Skip to main content

Orbital Evolution of Interplanetary Dust

  • Chapter
Interplanetary Dust

Abstract

The two most important dynamical features of the zodiacal cloud are: (i) t he dust bands associated with t he major Hirayama asteroid families, and (ii) the circumsolar ring of dust particles in resonant lock with th e Eart h. Oth er important dynamical features include the offset of th e center of symmetry of th e cloud from the Sun, the radial gradient of the ecliptic polar brightness at th e Earth, and th e warp of th e cloud. The dust bands provide th e st rongest evidence th at a substantial and possibly dominant fraction of the cloud originate s from aster oids. However, the characteristic diameter of these asteroidal particles is probably several hundred microns and the migration of th ese large particles towards th e inner Solar System due to Poynting Robert son light drag and their slow passage through secular resonances at the inner edge of the asteroid belt result s in large increases in th eir eccent ricities and inclinations. Because of these orbital changes, the dividing line between asteroidal and comet ary type orbits in the inner Solar System is probably not sharp, and it may be difficult to distinguish clearly between ast eroidal and cometary particles on dynamical grounds alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artymowicz, P. 1997. Beta Pictoris: an early Solar System? Ann. Rev. Earth Planet. Sci. 25, pp. 175–219.

    Article  ADS  Google Scholar 

  • Backman, D. E., Dasgupta, A., and Stencel, R. E. 1995. Model of a Kuiper Belt small grain population and resulting far-infrared emission. Astrophys. J. 450, pp. L35-L38.

    Article  ADS  Google Scholar 

  • Beaugé, C., and Ferraz-Mello, S. 1994. Capture in exterior mean-motion resonances due to Poynting-Robertson drag. Icarus 110, pp. 239–260.

    Article  ADS  Google Scholar 

  • Beckwith, S. V. W. 1999. Circumstellar Disks. In The Origin of Stars and Planetary Systems, eds. C. J. Lada and N. D. Kylafis (Dordrecht: Kluwer Acad. Publ.), pp. 579–612.

    Google Scholar 

  • Bowell, E. L. G. 1997. The Asteroid Orbital Elements Database. Lowell Observatory, ftp://ftp.lowell.edu/pub/elgb/astorb.html.

    Google Scholar 

  • Bottke, W. F., Jr., Rubincam, D. P., and Burns, J. A. 2000. Dynamical evolution of main belt meteoroids: Numerical simulations incorporating planetary perturbations and Yarkovsky thermal forces. Icarus 145, pp. 301–331.

    Article  ADS  Google Scholar 

  • Brouwer, D., and Clemence, G. M. 1961. Methods of Celestial Mechanics. (New York: Academic Press).

    Google Scholar 

  • Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the Solar System. Icarus 40, pp. 1–48.

    Article  ADS  Google Scholar 

  • Davis, D. R., Chapman, C. R., Weidenschilling, S. J., and Greenberg, R. 1985. Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus 62, pp. 30-53.

    Google Scholar 

  • Davis, D. R., Weidenschilling, S. J., Farinella, P., Paolicchi, P., and Binzel, R. P. 1989. Asteroid collisional history: Effects on sizes and spins. In Asteroids II, eds. R. P. Binzel, T. Gehrels and M. S. Matthews (Tucson: Univ. of Arizona Press), pp. 805–826.

    Google Scholar 

  • Davis, D. R., Farinella, P., Paolicchi, P., and Bagatin, A. C. 1993. Deviations from the straight line: Bumps (and grinds) in the collisionally evolved size distribution of asteroids. Lunar Planet. Sci. 24, pp. 377–378.

    ADS  Google Scholar 

  • Dermott, S. F., Nicholson, P. D., Burns, J. A., and Houck, J. R. 1984. Origin of the Solar System dust bands discovered by IRAS. Nature 312, pp. 505–509.

    Article  ADS  Google Scholar 

  • Dermott, S. F., Nicholson, P. D., Burns, J. A., and Houck, J. R. 1985. An analysis of IRAS’ Solar System dust bands. In Properties and Interactions of Interplanetary Dust, ASSL Proc. 119, eds. R. H. Giese and P. Lamy (Dordrecht: D. Reidel Publ. Co.), pp. 395–410.

    Google Scholar 

  • Dermott, S. F., and Nicholson, P. D. 1986. Masses of the satellites of Uranus. Nature 319, pp. 115–120.

    Article  ADS  Google Scholar 

  • Dermott, S. F., Nicholson, P. D., and Wolven, B. 1986. Preliminary analysis of the IRAS Solar System dust data. In Asteroids, Comets, Meteors II, eds. C.-I. Lagerkvist, B. A. Lindblad, H. Lundstedt and H. Rickman (Uppsala: Reprocentralen HSC), pp. 583–594.

    Google Scholar 

  • Dermott, S. F., Nicholson, P. D., Kim, Y., Wolven, B., and Tedesco, E. F. 1988a. The impact of IRAS on asteroidal science. In Comets to Cosmology, ed. A. Lawrence, (Berlin: Springer-Verlag), pp. 3–18.

    Google Scholar 

  • Dermott, S. F., Malhotra, R., and Murray, C. D. 1988b. Dynamics of the Uranian and Saturnian satellite systems: A chaotic route to melting Miranda? Icarus 76, pp. 295–334.

    Article  ADS  Google Scholar 

  • Dermott, S. F., Nicholson, P. D., Gomes, R. S., and Malhotra, R. 1990. Modeling the IRAS Solar System dust bands. Adv. Space Res. 10, pp. 171–180.

    Article  ADS  Google Scholar 

  • Dermott, S. F., Gomes, R. S., Durda, D. D., Gustafson, B. Ã…. S., Jayaraman, S., Xu, Y.-L., and Nicholson, P. D. 1992. Dynamics of the zodiacal cloud. In Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, ed. S. Ferraz-Mello, (Dordrecht: Kluwer Acad. Publ.), pp. 333–347.

    Google Scholar 

  • Dermott, S. F., Jayaraman, S., Xu, Y.-L., Gustafson, B. Ã…. S., and Liou, J.-C. 1994a. A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature 369, pp. 719–723.

    Article  ADS  Google Scholar 

  • Dermott, S. F., Durda, D. D., Gustafson, B. Ã…. S., Jayaraman, S., Liou, J.-C., and Xu, Y.-L. 1994b. Zodiacal dust bands. In Asteroids, Comets and Meteors 1993, eds. A. Milani, M. Martini and A. Cellino (Dordrecht: Kluwer Acad. Publ.), pp. 127–142.

    Google Scholar 

  • Dermott, S. F., Jayaraman, S., Xu, Y.-L., Grogan, K., and Gustafson, B. Ã…. S. 1996a. The origin and dynamics of the interplanetary dust cloud. In Unveiling the Cosmic Infrared Background, AlP Conference Proc. 348, ed. E. Dwek, (New York: Woodbury), pp. 25–36.

    Chapter  Google Scholar 

  • Dermott, S. F., Grogan, K., Gustafson, B. Ã…. S., Jayaraman, S., Kortenkamp, S. J., and Xu, Y.-L. 1996b. Sources of interplanetary dust. In Physics, Chemistry and Dynamics of Interplanetary Dust, ASP Conference Series 104, eds. B. Ã…. S. Gustafson and M. S. Hanner (San Francisco: Astron. Soc. of the Pacific Press), pp. 143–153.

    Google Scholar 

  • Dermott, S. F., Grogan, K., Holmes, E. K., and Wyatt, M. C. 1998. Signatures of planets. In Exozodiacal Dust Workshop Conference Proceedings, eds. D. E. Backman, L. J. Caroff, S. A. Sanford and D. H. Woodford (Washington DC: NASA CP-1998-10155), pp. 59–84.

    Google Scholar 

  • Dermott, S. F., Grogan, K., Holmes, E. K., and Kortenkamp, S. J. 1999. Dynamical structure of the zodiacal cloud. In Formation and Evolution of Solids in Space, eds. J. M. Greenberg and A. Li (Dordrecht: Kluwer Acad. Publ.), pp. 565–582.

    Google Scholar 

  • Dohnanyi, J. S. 1969. Collisional model of asteroids and their debris. J. Geophys. Res. 74, pp. 2531–2554.

    Article  ADS  Google Scholar 

  • Draine, B. T., and Lee, H. M. 1984. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, pp. 89–108.

    Article  ADS  Google Scholar 

  • Durda, D. D., and Dermott, S. F. 1997. The collisional evolution of the asteroid belt and its contribution to the zodiacal cloud. Icarus 130, pp. 140–164.

    Article  ADS  Google Scholar 

  • Durda, D. D., Greenberg, R., and Jedicke, R. 1998. Collisional models and scaling laws: A new interpretation of the shape of the main-belt asteroid size distribution. Icarus 135, pp. 431–440.

    Article  ADS  Google Scholar 

  • Everhart, E. 1985. An efficient integrator that uses Gauss-Radau spacings. In Dynamics of Comets: Their origin and evolution, eds. A. Carusi and G. B. Valsecchi (Dordrecht: D. Reidel Publ. Co.), pp. 185–202.

    Google Scholar 

  • Farley, K. A., and Patterson, D. B. 1995. A 100-kyr periodicity in the flux of extraterrestrial 3 He to the sea floor. Nature 378, pp. 600–603.

    Google Scholar 

  • Flynn, G. J. 1989. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, pp. 287–310.

    Article  ADS  Google Scholar 

  • Flynn, G. J. 1990. The near-Earth enhancement of asteroidal over cometary dust. In Proceedings of the 20th Lunar and Planetary Science Conference, (Houston: Lunar and Planet. Inst.), pp. 363–371.

    Google Scholar 

  • Giese, R. H., Kneissel, B., and Rittich, U. 1986. Three-dimensional models of the zodiacal dust cloud — A comparative study. Icarus 68, pp. 395–411.

    Article  ADS  Google Scholar 

  • Gold, T. 1975. Resonant orbits of grains and the formation of satellites. Icarus 25, pp. 489–491.

    Article  ADS  Google Scholar 

  • Gomes, R. S. 1995. Resonance trapping and evolution of particles subject to PoyntingRobertson drag: Adiabatic and non-adiabatic approaches. Celest. Mech. Dynam. Astron. 61, pp. 97–113.

    Article  ADS  MATH  Google Scholar 

  • Grogan, K., Dermott, S. F., and Gustafson, B. Ã…. S. 1996. An estimation of the interstellar contribution to the zodiacal thermal emission. Astrophys. J. 472, pp. 812–817.

    Article  ADS  Google Scholar 

  • Grogan, K., Dermott, S. F., Jayaraman, S., and Xu, Y.-L. 1997. Origin of the ten degree dust bands. Planet. Space Sci. 45, pp. 1657–1665.

    Article  ADS  Google Scholar 

  • Grogan, K., Dermott, S. F., and Durda, D. D. 2001. The size-frequency distribution of the zodiacal cloud: Evidence from the Solar System dust bands. Icarus, in press.

    Google Scholar 

  • Griin, E., Zook, H. A., Fechtig, H., and Giese, R. H. 1985. Collisional balance of the meteoritic complex. Icarus 62, pp. 244–272.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Ansher, J. A., Kurth, W. S., and Granroth, L. J. 1997. Micron-sized dust particles detected in the outer Solar System by Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett. 24, pp. 3125–3128.

    Article  ADS  Google Scholar 

  • Gustafson, B. Ã…. S. 1994. Physics of zodiacal dust. Ann. Rev. Earth Planet. Sci. 22, pp. 553–595.

    Article  ADS  Google Scholar 

  • Hirayama, K. 1918. Groups of asteroids probably of common origin. Astron. J. 31, pp. 185–188.

    Article  ADS  Google Scholar 

  • Holland, W. S., Greaves, J. S., Zuckerman, B., Webb, R. A., McCarthy, C., Coulson, I. M., Walther, D. M., Dent, W. R. F., Gear, W. K., and Robson, I. 1998. Submillimetre images of dusty debris around nearby stars. Nature 392, pp. 788–790.

    Article  ADS  Google Scholar 

  • Holmes, E. K., Dermott, S. F., Xu, Y.-L., Wyatt, M. C., and Jayaraman, S. 1998. Modeling the effects of an offset of the center of symmetry in the zodiacal cloud. In Exozodiacal Dust Workshop Conference Proceedings, eds. D. E. Backman, L. J. Caroff, S. A. Sanford and D. H. Woodford (Washington DC: NASA CP-1998-10155), pp. 272–273.

    Google Scholar 

  • Housen, K. R., and Holsapple, K. A. 1990. On the fragmentation of asteroids and planetary satellites. Icarus 84, pp. 226–253.

    Article  ADS  Google Scholar 

  • Jackson, A. A., and Zook, H. A. 1989. A Solar System dust ring with earth as its shepherd. Nature 337, pp. 629–631.

    Article  ADS  Google Scholar 

  • Jackson, A. A., and Zook, H. A. 1992. Orbital evolution of dust particles from comets and asteroids. Icarus 97, pp. 70–84.

    Article  ADS  Google Scholar 

  • Jayaraman, S., and Dermott, S. F. 1996a. COBE-DIRBE observations of the Earth’s resonant ring. In Unveiling the Cosmic Infrared Background, AlP Conference Proc. 348, ed. E. Dwek, (New York: Woodbury), pp. 47–52.

    Chapter  Google Scholar 

  • Jayaraman, S., and Dermott, S. F. 1996b. SIRTF: A unique opportunity for probing the zodiacal cloud. In Physics, Chemistry and Dynamics of Interplanetary Dust, ASP Conference Series 104, eds. B. Ã…. S. Gustafson and M. S. Hanner (San Francisco: Astron. Soc. of the Pacific Press), pp. 159–162.

    Google Scholar 

  • Jayaraman, S., and Dermott, S. F. 2001. Formation, structure and observations of the Earth’s resonant ring. Icarus, submitted.

    Google Scholar 

  • Jewitt, D. 1999. Kuiper Belt objects. Ann. Rev. Earth Planet. Sci. 27, pp. 287–312.

    Article  ADS  Google Scholar 

  • Jones, M. H., and Rowan-Robinson, M. 1993. A physical model for the IRAS zodiacal dust bands. Mon. Not. R. Astron. Soc. 264, pp. 237–247.

    ADS  Google Scholar 

  • Kehoe, T. J. J. 1999. Long term dynamics of small bodies in the Solar System using mapping techniques. Ph.D. thesis, University of London.

    Google Scholar 

  • Kehoe, T. J. J., Murray, C. D., and Porco, C. C. 2001a. A dissipative mapping technique for the N-body problem incorporating radiation pressure, Poynting-Robertson drag and solar-wind drag. Astron. J., submitted.

    Google Scholar 

  • Kehoe, T. J. J., Dermott, S. F., and Grogan, K. 2002. A dissipative mapping technique for integrating interplanetary dust particle orbits. In Dust in the Solar System and Other Planetary Systems, Proceedings of IAU Colloquium 181/COSPAR Colloquium 11, eds. J. A. M. McDonnell et al. (Amsterdam: Elsevier), submitted.

    Google Scholar 

  • Kelsall, T., Weiland, J. L., Franz, B. A., Reach, W. T., Arendt, R. G., Dwek, E., Freudenreich, H. T., Hauser, M. G., Moseley, S. H., Odegard, N. P., Silverberg, R. F., and Wright E. L. 1998. The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. Astrophys. J. 508, pp. 44–73.

    Article  ADS  Google Scholar 

  • Kessler, D. J. 1981. Derivation of the collision probability between orbiting objects: The lifetime of Jupiter’s outer moons. Icarus 48, pp. 39–48.

    Article  ADS  Google Scholar 

  • Kortenkamp, S. J., and Dermott, S. F. 1998a. Accretion of interplanetary dust particles by the Earth. Icarus 135, pp. 469–495.

    Article  ADS  Google Scholar 

  • Kortenkamp, S. J., and Dermott, S. F. 1998b. A 100,000 year periodicity in the accretion rate of interplanetary dust. Science 280, pp. 874–876.

    Article  ADS  Google Scholar 

  • Kortenkamp, S. J., Dermott, S. F., Fogle, D., and Grogan, K. 2001. Sources and orbital evolution of interplanetary dust accreted by Earth. In Accretion of Extraterrestrial Matter Throughout Earth’s History, eds. B. Peucker-Ehrenbrink and B. Schmitz (Dordrecht: Kluwer Acad. Publ.), pp. 13–30.

    Google Scholar 

  • Leinert, C., and Griln, E. 1990. Interplanetary dust. In Physics and Chemistry in Space: Physics of the Inner Heliosphere I, Space and Solar Physics 20, eds. R. Schween and E. Marsch (Berlin: Springer-Verlag), pp. 207–275.

    Google Scholar 

  • Liou, J.-C., Dermott, S. F., and Xu, Y.-L. 1995. The contribution of cometary dust to the zodiacal cloud. Planet. Space Sci. 43, pp. 717–722.

    Article  ADS  Google Scholar 

  • Liou, J.-C., and Zook, H. A. 1996. Comets as a source of low eccentricity and low inclination interplanetary dust particles. Icarus 123, pp. 491–502.

    Article  ADS  Google Scholar 

  • Liou, J.-C., Zook, H. A., and Dermott, S. F. 1996. Kuiper Belt dust grains as a source of interplanetary dust particles. Icarus 124, pp. 429–440.

    Article  ADS  Google Scholar 

  • Liou, J.-C., and Zook, H. A. 1999. Signatures of the giant planets imprinted on the Edgeworth-Kuiper Belt dust disk. Astron. J. 118, pp. 580–590.

    Article  ADS  Google Scholar 

  • Liou, J.-C., Zook, H. A., Greaves, J. S., and Holland W. S. 2000. Does planet exist in E; Eridani? A comparison between obervations and numerical simulations. In 31st Annual Lunar and Planetary Science Conference, (Houston: Lunar and Planet. Inst.), abstract no. 1416.

    Google Scholar 

  • Love, S. G., and Brownlee, D. E. 1992. The IRAS dust band contribution to the interplanetary dust complex: Evidence seen at 60 and 100 microns. Astrophys. J. 104, pp. 2236–2242.

    ADS  Google Scholar 

  • Love, S. G., and Brownlee, D. E. 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, pp. 550–553.

    Article  ADS  Google Scholar 

  • Low, F. J., Beintema, D. A., Gautier, T. N., Gillet, F. C., Beichmann, C. A., Neugebauer, G., Young, E., Aumann, H. H., Boggess, N., Emerson, J. P., Habing, H. J., Hauser, M. G., Houck, J. R, Rowan-Robinson, M., Soifer, B. T., Walker, R G., and Wesselius, P. R 1984. Infrared cirrus: New components of the extended infrared emission. Astrophys. J. 278, pp. L19-L22.

    Article  ADS  Google Scholar 

  • Malhotra, R 1994. A mapping method for the gravitational few-body problem with dissipation. Celest. Mech. Dynam. Astron. 60, pp. 373–385.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Marcantonio, F., Anderson, R. F., Stute, M. S., Kumar, N., Schlosser, P., and Mix, A. 1996. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383, pp. 705–707.

    Article  ADS  Google Scholar 

  • Marsden, B. 1995. Catalogue of cometary orbits. Minor Planet Center, http://cfa-www.harvard.edu/iau/mpc.html.

    Google Scholar 

  • Marzari, F., and Vanzani, V. 1994. Orbital evolution of dust particles near mean motion resonances with the Earth. Planet. Space Sci. 42, pp. 101–107.

    Article  ADS  Google Scholar 

  • Muller, R A., and MacDonald, G. J. 1997. Glacial cycles and astronomical forcing. Science 277, pp. 215–218.

    Article  ADS  Google Scholar 

  • Murray, C. D., and Dermott, S. F. 1999. Solar System Dynamics. (Cambridge: Cambridge Univ. Press).

    MATH  Google Scholar 

  • Neugebauer, G., Beichman, C. A., Soifer, B. T., Aumann, H. H., Chester, T. J., Gautier, T. N., Gillett, F. C., Hauser, M. G., Houck, J. R, Lonsdale, C. J., Low, F. J., and Young, E. T. 1984. Early results from the infrared astronomical satellite. Science 224, pp. 14–21.

    Article  ADS  Google Scholar 

  • Öpik, E. J. 1951. Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Irish Acad. 54, pp. 165–199.

    MATH  Google Scholar 

  • Patterson, D. B., and Farley, K. A. 1998. Extraterrestrial 3 He in sea floor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta. 62, pp. 3669–3682.

    Article  ADS  Google Scholar 

  • Reach, W. T. 1991. Zodiacal emission. II — Dust near ecliptic. Astrophys. J. 369, pp. 529–543.

    Article  ADS  Google Scholar 

  • Reach, W. T. 1992. Zodiacal emission. III — Dust near the asteroid belt. Astrophys. J. 392, pp. 289–299.

    Article  ADS  Google Scholar 

  • Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W., and Spiesman, W. J. 1995. Observational confirmation of a circumsolar dust ring by the CO BE satellite. Nature 374, pp. 521–523.

    Article  ADS  Google Scholar 

  • Reach, W. T., Franz, B. A., and Weiland, J. L. 1997. The three-dimensional structure of the zodiacal dust bands. Icarus 127, pp. 461–484.

    Article  ADS  Google Scholar 

  • Rial, J. A. 1999. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity. Science 285, pp. 564–568.

    Article  Google Scholar 

  • Schmidt, H. 1967. The possibility of dust concentration near the Earth. In The Zodiacal Light and the Interplanetary Medium, ed. J. L. Weinberg, (Washington DC: NASA SP-150), pp. 333–336.

    Google Scholar 

  • Standish, E. M., Newhall, X. X., Williams, J. G., and Yeomans, D. K. 1992. Orbital ephemerides of the Sun, Moon, and Planets. In Explanatory Supplement to the Astronomical Almanac, ed. P. K. Seidelmann, (Mill Valley: University Science Books), pp. 279–323.

    Google Scholar 

  • Stern, S. A. 1995. Collisional time scales in the Kuiper Disk and their implications. Astron. J. 110, pp. 856–868.

    Article  ADS  Google Scholar 

  • Stern, S. A., and Colwell, J. E. 1997. Collisional erosion in the primordial Edgeworth-Kuiper Belt and the generation of the 30-50 AU Kuiper Gap. Astrophys. J. 490, pp. 879–882.

    Article  ADS  Google Scholar 

  • Sykes, M. V. 1988. IRAS observations of extended zodiacal structures. Astrophys. J. 334, pp. L55-L58.

    Article  ADS  Google Scholar 

  • Sykes, M. V. 1990. Zodiacal dust bands: Their relation to asteroid families. Icarus 84, pp. 267–289.

    Article  ADS  Google Scholar 

  • Sykes, M. V., and Greenberg, R. 1986. The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids. Icarus 65, pp. 51–69.

    Article  ADS  Google Scholar 

  • Sykes, M. V., and Walker, R. G. 1992. Cometary dust trails. I — Survey. Icarus 95, pp. 180–210.

    Article  ADS  Google Scholar 

  • Telesco, C. M., Fisher, R. S., Piña, R. K., Knacke, R. F., Dermott, S. F., Wyatt, M. C., Grogan, K., Holmes, E. K., Ghez, A. M., Prato, L., Hartmann, L. W., and Jayawardhana, R. 2000. Deep 10 and 18 micron imaging of the HR 4796A circumstellar disk: Transient dust particles and tentative evidence for a brightness asymmetry. Astrophys. J. 530, pp. 329–341.

    Article  ADS  Google Scholar 

  • Wetherill, G. W., and Cox, L. P. 1985. The range of validity of the two-body approximation in models of terrestrial planet accumulation II: Gravitational cross-sections and runaway accretion. Icarus 63, pp. 290–303.

    Article  ADS  Google Scholar 

  • Wisdom, J. 1980. The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, pp. 1122–1133.

    Article  ADS  Google Scholar 

  • Wisdom, J., and Holman, M. 1991. Symplectic maps for the n-body problem. Astron. J. 102, pp. 1528–1538.

    Article  ADS  Google Scholar 

  • Wyatt, S. P., Jr., and Whipple F. L. 1950. The Poynting-Robertson effect on meteor orbits. Astrophys. J. 111, pp. 134–141.

    Article  ADS  Google Scholar 

  • Wyatt, M. C., Dermott, S. F., Grogan, K., and Jayaraman, S. 1999a. A unique view through the Earth’s resonant ring. In Astrophysics with Infrared Surveys: A prelude to SIRTF, ASP Conference Series 177, eds. M. D. Bicay, C. A. Beichman, R. M. Cutri and B. F. Madore (San Francisco: Astron. Soc. of the Pacific Press), pp. 374–380.

    Google Scholar 

  • Wyatt, M. C., Dermott, S. F., Telesco, C. M., Fisher, R. S., Grogan, K., Holmes, E. K., and Piña, R. K. 1999b. How observations of circumstellar disk asymmetries can reveal hidden planets: Pericenter glow and its application to the HR 4796 disk. Astrophys. J. 527, pp. 918–944.

    Article  ADS  Google Scholar 

  • Zappala, V., Bendjoya, P. H., Cellino, A., Farinella, P., and Froeschle, C. 1995. Asteroid families: Search of a 12,487 asteroid sample using two different clustering techniques. Icarus 116, pp. 291–314.

    Article  ADS  Google Scholar 

  • Zook, H. A., and Berg, O. E. 1975. A source for hyperbolic cosmic dust particles. Planet. Space Sci. 23, pp. 183–203.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dermott, S.F. et al. (2001). Orbital Evolution of Interplanetary Dust. In: Grün, E., Gustafson, B.Å.S., Dermott, S., Fechtig, H. (eds) Interplanetary Dust. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56428-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56428-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62647-0

  • Online ISBN: 978-3-642-56428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics