberg, A. Li (Dordrecht: Kluwer Academ. Publ.), NATO ASI Ser. C, Vol. 523, pp. 229–264.Google Scholar
  68. Dorschner, J., and Henning, Th. 1995. Dust metamorphosis in the Galaxy. Astron. Astrophys. Rev., 6, pp. 271–333.ADSGoogle Scholar
  69. Dorschner, J., Friedemann, C., Gurtler, J., and Schielicke, R. 1984. A catalogue of equivalent widths ofthe interstellar 2000 Å band. Bull. InJ. Center Données Stellaires, 27, pp. 137–139.ADSGoogle Scholar
  70. Dorschner, J., Begemann, B., Henning, Th., Jäger, C., and Mutschke, H. 1995. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys., 300, pp. 503–520.ADSGoogle Scholar
  71. Draine, B. T. 1994. Dust in diffuse interstellar clouds. In The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, eds. R. Cutri and W. B. Latter (San Francisco: Astron. Soc. Pacific), A. S. P. Vol. 58, pp. 227–242.Google Scholar
  72. Draine, B. T., Lee, H. M. 1984. Optical properties of interstellar graphite and silicate grains. Astrophys. J., 285, pp. 89–108.ADSGoogle Scholar
  73. Duley, W. W. 1988. Sharp emission lines from diamond dust in the Red Rectangle? Astrophys. Space Sci., 150, pp. 387–390.ADSGoogle Scholar
  74. Duley, W. W. 1993. Carbonaceous grains. In Dust and Chemistry in Astronomy, eds. T. J. Millar and D. A. Williams (Bristol: Inst. Physics Publ.), pp. 71–101.Google Scholar
  75. Erickson, E. F., Knacke, R. F., Tokunaga, A. T., and Haas, M. R. 1981. The 45 micron H20 ice band in the Kleinmann-Low Nebula. Astrophys. J., 245, pp. 148–153.ADSGoogle Scholar
  76. Fabian, D., Jäger, C., Henning, Th., Dorschner, J., and Mutschke, H. 2000. Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica. Astron & Astrophys., 364, pp. 282–292.ADSGoogle Scholar
  77. Fabian, D., Posch, Th., Mutschke, H., Kerschbaum, F. and Dorschner, J. 2001. Infrared optical properties of spinels. A study of the carrier of the 13, 17 and 32 p.m emission features observed in ISO-SWS spectra of oxygen-rich AGB stars. Astron. Astrophys., in press.Google Scholar
  78. Fajardo-Acosta, S. B., and Knacke, R. F. 1995. IRAS low resolution spectra with β Pictoristype silicate emission. Astron. Astrophys., 295, pp. 767–774.ADSGoogle Scholar
  79. Ferrarotti, A., Gail, H.-P., Degiorgi, L., and Ott, H. R. 2000. FeSi as a possible new circumstellar dust component. Astron. Astrophys., 357, pp. L13–L16.ADSGoogle Scholar
  80. Fischer, O., Henning, Th., and Yorke, H. W. 1995. Simulation of polarization maps. II. The circumstellar environments of pre-main sequence objects. Astron. Astrophys., 308, pp. 863–885.ADSGoogle Scholar
  81. Fitzpatrick, E. L., and Massa, D. 1986. An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump. Astrophys. J., 307, pp. 286–294.ADSGoogle Scholar
  82. Fitzpatrick, E. L., and Massa, D. 1990. An analysis of the shapes of ultraviolet extinction curves. III. An atlas of ultraviolet extinction curves. Astrophys. J. Suppl. Ser., 72, pp. 163-189.Google Scholar
  83. Freivogel, P., Fulara, J., Maier, J. P. 1994. Highly unsaturated hydrocarbons as potential carriers of some diffuse interstellar bands. Astrophys. J. Lett., 431, pp. L151–L154.ADSGoogle Scholar
  84. Friedemann, Chr. 1969. Evolution of silicon carbide particles in the atmospheres of carbon stars. Physica, 41, pp. 139–143.ADSGoogle Scholar
  85. Frisch, P. C., Dorschner, J. M., Geiss, J., Greenberg, J. M., Grün, E., Landgraf, M., Hoppe, P., Jones, A. P., Kratschmer, W., Linde, T. J., Morfill, G. E., Reach, W., Slavin, J. D., Svestka, J., Witt, A. N., and Zank, G. P. 1999. Dust in the local interstellar wind. Astrophys. J., 525, pp. 492–516.ADSGoogle Scholar
  86. Gail, H.-P., Sedlymayr, E. 1998. Inorganic dust formation in astrophysical environments. In Chemistry and Physics of Molecules and Grains in Space, ed. P. Sarre (London: The Faraday Division of the Royal Society of Chemistry), Faraday Discussion, No. 109, p. 303.Google Scholar
  87. Geballe, T. R., Baas, F., Greenberg, J. M., Schutte, W. 1985. New infrared absorption features due to solid phase molecules containing sulfur. Astron. Astrophys. Lett., 146, pp. L6–L8.ADSGoogle Scholar
  88. Geballe, T. R., Joblin, C., d’Hendecourt, L. B., Jourdain de Muizon, M., Tielens, A. G. G. M., and Leger, A. 1994. Detection of the overtone of the 3.3 micron emission feature in IRAS 21282 +5050. Astrophys. J. Lett., 434, pp. L15–L18.ADSGoogle Scholar
  89. Geballe, T. R. 1997. Spectroscopy of the unidentified infrared emission bands. In From Stardust to Planetesimals, eds. Y. J. Pendleton and A. G. G. M. Tielens (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 122, pp. 119–128.Google Scholar
  90. Giard, M., Lamarre, J. M., Pajot, F., and Serra, G. 1994. The large scale distribution of PAHs in the Galaxy. Astron. Astrophys., 286, pp.:303–210.ADSGoogle Scholar
  91. Gibb, E. L., Whittet, D. C. B., Schutte, W. A. + 8 authors 2000. An inventory of interstellar ices toward the embedded protostar W33A. Astrophys. J. Lett., 536, pp. 347–356.ADSGoogle Scholar
  92. Gillett, F. C., and Forrest, W. J. 1973. Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8 to 13.5 microns. Astrophys. J., 179, pp. 483–491.ADSGoogle Scholar
  93. Glasse, A. C. H., Towlson, W. A., Aitken, D. K., and Roche, P.F. 1986. High-resolution infrared spectroscopy: A search for the 1l.52-pm graphite feature Mon. Not. Roy. Astron. Soc., 220, pp. 185–188.Google Scholar
  94. Goebel, J. H. 1993. SiS2 in circumstellar shells. Astron. Astrophys., 278, pp. 226–230.ADSGoogle Scholar
  95. Goebel, J. H., and Moseley, S.H. 1985. MgS grain component in circumstellar shells. Astrophys. J. Lett., 290, pp. L35–L39.ADSGoogle Scholar
  96. Gordon, K. D., Witt, A. N., Rudy, R. J., Puetter, R. C., Lynch, D. K., Mazuk, S., Misselt, K. A., Clayton, G. C. and Smith, T. L. 2000. Dust emission features in NGC 7023 between 0.35 and 2.5 11m: Extended Red Emission (0.7 μm) and two new emission features (1.15 and 1.5 μm). Astrophys. J., in press.Google Scholar
  97. Gordon, K. D., Witt, A. N.., and Friedmann, B. C. 1998. Detection of extended red emission in the diffuse interstellar medium. Astrophys. J., 498, pp. 522–540.ADSGoogle Scholar
  98. Gorti, U., Bhatt, H. C. 1993. Anomalous dust in the environment of Herbig Ae/Be star. Astron. Astrophys., 270, pp. 426–431.ADSGoogle Scholar
  99. Grady, C. A., Sitko, M. L., Bjorkman, K. S., Pérez, M. R., Lynch, D. K., Russell, R. W., Hanner, M. S. 1997. The star-grazing extrasolar comets in the HD 100546 system. Astrophys. J., 483, pp. 449–456.ADSGoogle Scholar
  100. Greenberg, J. M. 1973. Some scattering problems of interstellar grains. In Interstellar Dust and Related Topics: Proc. IAU Symp., 52, eds. J. M. Greenberg and H.C. van de Hulst (Dordrecht: Reidel), pp. 3–9.Google Scholar
  101. Greenberg, J. M. 1984. Evolution of interstellar grains. Occasional Rep. Royal Obs. Edinburgh, 12, pp. 1–25.ADSGoogle Scholar
  102. Greenberg, J. M. 1989. The core-mantle model of interstellar grains and the cosmic dust connection In Interstellar Dust: Proc. IA U Symp. 135, eds. L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academ. Publ.), pp. 345–355.Google Scholar
  103. Greenberg, J. M. and Li, A. 1995. What are the true astronomical silicates? Astron. Astrophys., 309, pp. 258–266.ADSGoogle Scholar
  104. Grim, R. J. A. and Greenberg, J. M. 1987. Ions in grain mantles: The 4.62 micron absorption by OCN- in W33A. Astrophys. J. Lett., 321, pp. L91–L96.ADSGoogle Scholar
  105. Grim, R. J. A., Baas, F., Geballe, T. R., Greenberg, J. M., and Schutte, W. 1991. Detection of solid methanol in W33A. Astron. Astrophys., 243, pp. 473–477.ADSGoogle Scholar
  106. Grün, E., Gustafson, B., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., and Zook, H. A. 1994. Interstellar dust in the heliosphere. Astron. Astrophys., 286, pp. 915–924.ADSGoogle Scholar
  107. Grün, E., Landgraf, M., Horányi, M., Kissel, J., Kruger, H., Srama, R., Svedhem, H., and Withnell, P. 2000. Techniques for galactic dust measurement in the heliosphere. J. Geophys. Res., 105 No. A5, pp. 10403–10410.ADSGoogle Scholar
  108. Gurtler, J., Henning, Th., Dorschner, J. 1989. Properties of circumstellar silicate dust (Review). Astron. Nachr., 310, pp. 319–327.ADSGoogle Scholar
  109. Gurtler, J., Henning, Th., Kömpe, C., Pfau, W., Krätschmer, W., and Lemke, D. 1996. Detection of an absorption feature at the position of the 4.27-μm band of solid CO2. Astron. Astrophys., 315, pp. L189–L192.ADSGoogle Scholar
  110. Gurtler, J., Schreyer, K., Henning, Th., Lemke, D., and Pfau, W. 1999. Infrared spectra of young stars in Chamaeleon. Astron. Astrophys., 346, pp. 205–210.ADSGoogle Scholar
  111. Guillois, O., Ledoux, G.. and Reynaud, C. 1999. Diamond infrared emission bands in circumstellar media. Astrophys. J. Lett., 521, pp. L133–L136.ADSGoogle Scholar
  112. Hall, J. S. 1949. Observations of the polarized light from stars. Science, 109, p. 166.ADSGoogle Scholar
  113. Hallenbeck, S. L., Nuth, J. A., and Daukantas, P. L. 1998. Mid-infrared spectral evolution of amorphous magnesium silicate smokes annealed in vacuum: comparison to cometary spectra. Icarus, 131, pp. 198–209.ADSGoogle Scholar
  114. Hanner, M. S. 1995. Dust around young stars: How related to solar system dust? Highlights of Astronomy, 10, pp. 351–392.ADSGoogle Scholar
  115. Hanner, M. S. 1999. The silicate material in comets. Space Sci. Rev., 90, pp. 99–108.ADSGoogle Scholar
  116. Hanner, M. S., Lynch, D. K., and Russell, R. W. 1994a. The 8-13 micron spectra of comets and the composition of silicate grains. Astrophys. J., 425, pp. 274–285.ADSGoogle Scholar
  117. Hanner, M. S., Brooke, T. Y., and Tokunaga, A. T. 1994b. Silicates and aromatic hydrocarbons in the 10 micron spectrum of the Taurus dark cloud Elias 1. Astron. J. Lett., 433, pp. L97–100.ADSGoogle Scholar
  118. Hanner, M. S., Brooke, T. Y., and Tokunaga, A. T. 1998. 8-13 micron spectroscopy of young stars. Astrophys. J., 502, pp. 871–882.ADSGoogle Scholar
  119. Hecht, J. H. 1991. The nature of the dust around R Coronae Borealis stars: Isolated amorphous carbon or graphite fractals? Astrophys. J, 367, pp. 635–640.ADSGoogle Scholar
  120. Henning, Th. 1996. Circumstellar dust around young stars. In The Cosmic Dust Connection, ed. J. M. Greenberg (Dordrecht: Kluwer), NATO ASI Ser. C, Vol. 487, pp. 399–412.Google Scholar
  121. Henning, Th., and Salama, F. 1998. Carbon in the universe. Science, 282, pp. 2204–2210.ADSGoogle Scholar
  122. Henning, Th., and Schnaiter, M. 1999. Carbon - From space to laboratory. In Laboratory Astrophysics and Space Research, eds. P. Ehrenfreund, C. Kraft, H. Kochan, and V. Pirronello (Dordrecht: Kluwer), pp. 249–277.Google Scholar
  123. Henning, Th., Dorschner, J., and Gurtler, J. 1989. Size distribution of dust grains - a problem of self-similarity? In Interstellar Dust: Contributed Papers, NASA CP 3036, p. 395.Google Scholar
  124. Henning, Th., Begemann, B., Mutschke, H., and Dorschner, J. 1995. Optical properties of oxide dust grains. Astron. Astrophys. Suppl. Ser., 112, pp. 143–149.ADSGoogle Scholar
  125. Herbig, G. H. 1995. The diffuse interstellar bands. Annu. Rev. Astrophys., 33, pp. 19–73.ADSGoogle Scholar
  126. Hill, H. G. M., Jones, A. P., d’Hendecourt, L. B. 1998. Diamonds in carbon-rich protoplanetary nebulae. Astron. Astrophys., 336, pp. L41–L44.ADSGoogle Scholar
  127. Hiltner, W. A. 1949. On the presence of polarization in the continuum radiation of stars. Astrophys. J., 109, pp. 471–478.ADSGoogle Scholar
  128. Hoffmeister, C. 1929. On the heliocentric velocity of meteors. Astrophys. J., 69, pp. 159–167.ADSGoogle Scholar
  129. Hoffmeister, C. 1931. Zur physikalischen Theorie der Sternschnuppen. Astron. Nachr., 241, pp. 1–8.ADSGoogle Scholar
  130. Hong, S. S., and Greenberg, J. M. 1978. On the size distribution of interstellar grains. Astron. Astrophys., 70, pp. 695–699.ADSGoogle Scholar
  131. Hoppe, P. and Ott, U. 1997. Mainstream silicon carbide grains from Meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Material, eds. T. J. Bernatowicz and E. Zinner, AIP Conf. Ser. Proceed., 402, pp. 27–58.Google Scholar
  132. Hoppe, P. and Zinner, E. 2000. Presolar dust grains from meteorites and their stellar sources. J. Geophys. Res., 105 No. A5, pp. 10371–10385.ADSGoogle Scholar
  133. Hoyle, F., and Wickramasinghe, N. C. 1962. On graphite particles as interstellar grains. Mon. Not. Roy. Astron. Soc., 124, pp. 417–433.ADSGoogle Scholar
  134. Hron, J., Aringer, B., and Kerschbaum 1997. Semiregular variables of types SRa and SRb. Silicate dust emission features. Astron. Astrophys., 322, pp. 280–290.ADSGoogle Scholar
  135. Jäger, C., Mutschke, H., Begemann, B., Dorschner, J., and Henning, Th. 1994. Steps toward interstellar silicate mineralogy. I. Laboratory results of a silicate glass of mean cosmic composition. Astron. Astrophys., 292, pp. 641–655.ADSGoogle Scholar
  136. Jäger, C., Mutschke, H., and Henning, Th. 1998a. Optical properties of carbonaceous dust analogs. Astron. Astrophys., 332, pp. 291–299.ADSGoogle Scholar
  137. Jäger, C., Molster, F., Dorschner, J., Henning, Th., Mutschke, H., and Waters, L. B. F. M. 1998b. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys., 339, pp. 904–916.ADSGoogle Scholar
  138. Jenniskens, P., and Desert, F.-X. 1993. A survey of diffuse interstellar bands (3800-8680 Å) Astron. Astrophys. Suppl. Ser., 106, pp. 39–78.ADSGoogle Scholar
  139. Jenniskens, P., and Greenberg, J. M. 1993. Environment dependence of interstellar extinction curves. Astron. Astrophys., 274, pp. 439–450.ADSGoogle Scholar
  140. Jones, A. P. 1997. The lifecycle of interstellar dust. In Prom Stardust to Planetesimals, eds. Y. J. Pendleton and A. G. G. M. Tielens (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 122, pp. 97–106.Google Scholar
  141. Jones, A. P., and Williams, D. A. 1987. Interplanetary material as a guide to the composition of interstellar grains. Mon. Not. R. Astron. Soc., 224, pp. 473–479.ADSGoogle Scholar
  142. Jones, A. P., and Tielens, A. G. G. M. 1994. Interstellar dust - physical processes. In The Gold Universe, eds. Th. Montmerle, Ch. J. Lada, I. F. Mirabel, and J. Trãn Thanh Vãn (Gif sur Yvette: Editions Frontières), pp. 35–44.Google Scholar
  143. Jones, A. P., Tielens, A. G. G. M., and Hollenbach, D. J. 1996 Grain shattering in shocks: the interstellar grain size distribution. Astrophys. J., 469, pp. 740–764.ADSGoogle Scholar
  144. Kamijo, F. 1963. A theoretical study of the long period variable stars. III. Formation of solid or liquid particles in the circumstellar envelope. Publ. Astron. Soc. Japan, 15, pp. 440–448.ADSGoogle Scholar
  145. Keller, L. P., Bradley, J. P., Bouwman, J., Molster, F. J., Waters, L. B. F. M., Flynn, G. J., Henning, T., and Mutschke, H. 2000. Sulfides in interplanetary dust particles: a possible match to the 23 /Lm feature detected by the Infrared Space Observatory. Abstracts 31st Annual LPS conference, Abstract No. 1860.Google Scholar
  146. Kim, S.-H., and Martin, P. G. 1995. The size distribution of interstellar dust particles as determined from polarization: spheroids. Astrophys. J., 444, pp. 293–305.ADSGoogle Scholar
  147. Kim, S.-H., Martin, P. G., and Hendry, P. D. 1994. The size distribution of interstellar dust particles as determined from extinction. Astrophys. J., 422, pp. 164–175.ADSGoogle Scholar
  148. Knacke, R. F., Fajardo-Acosta, S. B., Telesco, C. M., Hackwell, J. A., Lynch, D. K., and Russell, R. W. 1993. The silicates in the disk of β Pictoris. Astrophys. J., 418, pp. 440–450.ADSGoogle Scholar
  149. Koike, C., Kimura, S., Kaito, C., Suto, H., Shibai, H., Nagata, T., Tanabe, T., and Saito, Y. 1995. Correlation between the spectral index and the degree of crystallization of carbon and graphite grains. Astrophys. J., 446, pp. 902–906.ADSGoogle Scholar
  150. Koike, C., Wickramasinghe, N. C., Kano, N., Yamakoshi, K., Yamamoto, T., Kaito, C., Kimura, S., and Okuda, H. 1995. The infrared spectra of diamond-Like residues from the Allende meteorite. Monthly Not. R. Astron. Soc., 277, pp. 986–994.ADSGoogle Scholar
  151. Kwok, S., Volk, K. M., Hrivnak, B. J. 1989. A 21 micron emission feature in four protoplanetary nebulae. Astrophys. J., 345, pp. L51–L54.ADSGoogle Scholar
  152. Lada, E. A., Strom, K. M., and Myers, P. C. 1993. Environments of star formation: relationship between molecular clouds, dense cores, and young stars. In Protostars β Planets III, eds. E. H. Levy and J. I. Lunine (Tucson: Univ. Arizona Press), pp. 245–277.Google Scholar
  153. Lacy, J. H., Baas, F., Allamandola, L. J., Perssons, S. E. McGregor, P. J., Lonsdale, C. J., Geballe, T. R., van de Bult, C. E. P. 1984. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources. Astrophys. J., 276, pp. 533–543.ADSGoogle Scholar
  154. Lacy, J. H., Faraji, H., Sandford, S. A., and Allamandola, L. J. 1998. Unraveling the 10 micron “silicate” feature of protostars: the detection of frozen interstellar ammonia. Astrophys. J., 501, pp. L105–L109.ADSGoogle Scholar
  155. Lagage, P.O., and Pantin, E. 1994. Probing dust around main-sequence stars with TIMMI. The Messenger, 75, pp. 24–26.ADSGoogle Scholar
  156. Landgraf, M., Baggaley, W. J., Grün, E., Kruger, H., and Linkert, G 2000. Aspects of the mass distribution of interstellar grains in the solar system from in-situ measurements. J. Geophys. Res., 105 No. A5, pp. 10343–10352.ADSGoogle Scholar
  157. Lanz, T., Heap, S. R., and Hubeny, I. 1995. HST/GHRS observations of the j3 Pictoris system: basic parameters and the age of the system. Astrophys. J., 447, pp. L41–L44.ADSGoogle Scholar
  158. Larson, H. P., Davis, D. S., Black, J. H., and Fink, U. 1985. Interstellar absorption features toward the compact infrared source W33A. Astrophys. J., 299, pp. 873–880.ADSGoogle Scholar
  159. Ledoux, G., Ehbrecht, M., Guillois, O., Huisken, F., Kohn, B., Laguna, M. A., Nenner, I., Paillard, V., Papoular, R., Porterat D., and Reynaud, C. 1998. Silicon as a candidate carrier for ERE. Astron. Astrophys., 333, pp. L39–L42.ADSGoogle Scholar
  160. Lenzuni, P., Gail, H.-P., and Henning, Th. 1995. Dust evaporation in protostellar cores. Astrophys. J., 447, pp. 848–862.ADSGoogle Scholar
  161. Li, A., and Greenberg, J. M. 1997. A unified model of interstellar dust. Astron. Astrophys., 323, pp. 566–584.ADSGoogle Scholar
  162. Lillie, C. F., and Witt, A. N. 1976. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXV. Diffuse galactic light in the 1500-4200 Å region and the scattering properties of interstellar dust grains. Astrophys. J., 208, pp. 64–74.ADSGoogle Scholar
  163. Linde, T.J., and Gombosi, T.I. 2000. Interstellar dust filtration at the heliospheric interfase. J. Geophys. Res., 105, pp. 10411–10417.ADSGoogle Scholar
  164. Loys de Cheseaux, J. P. 1744. Traite des Gometes.Google Scholar
  165. Lutz, D., Feuchtgruber, H., Genzel, R., + 11 authors 1996. SWS observations of the Galactic center. Astron. Astrophys., 315, pp. L269–L272.ADSGoogle Scholar
  166. Lynds, B. T. 1968. Dark nebulae. In Stars and Stellar Systems., Vol. VII, eds. B. M. Middlehurst and L. H. Aller (Chicago: Univ. Chicago Press), pp. 119–139.Google Scholar
  167. Malfait, K., Bogaert, E., and Waelkens, C. 1998a. An ultraviolet, optical and infrared study of Herbig Ae/Be stars. Astron. Astrophys., 331, pp. 211–223.ADSGoogle Scholar
  168. Malfait, K., Waelkens, C., Waters, L. B. F. M, Vandenbussche, B., Huygen, E., and De Graauw, M. S. 1998b. The spectrum of the young star HDI00546 observed with the Infrared Space Observatory. Astron. Astrophys., 332, pp. L25–L28.ADSGoogle Scholar
  169. Maifait, K., Waelkens, C., Bouwman, J., De Koter, A., and Waters, L. B. F. M. 1999. The ISO spectrum of the young star HD142527. Astron. Astrophys., 345, pp. 181–186.ADSGoogle Scholar
  170. Martin, P. G. 1989. Linear and circular polarization in the diffuse interstellar medium. In Interstellar Dust: Proc. IAU Symp., 135, eds. L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academ. Publ.), pp. 55–65.Google Scholar
  171. Martin, P. G., and Whittet, D. C. B. 1990. Interstellar extinction and polarization in the infrared. Astrophys. J., 357, pp. 113–124.ADSGoogle Scholar
  172. Mathis, J. S. 1993. Observations and theories of interstellar dust. Rep. Prog. Phys., 56, pp. 605–652.ADSGoogle Scholar
  173. Mathis, J. 1996. Dust models with tight abundance constraints. Astrophys. J., 472, pp. 643–655.ADSGoogle Scholar
  174. Mathis, J. 1998. The near-infrared interstellar silicate bands and grain theories. Astrophys. J., 497, pp. 824–832.ADSGoogle Scholar
  175. Mathis, J. S., and Whiffen, G. 1989. Composite interstellar grains. Astrophys. J., 341, pp. 808–822.ADSGoogle Scholar
  176. Mathis, J. S., Rumpl, W., Nordsieck, K. H. 1977. The size distribution of interstellar grains. Astrophys. J., 217, pp. 425–433.ADSGoogle Scholar
  177. Mattila, K., Lemke, D., Haikala, L. K., Laureijs, R.J., Léger, A., Lehtinen, K., Leinert, Ch., and Mezger, P. G. 1996. Spectrophotometry of UIR bands in the diffuse emission of the galactic disk. Astron. Astrophys., 315, pp. L353–L356.ADSGoogle Scholar
  178. McDonnell, J. A. M. 1988. Solar system dust as a guide to interstellar matter. In Dust in the Universe, eds. M.E. Bailey and D.A. Williams (Cambridge: Cambridge University Press), pp. 169–18l.Google Scholar
  179. McKee, C. F., and Ostriker, J. P. 1977. A theory of the interstellar medium: Three components regulated by supernova explosions in a inhomogeneous substrate. Astrophys. J., 218, pp. 148–169.ADSGoogle Scholar
  180. Mennella, V., Colangeli, L., Blanco, A., Bussoletti, E., Fonti, S., Palumbo, P., and Mertins, H. C. 1995a. A dehydrogenation study of cosmic carbon analogue grains Astrophys. J., 444, pp. 288–292.Google Scholar
  181. Mennella, V., Colangeli, L., Bussoletti, E., Monaco G., Palumbo, P., and Rotundi, A. 1995b. On the electronic structure of small carbon grains of astrophysical interest. Astrophys. J. Suppl. Ser., 100, pp. 149–157.ADSGoogle Scholar
  182. Men’shchikov, A. B., Henning, Th., and Fischer, O. 1999. Self-consistent model of the dusty torus around HL Tauri. Astrophys. J., 519, pp. 257–278.ADSGoogle Scholar
  183. Molster, F. J. 2000. Crystalline silicates in circumstellar dust shells. Ph. D. Thesis, University of Amsterdam.Google Scholar
  184. Molster, F. J., Waters, L. B. F. M., Trams, N., + 8 authors 1999a. The composition and nature of the dust shell surrounding the binary AFGL4106. Astron. Astrophys., 350, pp. 163–180.ADSGoogle Scholar
  185. Molster, F. J., Yamamura, I., Waters, L. B. F. M., + 9 authors 1999b. Low-temperature crystallization of silicate dust in circumstellar disks. Nature, 401, p. 563.ADSGoogle Scholar
  186. Mutschke, H., Dorschner, J., Henning, Th., Jäger, C., and Ott, U. 1995. Facts and artifacts in interstellar diamond spectra. Astrophys. J. Lett., 454, pp. L157–L160.ADSGoogle Scholar
  187. Mutschke, H., Begemann, B., Dorschner, J., and Henning, Th., 1998. Steps toward interstellar silicate mineralogy. III. The role of aluminium in stardust silicates. Astron. Astrophys., 333, pp. 188–198.ADSGoogle Scholar
  188. Mutschke, H., Andersen, A. C., Clément, D., Henning, Th., and Peiter, G. 1999. Infrared properties of SiC particles. Astron. Astrophys., 345, pp. 187–202.ADSGoogle Scholar
  189. Ney, E. P. 1977. Star dust. Science, 195, pp. 541–546.ADSGoogle Scholar
  190. Nittler, L. R. 1997. Presolar oxide grains in meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Material, eds. T. J. Bernatowicz and E. Zinner, AIP Conf. Ser. Proceed., 402, pp. 59–82.Google Scholar
  191. Nittler, L. R, Hoppe, P., Alexander, C. M. O’D., + 7 authors 1995 Silicon nitride from supernovae. Astrophys. J. Lett., 453, pp. L25–L28.Google Scholar
  192. Nuth, J. A. 1996. Grain formation and metamorphism. In The Cosmic Dust Connection, ed. J.M. Greenberg (Dordrecht: Kluwer Academ. Publ.), pp. 205–221.Google Scholar
  193. Nuth, J. A., Moseley, S. H., Silverberg, R. F., Goebel, J. H., and Moore, W. H. 1985. Laboratory infrared spectra of predicted condensates in carbon-rich stars. Astrophys. J., 290, pp. L41–L43.ADSGoogle Scholar
  194. Nuth III, J. A., Hallenbeck, S. L., and Rietmeijer, F. J. M. 1999. Interstellar and interplanetary grains. Recent developments and new opportunities for experimental chemistry. In Laboratory Astrophysics and Space Research, eds. P. Ehrenfreund, C. Kraft, H. Kochan, and V. Pirronello (Dordrecht: Kluwer), pp. 143–182.Google Scholar
  195. O’Dell, C. R, and Wen, Z. 1994. Post refurbishment mission Hubble Space Telescope images of the core of the Orion nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. Astrophys. J., 436, pp. 194–202.ADSGoogle Scholar
  196. Olbers, W. 1823. Über die Durchsichtigkeit des Weltraumes. In Wilhelm Gibers. Sein Leben und seine Werke, Bd. 1, ed. C. Schilling (Berlin: Julius Springer 1894), pp. 133–141.Google Scholar
  197. Olnon, F. M., Raimond, E. (eds.) 1986. IRAS catalogues and atlases. Atlas of low-resolution spectra. Astron. Astrophys. Suppl. Ser., 65, pp. 607–1065.Google Scholar
  198. Omont, A., Moseley, S. H., Forveille, T., Glaccum, W. J., Harvey, P. M., Likkel, L., Loewenstein, R F., and Lisse, C. M. 1990. Observations of 40-70 micron bands of ice in IRAS 09371 +1212 and other stars. Astrophys. J. Lett., 355, pp. L27–L30.ADSGoogle Scholar
  199. Omont, A., Moseley, S. H., Cox, P., + 8 authors 1995. The 30 micron emission band in carbon-rich pre-planetary nebulae. Astrophys. J., 454, pp. 819–825.ADSGoogle Scholar
  200. Onaka, T., de Jong, T., and Willems, F. J. 1989. A study of M Mira variables based on IRAS LRS observations. I. Dust formation in the circumstellar shell. Astron. Astrophys., 218, pp. 169–179.ADSGoogle Scholar
  201. Oort, J. H., van de Hulst, H. C. 1946. Gas and smoke in interstellar space. Bull. Astron. Inst. Netherlands, 10, pp. 187–204.ADSGoogle Scholar
  202. Öpik, E. 1929. Zur Theorie der Variation der Sternschnuppenhäufigkeit. Astron. Nachr., 235, pp. 265–268.ADSGoogle Scholar
  203. Öpik, E. 1931. On the physical interpretation of color-excess in early type stars. Harvard Cire., No. 359.Google Scholar
  204. Ossenkopf, V. 1993. Dust coagulation in dense molecular clouds: the formation of fluffy aggregates. Astron. Astrophys., 280, pp. 617–646.ADSGoogle Scholar
  205. Padgett, D. L., Brandner, W., Stapelfeldt, K. R., Strom, S. E., Terebey, S., and Koerner, D. 1999. Hubble Space Telescope/NICMOS imaging of disk and envelopes around very young stars. Astron. J., 117, pp. 1490–1504.ADSGoogle Scholar
  206. Palumbo, M. E., Tielens, A. G. G. M., Tokunaga, A. T. 1995. Solid carbonyl sulphide (OCS) in W33A. Astrophys. J., 449, pp. 674–680.ADSGoogle Scholar
  207. Pendleton, Y. J., and Chiar, J. E. 1997. The nature and evolution of interstellar organics. In Prom Stardust to Planetesimals, eds. Y. J. Pendleton and A. G. G. M. Tielens (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 122, pp. 179–200.Google Scholar
  208. Posch, Th., Kerschbaum, F., Mutschke, H., Fabian, D., Dorschner, J., and Hron, J. 1999. On the origin of the 13 μm feature. A study of ISO-SWS spectra of oxygen-rich AGB stars. Astron. Astrophys., 352, pp. 609–618.ADSGoogle Scholar
  209. Prinn, R G. 1993. Chemistry and evolution of gaseous circumstellar disks. In Protostars & Planets III, eds. E. H. Levy and J. I. Lunine (Tucson: Univ. Arizona Press), pp. 1005–1028.Google Scholar
  210. Puget, L. J., and Leger, A. 1989. A new component of the interstellar matter: small grains and large aromatic molecules. Ann. Rev. Astron. Astrophys., 27, pp. 161–198.ADSGoogle Scholar
  211. Roques, F., Scholl, H., Sicardy, B., and Smith, B. A. 1994. Is there a planet around β Pictoris? Perturbations of a planet on a circumstellar dust disk. I. The numerical model. Icarus, 108, pp. 37–58.ADSGoogle Scholar
  212. Rowan-Robinson, M. 1992. Interstellar dust in galaxies. Mon. Not. Roy. Astron. Soc., 258, pp. 787–799.ADSGoogle Scholar
  213. Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., and Valero, G. J. 1988. Laboratory studies of the infrared spectral properties of of CO in astrophysical ices. Astrophys. J., 329, pp. 498–510.ADSGoogle Scholar
  214. Sandford, S. A., Pendleton, Y. J., and Allamandola, L. J. 1995. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium. Astmphys. J., 440, pp. 697–705.ADSGoogle Scholar
  215. Schalén, C. 1929. Zur Frage der allgemeinen Absorption des Lichtes im Weltraum. Astmn. Nachr., 236, pp. 249–258.ADSzbMATHGoogle Scholar
  216. Schalén, C. 1934. Untersuchungen liber Dunkelnebel. Medd. Astmn. Obs. Upsala, No. 58.Google Scholar
  217. Schnaiter, M., Mutschke, H., Henning, Th., Lindackers, D., Strecker, M., and Roth, P. 1996. Ultraviolet spectroscopy of matrix-isolated amorphous carbon particles. Astmphys. J., 464, pp. L187–L190.ADSGoogle Scholar
  218. Schnaiter, M., Mutschke, H., Dorschner, J., Henning, Th., and Salama, F. 1998. Matrixisolated nano-sized carbon grains as an analog for the 217.5 nanometer feature carrier. Astmphys. J., 498, pp. 486–496.ADSGoogle Scholar
  219. Schoenberg, E., and Jung, B. 1934. Uber die Lichtstreuung im interstellaren Raum durch Wolken metallischere Partikel. Astron. Nachr.., 253, pp. 261–272.ADSGoogle Scholar
  220. Schutte, W. A. 1996. Formation and evolution of interstellar icy grain mantles. In The Cosmic Dust Connection, ed. J. M. Greenberg (Dordrecht: Kluwer Academ. Publ.), NATO ASI Ser. C, Vol. 487, pp. 1–42.Google Scholar
  221. Schutte, W. A. 1999. Ices in the interstellar medium. In Laboratory Astmphysics and Space Research, eds. P. Ehrenfreund, C. Kraft, H. Kochan, and V. Pirronello (Dordrecht: Kluwer), pp. 69–103.Google Scholar
  222. Schutte, W. A., Tielens, A. G. G. M., Whittet, D. C. D., + 6 authors 1996. The 6.0 and 6.8 μm absorption features in the spectrum of NGC 7538: IRS9. Astron. Astmphys., 315, pp. L333–L336.Google Scholar
  223. Schutte, W. A., van der Hucht, K. A., Whittet, D. C. B., + 8 authors 1998. ISO-SWS observations of infrared absorption bands of the diffuse interstellar medium: The 6.2 μm feature of aromatic compounds. Astmn. Astmphys., 337, pp. 261–274.ADSGoogle Scholar
  224. Seahra, S. S., and Duley, W. W. 1999. Extended Red Emission from carbon clusters in interstellar clouds. Astmphys. J., 520, pp. 719–723.ADSGoogle Scholar
  225. Sedlmayr, E. 1994. From molecules to grains. In Molecules in the Stellar Envimnment, ed. U. G. JØrgensen (Berlin: Springer-Verlag), pp. 163–185.Google Scholar
  226. Sellgren, K. 1989. Infrared emission from reflection nebulae. In Interstellar Dust: Pmc. IAU Symp., bf 135, eds. L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academ. Publ.), pp. 103–108.Google Scholar
  227. Sellgren, K. 1994. Tiny grains, large molecules, and the infrared cirrus. In The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, eds. R. Cutri and W. B. Latter (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 58, pp. 243–254.Google Scholar
  228. Sellgren, K., Smith, R. G., Brooke, T. Y. 1994. The 3.2-3.6 micron spectra of Monoceros R2/IRS-3 and Elias 16. Astmphys. J., 433, pp. 179–186.ADSGoogle Scholar
  229. Sellgren, K., Brooke, T. Y., Smith, R. G., Geballe, T. R. 1995. A new 3.25 micron absorption feature toward Monoceros R2/IRS3. Astmphys. J., 449, pp. L69–L72.ADSGoogle Scholar
  230. Serkowski, K. 1973. Interstellar polarization. In Interstellar Dust and Related Topics: Pmc. IAU Symp. 52, eds. J. M. Greenberg and H. C. van de Hulst (Dordrecht: Reidel), pp. 145–152.Google Scholar
  231. Siebenmorgen, R., and Krligel, E. 1992. Dust model containing polycyclic aromatic hydrocarbons in various environments. Astmn. Astmphys., 259, pp. 614–626.ADSGoogle Scholar
  232. Sitko, M. L., Halbedel, E. M., Lawrence, G. F., Smith, J. A., and Yanow, K. 1994. Variable extinction in the HD 45677 and the evolution of dust grains in pre-main-sequence disks. Astmphys. J., 432, pp. 753–762.ADSGoogle Scholar
  233. Skinner, C. J., and Whitmore, B. 1988. Circumstellar environments - IV. Mass-loss rates for carbon stars. Mon. Not. Roy. Astmn. Soc., 234, pp. 79p–84p.ADSGoogle Scholar
  234. Sloan, G. C., and Price, S. D. 1995. Silicate emission at 10 microns in variables on the asymptotic giant branch. Astmphys. J., 451, pp. 758–767.ADSGoogle Scholar
  235. Sloan, G. C., and Price, S. D. 1998. The infrared spectral classification of oxygen-rich dust shells. Astmphys. J. Suppl. Ser., 119, pp. 141–158.ADSGoogle Scholar
  236. Smith, B. 1994. 10 years of Beta Pictoris - a personal reminiscence. In Circumstellar Dust Disks and Planet Formation, eds. R. Ferlet and A. Vidal-Madjar (Gif sur Yvette: Editions Frontières), pp. 1–3.Google Scholar
  237. Smith, R. G., Sellgren, K., and Brooke, T. Y. 1993. Grain mantles in the Taurus dark cloud. Mon. Not. Roy. Astron. Soc., 263, pp. 749–766.ADSGoogle Scholar
  238. Sodroski, T. J., Dwek, E., Hauser, M. G., and Kerr, F. J. 1989. Dust energetics in the gas phases of the interstellar medium: The origin of the galactic large-scale far-infrared emission observed by IRAS. Astrophys. J., 336, pp. 762–779.ADSGoogle Scholar
  239. Sodroski, T. J., Bennett, C., Boggess, N., + 8 authors 1994. Large-scale characteristics of interstellar dust from COBE DIRBE observations. Astrophys. J., 428, pp. 638–646.Google Scholar
  240. Sofia, U. J., Cardelli, J. A., and Savage, B. D. 1994. The abundant elements in the interstellar dust. Astrophys. J., 430, pp. 650–666.ADSGoogle Scholar
  241. Sorrell, W. F. 1990. The ⋋ 2175-Å feature from irradiated graphite particles. Mon. Not. Roy. Astron. Soc., 243, pp. 570–587.ADSGoogle Scholar
  242. Spaans, M., and Ehrenfreund, P. 1999. The interstellar medium: a general introduction. In Laboratory Astrophysics and Space Research, eds. P. Ehrenfreund, C. Kraft, H. Kochan, and V. Pirronello (Dordrecht: Kluwer), pp. 1–36.Google Scholar
  243. Speck, A. K., Barlow, M. J., and Skinner, C. J. 1997. The nature of silicon carbide in star outflows. Monthly Not. R. Astron. Soc., 288, pp. 431–456.ADSGoogle Scholar
  244. Speck, A. K., Barlow, M. J., Sylvester, R. J. and Hofmeister, A. M. 2000. Dust features in the infrared spectra of oxygen-rich evolved stars. Astron. Astrophys. Suppl. Ser., 146, pp. 437–467.ADSGoogle Scholar
  245. Stebbins, J., and Whitford, A. E. 1943. Six-color photometry of stars. I. The law of space reddening from the colors of 0 and B stars. Astrophys. J., 98, pp. 20–32.ADSGoogle Scholar
  246. Stecher, T. P. 1965. Interstellar extinction in the ultraviolet. Astrophys. J., 142, pp. 1683–1684.ADSGoogle Scholar
  247. Stein, W. A., and Gillett, F. C. 1969. Spectral distribution of infrared radiation from the Trapezium region of the Orion Nebula. Astrophys. J., 155, pp. L197–L199.ADSGoogle Scholar
  248. Sterzik, M. F., and Morfill, G. E. 1994. Evolution of protoplanetary disks with condensation and coagulation. Icarus, 111, pp. 536–546.ADSGoogle Scholar
  249. Sylvester, R. J., Barlow, M. J., Skinner, C. J., and Mannings, V. 1996. Optical, infrared, and millimetre-wave properties of Vega-Like systems Mon. Not. R. Astron. Soc., 279, pp. 925–939.Google Scholar
  250. Tanaka, M., Sato, S., Nagata, T., and Yamamoto, T. 1990. Three micron ice-band features in the p Ophiuchi sources Astrophys. J., 352, pp. 724–730.Google Scholar
  251. Taylor, A., Baggaley, W. J., and Steel, D. J. 1996. Discovery of interstellar dust entering the earth’s atmosphere. Nature, 380, pp. 323–325.ADSGoogle Scholar
  252. Telesco, C. M., and Knacke, R. F. 1991. Detection of silicates in the beta Pictoris disk. Astrophys. J. Lett., 372, pp. L29–L31.ADSGoogle Scholar
  253. Teixeira, T. C., Devlin, J. P., Buch, V., and Emerson, J. P. 1999. Discovery of solid HDO in grain mantles. Astron. Astrophys., 347, pp. L19–L22.ADSGoogle Scholar
  254. Tielens, A. G. G. M. 1990. Carbon stardust: From soot to diamonds. In Carbon in the Galaxy: Studies from Earth and Space., eds. J. C. Tarter, S. Chang, and D. J. DeFrees (Washington: NASA), CP-3061, pp. 59–111.Google Scholar
  255. Tielens, A. G. G. M. 1995. The interstellar medium. In Airborne Astronomy Symposium on the Galactic Ecosystem: from Gas to Stars to Dust, ed. M. R. Haas, J. A. Davidson, E. F. Erickson (San Francisco: Astron. Soc. Pacific), A. S. P. Conf. Ser., Vol. 73, pp. 3–2l.Google Scholar
  256. Tielens, A. G. G. M., Tokunaga, A. T., Geballe, T. R., and Baas, F. 1991. Interstellar solid CO: polar and nonpolar interstellar ices. Astrophys. J., 381, pp. 181–199.ADSGoogle Scholar
  257. Tielens, A. G. G. M., Wooden, D. H., Allamandola, L. J., Bregman, J., and Witteborn, F.C. 1996. The infrared spectrum of the Galactic Center and the composition of interstellar dust. Astrophys. J., 461, pp. 210–222.ADSGoogle Scholar
  258. Treffers, R., and Cohen, M. 1974. High-resolution spectra of cool stars in the 10- and 20- micron region. Astrophys. J., 188, pp. 545–552.ADSGoogle Scholar
  259. Triimpler, R. 1930. Preliminary results on the distances, dimensions, and space distribution of open star clusters. Lick Obs. Bull., No. 420.Google Scholar
  260. Van de Hulst, H. C. 1949. The solid particles in interstellar space. Rech. Astron. Obs. Utrecht, 11, pt. 2.Google Scholar
  261. Van Dishoeck, E. 1999. Models dnd observations of gas-grain interactions chemical evolution in star-forming regions. In Formation and Evolution of Solids in Space, ed. J. M. Greenberg, A. Li (Dordrecht: Kluwer Academ. Publ.), NATO ASI Ser. C, Vol. 523, pp. 229–264.Google Scholar
  262. Verschuur, G. L. 1989. Interstellar Matters. Essays on Curiosity and Astronomical Discovery (New York: Springer-Verlag).Google Scholar
  263. Vrba, F. J., Coyne, G. V., and Tapia, S. 1981. Observations of grain and magnetic field properties of the R Coronae Australis dark cloud. Astrophys. J., 243, pp. 489–511.ADSGoogle Scholar
  264. Vrba, F. J., Coyne, G. V., and Tapia, S. 1993. An investigation of grain properties in the p Ophiuchi dark cloud. Astron. J., 105, pp. 1010–1026.ADSGoogle Scholar
  265. Volk, K., Kwok, S., and Hrivnak, B. J. 1999. High-rsolution Infrared Space Observatory Spectroscopy of the unidentified 21 micron feature. Astrophys. J., 516, pp. L99–L102.ADSGoogle Scholar
  266. Walmsley, C. M., and Schilke, P. 1993. Observations of hot molecular cores. In Dust and Chemistry in Astronomy, eds. T. J. Millar, and D. A. Williams (Bristol: Inst. Physics Publ.), pp. 37–52.Google Scholar
  267. Waters, L. B. F. M., Molster, F. J., de Jong, T., + 34 authors 1996. Mineralogy of oxygen-rich dust shells. Astron. Astrophys., 315, pp. L361–L364.Google Scholar
  268. Waters, L. B. F. M., Cami, J., De Jong, T., Molster, F. J., Van Loon, J. Th., Bouwman, J., De Koter, A., Waelkens, C., Van Winckel, H., and Morris, P. W. 1998a. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle. Nature, 391, pp. 868-....ADSGoogle Scholar
  269. Waters, L. B. F. M., Beintema, D. A., Zijlstra, A. A., De Koter, A., Molster, F. J., Bouwman, J., De Jong, T., Pottasch, S. R., and De Graauw, Th. 1998b. Crystalline silicates in planetary nebulae with [WC] central stars. Astron. Astrophys., 331, pp. L61–L64.ADSGoogle Scholar
  270. Webster, A. 1995. The lowest of the strongly infrared active vibrations of the fullerenes and an astronomical emission band at a wavelength of 21 μm. Monthly Not. R. Astron. Soc., 277, pp. 1555–1566.ADSGoogle Scholar
  271. Weintraub, D. A., and Stern, S. A. 1994. A reinterpretation of millimeter observations of nearby IRAS excess stars. Astron. J., 108, pp. 701–710.ADSGoogle Scholar
  272. Whittet, D. C. B. 1984. Interstellar grain composition: a model based on elemental depletions. Mon. Not. Roy. Astron. Soc., 210, pp. 479–487.ADSGoogle Scholar
  273. Whittet, D. C. B. 1992. Dust in the Galactic Environment, (Bristol: Inst. Physics Publ.).Google Scholar
  274. Whittet, D. C. B. 1993. Observations of molecular ices. In Dust and Chemistry in Astronomy, eds. T. J. Millar and D. A. Williams (Bristol: Inst. Physics Publ.), pp. 9–35.Google Scholar
  275. Whittet, D. C. B. 1996. Polarization of starlight by interstellar dust. In The Cosmic Dust Connection, ed. J. M. Greenberg (Dordrecht: Kluwer Academ. Publ.), pp. 205–221.Google Scholar
  276. Whittet, D. C. B., Bode, M. F., Longmore, A. J., Adamson, A. J., McFadzean, A. D., Aitken, D. K., and Roche, P. F. 1988. Infrared spectroscopy of dust in the Taurus dark clouds: ice and silicate. Mon. Not. Roy. Astron. Soc., 233, pp. 321–326.ADSGoogle Scholar
  277. Whittet, D. C. B., Martin, P. G., Hough, J. H., Rouse, M. F., Bailey, J. A., and Axon, D. J. 1992. Systematic variations in the wavelength dependence of interstellar linear polarization. Astrophys. J., 386, pp. 562–577.ADSGoogle Scholar
  278. Whittet, D. C. B., Schutte, W. A., Tielens, A. G. G. M., Boogert, A. C. A., de Graauw, Th., Ehrenfreund, P., Gerakines, P. A., Helmich, F. P., Prusti, T., and van Dishoeck, E. F. 1996. An ISO SWS view of interstellar ices: first results. Astron. Astrophys., 315, pp. L357–360.ADSGoogle Scholar
  279. Whittet, D. C. B., Boogert, A. C. A., Gerakines, P. A. + 7 authors 1997. Infrared spectroscopy of dust in the diffuse interstellar medium toward Cygnus OB2 No.12. Astrophys. J., 490, pp. 729–734.ADSGoogle Scholar
  280. Wildt, R. 1933. Kondensation in Sternatmospharen Zeitschr. f. Astrophys., 6, pp. 345–354.Google Scholar
  281. Williams, D. A. 1989. Grains in diffuse clouds: carbon-coated silicate cores. In Interstellar Dust: Proc. IAU Symp., 135, eds. L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academ. Publ.), pp. 367–373.Google Scholar
  282. Witt, A. N. 1989. Visible/UV scattering by interstellar dust. In Interstellar Dust: Proc. IAU Symp., 135, eds. L. J. Allamandola and A. G. G. M. Tielens (Dordrecht: Kluwer Academ. Publ.), pp. 87–100.Google Scholar
  283. Witt, A. N., Petersohn, J. K., Bohlin, R. C., O-Connell, R. W., Roberts, M. S., Smith, A. M., and Stecher, T. P. 1992. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023: Derivation of ultraviolet scattering properties of dust grains. Astrophys. J. Lett., 395, pp. L5–L8.ADSGoogle Scholar
  284. Witt, A. N., Gordon, K. D., Furton, D. G. 1998. Silicon nanoparticles: source of extended red emission? Astrophys. J., 501, pp. L111–L114.ADSGoogle Scholar
  285. Wolff, M. J., Clayton, G. C., Kim, S.-H., Martin, P. G. 1997. Ultraviolet interstellar linear polarization. III. Features. Astrophys. J., 478, pp. 395–402.ADSGoogle Scholar
  286. Wright, E. L., Mather, J. C., Bennett, C. L., + 19 authors 1991. Preliminary spectral observations of the Galaxy with a 7° beam by the Cosmic Background Explorer (COBE). Astrophys. J., 381, pp. 200–209.ADSGoogle Scholar
  287. Wurm, G., Blum, J. 1998. Experiments on preplanetary dust aggregation. Icarus, 132, pp. 125–136.ADSGoogle Scholar
  288. Yamashita, T., Handa, T., Omodaka, T., Kitamura, Y., Kawazoe, E., Hayashi, S. S., and Kaifu, N. 1993. Upper limits to the CO J = 1--0 emission around Vega-Like stars: gas depletion of the circumstellar ring around ε Eridani. Astrophys. J. Lett., 402, pp. L65–L67.ADSGoogle Scholar
  289. Zinner, E. 1997. Presolar material in meteorites: an overview. In Astrophysical Implications of the Laboratory Study of Presolar Material, eds. T. J. Bernatowicz and E. Zinner, AIP Conf. Ser. Proceed., 402, pp. 3–26.Google Scholar
  290. Zinner, E., Amari, S., Wopenka, B., and Lewis, R. S. 1995. Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison. Meteoritics, 30, pp. 209–226.ADSGoogle Scholar
  291. Zubko, V. G., Smith, T. L., and Witt, A. N. 1999. Silicon nanoparticles and interstellar extinction. Astrophys. J., 511, pp. L57–L60.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.SchillergiiBchen 3Astrophysikalisches InstitutJenaGermany

Personalised recommendations