Physical Processes on Interplanetary Dust

Part of the Astronomy and Astrophysics Library book series (AAL)


This chapter discusses physical processes affecting interplanetary dust grains, including processes determining dust formation, growth, disruption, and alteration. Computer simulations and laboratory studies of coagulation and aggregation show that mutual collisions between solid grains determine the growth of solid aggregates in the early solar system when the impact energies are too low to destroy the colliding grains. On the other hand, fragmentation occurs at the high impact energies that currently prevail, generating dust from meteoroids, asteroid, and satellite surfaces as well as from sublimating comets. Such impact processes are discussed based on a compilation of laboratory measurements (e.g., size, shape, velocity and spin distributions of fragments). Gradual alteration of the dust grains occurs in the present solar system due to solar radiation and energetic particle impact. Sublimation, sputtering and charging can alter the nature of interplanetary dust grains. Dust grain temperatures, erosion rates due to solar-wind-induced sputtering, and surface charges are studied. The evidence for alteration of physical/chemical/mineralogical properties of interplanetary dust grains is still rather poor. Therefore, we discuss the expected changes, referring to those physical processes that can be simulated in laboratory experiments, and to their analogues obtained through theoretical modeling.


Solar Wind Fractal Dimension Solar System Dust Particle Rarefaction Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, H. H., and Bay, H. L. 1981. Sputtering yield measurements. In Sputtering by particle bombardment I, ed. R. Berisch (Berlin: Springer Verlag), pp. 145–218.Google Scholar
  2. Asada, N. 1985. Fine fragments in high-velocity impact experiments. J. Geophys. Res., 90:12, pp. 445–453.Google Scholar
  3. Asphaug, E., Melosh, H. J., and Ryan, E. 1992. Theoretical predictions for fragment size distributions. (abstract) Lunar Planet Sci. Conf., XXIII pp. 45–46.ADSGoogle Scholar
  4. Baguhl, M., Hamilton, D. P., Grün, E., Dermott, S. F., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Staubach, P., and Zook, H. A. 1995. Dust measurements at high ecliptic latitudes. Science, 268, pp. 1016–1019.ADSCrossRefGoogle Scholar
  5. Barkan, A., D’‘Angelo, N. D., and Merlino, R. L. 1994. Charging of dust grains in a plasma. Phys. Rev. Letters, 72, pp. 3093–3096.ADSCrossRefGoogle Scholar
  6. Benit, J., and Brown, W. I. 1990. Electronic sputtering of oxygen and water molecules from thin films of water ice bombarded by MeV ions. Nucl. Inst. Methods/, B46, pp. 448–451.ADSGoogle Scholar
  7. Benz, W., Asphaug, E., and Ryan, E. V. 1994. Numerical simulations of catastrophic disruption: recent results. Planet. Space Sci., 42, pp. 1053–1066.ADSCrossRefGoogle Scholar
  8. Betz, G., and Wehner, G. K. 1983. Sputtering of multicomponent materials. In Sputtering by particle bombardment II, ed. R. Berisch (Berlin: Springer Verlag) pp. 11–90.Google Scholar
  9. Blum, J. 1995. Laboratory and space experiments to study pre-planetary growth. Adv. Space Res., Vo1. 15, 10, pp. 39–54.ADSCrossRefGoogle Scholar
  10. Blum, J., and Miinch, M. 1993. Experimental investigations on aggregate-aggregate collisions in the early solar nebula. Icarus, 106, pp. 151–167.ADSCrossRefGoogle Scholar
  11. Blum, J., Schnaiter, M., Wurm, G., and Rott, M. 1996. The De-Agglomeration and Dispersion of Small Dust Particles - Principles and Applications. Rev. Sci. Instrum., 67, pp. 589–595.ADSCrossRefGoogle Scholar
  12. Blum, J., and Wurm, G. 2000. Experiments on Sticking, Restructuring and Fragmentation of Preplanetary Dust Aggregates. Icarus, bf 143, pp. 138–146.ADSCrossRefGoogle Scholar
  13. Bradley, J. P. 1994. Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science, 265, pp. 925–929.ADSCrossRefGoogle Scholar
  14. Bradley, J. P., Brownlee, D. E., and Fraundorf, P. 1984. Discovery of nuclear tracks in interplanetary dust. Science, 226, pp. 1432–1434.ADSCrossRefGoogle Scholar
  15. Brown, W. L., Auqutyniak, W. M., Maucoutonio, K. J., Simmous, E. H., Boring, J. W., Johnson, R. E., and Reimana, I. T. 1984. Electronic sputtering of low temperature molecular solids. Nucl. Inst. Methods/, B1, pp. 307–314.ADSGoogle Scholar
  16. Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, pp. 1–48.ADSCrossRefGoogle Scholar
  17. Capaccioni, F., Cerroni, P., Coradini, M., Di Martino, M., Farinella, P., Flamini, E., Martelli, G., Paolicchi, P., Smith, P. N., Woodward, A., and Zappala, V. 1986. Asteroidal catastrophic collisions simulated by hypervelocity impact experiments. Icarus, 66, pp. 487–514.ADSCrossRefGoogle Scholar
  18. Capaccioni, F., Cerroni, P., Coradini, M., Farinella, P., Flamini, E., Martelli, G., Paolicchi, P., Smith, P. N., and Zappala, V. 1984. Shapes of asteroids compared with fragments from hypervelocity impact experiments. Nature, 308, pp. 832–834.ADSCrossRefGoogle Scholar
  19. Chen, F. F. 1984. Introduction to Plasma Physics and Controlled Fusion., Vol. I, (New York: Plenum Press)CrossRefGoogle Scholar
  20. Cheng, A. F., and Johnson, R. E. 1989. Effects of magnetospheric interactions on the origin and evolution of atmospheres. In Origin and evolution of atmospheres, eds. S. K. Atreya and J. B. Pollack (Tucson: Univ. of Arizona Press) pp. 682–722.Google Scholar
  21. Chiu, C.-S. 1978. Numerical study of cloud electrification in an axisymmetric, timedependent cloud model. J. Geophys. Res., 83, pp. 5025–5049.ADSCrossRefGoogle Scholar
  22. Chokshi, A., Tielens, A. G. G. M., and Hollenbach, D. 1993. Dust coagulation. Ap. J., 407, pp. 806–819.ADSCrossRefGoogle Scholar
  23. Chow, V. W., Mendis, D. A., and Rosenberg, M. 1993. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res., 98, pp. 19065–19076.ADSCrossRefGoogle Scholar
  24. Chow, V. W., Mendis, D. A., and Rosenberg, M. 1994. Secondary emission from small dust grains at high electron densities. IEEE Trans. Plasma Sci., 22, pp. 179–186.ADSCrossRefGoogle Scholar
  25. Colwell, J. E., and Taylor, M. 1999. Lowävelocity microgravity impact experiments into simulated regolith. Icarus, 138, pp. 241–248.ADSCrossRefGoogle Scholar
  26. Cravens, T. E. 1991. Plasma processes in the inner coma. In Comets in the Post-Halley Era, eds. R. L. Newburn et al. (Amsterdam: Kluwer Acad. Publ.) pp. 1211–1258.Google Scholar
  27. Crifo, J. F. 1987. Improved gas kinetic treatment of cometary water sublimation and recondensation, application to comet P /Halley. Astron. Astrophys. 187, pp. 438–450.ADSGoogle Scholar
  28. Crifo, J. F. 1995. A general physicochemical model of the inner coma of active comets: I. Implications of a spatially distributed gas and dust production. Ap. J., bf 445, pp. 470–488.ADSCrossRefGoogle Scholar
  29. Dahneke, B. 1971. The capture of aerosol particles by surfaces. J. Colloid and Interface Sci., 37, No.2, pp. 342–353.CrossRefGoogle Scholar
  30. Davis, D. R., Chapman, C. R., Weidenschiling, S. J., and Greenberg, R. 1985. Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, pp. 30–53.ADSCrossRefGoogle Scholar
  31. Delitsky, M. L., and Thompson, W. R. 1987. Chemical processes in Triton’s atmosphere and surface. Icarus, 70, pp. 354–365.ADSCrossRefGoogle Scholar
  32. Dohnanyi, J. S. 1978. Particle Dynamics. In Cosmic Dust, ed. J. A. M. McDonnell (Chichester: Wiley-Interscience Publ.) pp. 527–605.Google Scholar
  33. Dominik, C., and Tielens, A. G. G. M. 1997. The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space. Ap. J. 480, pp. 647–673.ADSCrossRefGoogle Scholar
  34. Draine, B. T. 1985. Grain evolution in dark clouds. In Protostars and Planets II, eds. D. C. Black and M. D. Matthews, (Tucson: Univ. of Arizona Press), pp. 621–640.Google Scholar
  35. Draine, B. T., Roberg, W. G., and Dalgarno, A. 1983. Magnetospheric hydrodynamic shock waves in molecular clouds. Ap. J., bf 264, pp. 485–507.ADSCrossRefGoogle Scholar
  36. Draine, B. T., and Salpeter E. E. 1979. Destruction mechanisms for interstellar dust. Ap. J., 231, pp. 438–455.ADSCrossRefGoogle Scholar
  37. Eisenhour, D. D., Daulton, T. L., and Buseck, P. R. 1994. Electromagnetic heating in the early solar nebula and the formation of chondrules. Science, 265, pp. 1067–1070.ADSCrossRefGoogle Scholar
  38. Englman, R., Rivier, N., and Jaeger, Z. 1988. Size-distribution in sudden breakage by the use of entropy maximization. J. Appl. Phys., 63, pp. 4766–4768.ADSCrossRefGoogle Scholar
  39. Evans, A. 1994. The Dusty Universe. (New York: Wiley & Sons.)Google Scholar
  40. Farinella, P., and Davis, D. R. 1996. Shortäperiod comets: Primordial bodies or collisional fragments? Science, 273, pp. 938–941.ADSCrossRefGoogle Scholar
  41. Feigleson, E. D. 1982. X-ray emission from young stars and the implications for the early solar system. Icarus, 51, pp. 155–163.ADSCrossRefGoogle Scholar
  42. Fujimura, A., Takagi, Y., Furumoto, M., and Mizutani, H. 1986. Fractal dimensions of fracture surfaces of rock fragments. Mem. Natl. Inst. Polar Res., 41, pp. 348–357.ADSGoogle Scholar
  43. Fujiwara, A., Cerroni, P., Davis, D., Ryan, E., Di Martino, M., Holsapple, K., and Housen, K. 1989. Experiments and scaling laws for catastrophic collisions. In Asteroids II, eds. R. P. Binzel, T. Gehrels, M. S. Matthews, (Tucson: Univ. of Arizona Press), pp. 240–269..Google Scholar
  44. Fujiwara, A., Kamimoto, G., and Tsukamoto, A. 1977. Destruction of basaltic bodies by high-velocity impact. Icarus, 31, pp. 277–288.ADSCrossRefGoogle Scholar
  45. Fujiwara, A., Kamimoto, G., and Tsukamoto, A. 1978. Expected shape distribution of asteroids obtained from laboratory impact experiments. Nature, 272, pp. 602–603.ADSCrossRefGoogle Scholar
  46. Gail, H.-P., and Sedlmayr, E. 1975. On the charge distribution of interstellar dust grains. Astron. Astrophys., 41, pp. 359–366.ADSGoogle Scholar
  47. Gail, H.-P., and Sedlmayr, E. 1980. On the photoelectric yield of insulating dust grains. Astron. Astrophys., 86, pp. 380–385.ADSGoogle Scholar
  48. Gault, D. E., and Heitowit, E. D. 1963. The partition of energy for hypervelocity impact craters formed in rock. Proc. 6th Hypervelocity Impact Symposium, pp. 419–456.Google Scholar
  49. Geiss, J. 1982. Processes affecting abundances in the solar wind. Space Sci. Rev., 33, pp. 201–217.ADSCrossRefGoogle Scholar
  50. Giblin, I. 1998. New data on the velocity-mass relation in catastrophic disruption. Planet. Space Sci., 46, pp. 921–928.ADSCrossRefGoogle Scholar
  51. Giblin, I., Martelli, G., Smith, P. N., Cellino, A., Di Martino, M., Zappala, V., Farinella, P., and Paollichi, P. 1994. Field fragmentation of macroscopic targets simulating asteroidal catastrophic collisions. Icarus, 110, pp. 203–224.ADSCrossRefGoogle Scholar
  52. Gibson, Jr. E. K. 1992. Volatiles in interplanetary dust particles: A review. J. Geophys. Res., 97, pp. 3865–3875.ADSCrossRefGoogle Scholar
  53. Gilvarry, J. J. 1961. Fracture of brittle solids. I. Distribution function for fragment size in single fracture (theoretical). J. Appl. Phys., 32, pp. 391–399.MathSciNetADSCrossRefGoogle Scholar
  54. Grady, D. E., and Kipp, M. E. 1980. Continuum modeling of explosive fracture in Oil Shale. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 17, pp. 147–157.CrossRefGoogle Scholar
  55. Grady, D. E., and Kipp, M. E. 1985. Mechanisms of dynamic fragmentation: Factors governing fragment size. Mechanics of Materials, 4, pp. 311–320.CrossRefGoogle Scholar
  56. Grady, D. E., and Lipkin, J. 1980. Criteria for impulsive rock fracture. Geophys. Res. Letters, 7, pp. 255–258.ADSCrossRefGoogle Scholar
  57. Greenberg, J. M. 1983. The largest molecules in space - Interstellar dust. In Cosmochemistry and the origin of life, (Dordrecht: D. Reidel Publ. Co.), pp. 71–112.Google Scholar
  58. Greenberg, J. M., and Hage, J. I. 1990. From interstellar dust to comets: A unification of observational constraints. Ap. J., 361, pp. 260–274.ADSCrossRefGoogle Scholar
  59. Greenberg, J. M., and Shah, G. A. 1971. Interstellar grain temperatures. Effects of Shape. Astron. Astrophys., 12, pp. 250–257.ADSGoogle Scholar
  60. Griffith, A. A. 1920. The phenomena of rupture and flow in solids. Philosophical Transactions of Royal Society, 221, pp. 163–198.ADSCrossRefGoogle Scholar
  61. Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R., Hanner, M. S., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A., Morfill, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A. 1993. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.ADSCrossRefGoogle Scholar
  62. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. 1985. Collisional balance of the meteoritic complex. Icarus, 62, pp. 244–272.ADSCrossRefGoogle Scholar
  63. Gustafson B. Å. S. 1994. Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci., 22, pp. 553–595.ADSCrossRefGoogle Scholar
  64. Gustafson, B. Å. S., and Misconi, N. Y. 1979. Streaming of interstellar grains in the solar system. Nature, 282, pp. 276–278.ADSCrossRefGoogle Scholar
  65. Hage, J. I., and Greenberg, J. M. 1990. A model for the optical properties of porous grains. Ap. J., 361, pp. 251–259.ADSCrossRefGoogle Scholar
  66. Hanner, M. S. 1985. A preliminary look at the dust in comet Halley. Adv. Space Res., 5, pp. 325–334.ADSCrossRefGoogle Scholar
  67. Hartquist, T. W., Havnes, O., and Morfill, G. E. 1992. The effects of dust on the dynamics of astronomical and space plasmas. Fund. Cosmo Phys., 15, pp. 107–142.ADSGoogle Scholar
  68. Hasegawa, H., Fujiware, A., Koike, C., and Mukai, T. 1977. Effect of the spin of an interplanetary dust on its motion. Memoirs of the Faculty of Science, Kyoto Univ. Series A of Physics, Astrophysics, Geophysics and Chemistry, 35, pp. 131–139.Google Scholar
  69. Havnes, O. 1984. Charges on dust particles. Adv. in Space Res., 4, pp. 75–83.ADSCrossRefGoogle Scholar
  70. Havnes, O., Aanesen, T. K., and Melandsø, F. 1990. On dust charges and plasma potentials in a dusty plasma with dust size distribution. J. Geophys. Res., 95, pp. 6581–6585.ADSCrossRefGoogle Scholar
  71. Havnes, O., Goertz, C. K., Morfill, E., Grün, E., and Ip, W.-H. 1987. Dust charges, cloud potential and instabilities in a dust cloud embedded in a plasma. J. Geophys. Res., 92, pp. 2281–2287.ADSCrossRefGoogle Scholar
  72. Havnes, O., and Morfill, G. E. 1984. Effects of electrostatic forces on the vertical structure of planetary rings. Adv. Space Res., 4, pp. 85–90.ADSCrossRefGoogle Scholar
  73. Hertz, H. 1882. Uber die Berü;hrung fester elastischer Körper (on the contact of elastic solids). J. Reine und Angewandte Mathematik, 92, pp. 156–171.zbMATHGoogle Scholar
  74. Hirst, E, Kaye, P. H., and Guppy, J. R. 1994. Light scattering from nonspherical airborne particles: experimental and theoretical comparisons. Appl. Optics, 33, pp. 7180–7186.ADSCrossRefGoogle Scholar
  75. Holsapple, K. A. 1994. Catastrophic disruptions and cratering of solar system bodies. Planet Space Sci., 42, pp. 1067–1078.ADSCrossRefGoogle Scholar
  76. Housen, K. R. 1992. Crater ejecta velocities for impacts on rocky bodies (abstract). Lunar Planet. Sci. Conf. XXIII, pp. 555–556.Google Scholar
  77. Housen, K. R., Schmidt, R. M., and Holsapple, K. A. 1983. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. J. Geophys. Res., 88, pp. 2485–2499.ADSCrossRefGoogle Scholar
  78. Housen, K. R., Schmidt, R. M., and Holsapple, K. A. 1991. Laboratory simulations of large scale fragmentation events. Icarus, 94, pp. 180–190.ADSCrossRefGoogle Scholar
  79. Jancso, G., Pupezin, J., and van Hook, W. A. 1970. The vapor pressure of ice between +10-2 and -10+2°. J. of Physical Chem., 74, pp. 2984–2989.CrossRefGoogle Scholar
  80. Jenniskens, P., and Blake, D. F. 1994. Structural transitions in amorphous water ice and astrophysical implications. Science, 265, pp. 753–756.ADSCrossRefGoogle Scholar
  81. Johnson, K. L. 1985. Contact Mechanics, (Cambridge: Cambridge Univ. Press).zbMATHCrossRefGoogle Scholar
  82. Johnson, K. L., Kendall, K., and Roberts, A. B. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A, 324, pp. 301–313.ADSCrossRefGoogle Scholar
  83. Johnson, R. E. 1985. Comment on the evolution of interplanetary grains. In Ices in the Solar System, eds. Klinger, et al. (Dordrecht: D. Reidel Publ. Co.) pp. 337–339.Google Scholar
  84. Johnson, R. E. 1990. Energetic charged particle interaction with atmospheres and surfaces, (Berlin: Springer Verlag)CrossRefGoogle Scholar
  85. Johnson, R. E. 1991. Irradiation of solids: theory. In Solid-State Astrophysics, eds. E. Bussoletti and G. Strazzulla (Amsterdam: North Holland), pp. 129–168.Google Scholar
  86. Johnson, R. E. 1996. Sputtering of ices in the outer solar system. Rev. Modern Phys., 68, pp. 305–312.ADSCrossRefGoogle Scholar
  87. Johnson, R. E. 1998. Sputtering and desorption from icy surfaces. In Solar System Ices eds. B. Schmitt, C. de Bergh and M. Festou (Dordrecht: Kluwer Acad. Publ.) pp. 303–334.Google Scholar
  88. Johnson, R. E., and Baragiola, R. A. 1991. Lunar surface: sputtering and secondary ion mass spectrometry. Geophys. Res. Lett., 18, pp. 2169–2175.ADSCrossRefGoogle Scholar
  89. Johnson, R. E., and Lanzerotti, L. J. 1986. Ion bombardment of interplanetary dust. Icarus, 66, pp. 619–624.ADSCrossRefGoogle Scholar
  90. Johnson, R. E., and Schou, J. 1993. Sputtering of inorganic insulators. In Fundamental processes in the sputtering of atoms and molecules. ed. P. Sigmund, (Copenhagen: Roy. Dan. Acad.), pp. 403–493.Google Scholar
  91. Kato, M., Iijima, Y., Arakawa, M., Okimura, Y., Fujimura, A., Maeno, N., and Mizutani, H. 1995. Ice-on-ice impact experiments. Icarus, 113, pp. 423–441.ADSCrossRefGoogle Scholar
  92. Kato, M., Iijima, Y., Okimura, Y., Arakawa, M., Maeno, N., Fujimura, A., and Mizutani H. 1992. Impact experiments on low temperature H2O ice. In Physics and Chemistry of Ice, eds. N. Maeno and T. Hondo (Sapporo: Hokkaido Univ. Press), pp. 237–244.Google Scholar
  93. Keller, H. U. 1990. The nucleus. In Physics and chemistry of comets, ed. W. F. Huebner, (Heidelberg: Springer-Verlag), pp. 13–68.Google Scholar
  94. Keller, H. U., Delamere, W. A., Huebner, W. F., Reitsema, H. J., Schmidt, H. U., Whipple, F. L., Wilhelm, K., Curdt, W., Kramm, R., Thomas, N., Arpigny, C., Barbieri, C., Bonnet, R. M., Cazes, S., Coradini, M., Cosmovici, C. B., Hughes, D. W., Jamar, C., Malaise, D., Schmidt, K., Schmidt, W. K. H., and Seige, P. 1987. Comet P /Halley’s nucleus and its activity. Astron. Astrophys., 187, pp. 807–823.ADSGoogle Scholar
  95. Kempf, S., Pfalzner, S., and Henning, Th. K. 1999. N-particle- simulations of dust growth. Icarus, 141, pp. 388–398.ADSCrossRefGoogle Scholar
  96. Khare, B. N., Sagan, C., Arakawa, E. T., Suits, F., Callcott, T. A., and Williams, M. W. 1984. Optical constants of organic tholins produced in a simulated Titanian atmosphere - From soft X-ray to microwave frequencies. Icarus, 60, pp. 127–137.ADSCrossRefGoogle Scholar
  97. Kissel, J. 1991. Mass-spectrometric in situ analysis of solid-state extraterrestrial samples. Solid-State Astrophysics, eds. E. Bussoletti and G. Strazzulla, pp. 169–195.Google Scholar
  98. Kitada, Y., Nakamura, R., and Mukai, T. 1993. Correlation between cross section and surface area of irregularly shaped particle. Proc. of 3rd International Congress on Optical Particle Sizing, ed. K. Takahashi, pp. 121–125.Google Scholar
  99. Kouchi, A. 1987. Vapour pressure of amorphous H2O ice and its astrophysical implications. Nature, 330, pp. 550–552.ADSCrossRefGoogle Scholar
  100. Kouchi, A. 1990. Evaporation of H2O-CO ice and its astrophysical implications. J. Crystal Growth 99, pp. 1220–1226.ADSCrossRefGoogle Scholar
  101. Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T., and Greenberg, J. M. 1994. Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron. Astrophys., 290, pp. 1009–1018.ADSGoogle Scholar
  102. Kozasa, T., Blum, J., and Mukai, T. 1992. Optical properties of dust aggregates I. Wavelength dependence. Astron. Astrophys., 263, pp. 315–320.Google Scholar
  103. Lamy, P. L. 1974. Interaction of interplanetary dust grains with the solar radiation field. Astron. Astrophys., 35, pp. 197–207.ADSGoogle Scholar
  104. Lange, M. A., and Ahrens, T. J. 1981. Fragmentation of ice by low velocity impact. Proc. Lunar Planet Sci. Conf. XII pp. 1667–1687.Google Scholar
  105. Lange, M. A., and Ahrens, T. J. 1983. The dynamic tensile strength of ice and ice-silicate mixtures. J. Geophys. Res., 88, pp. 1197–1208.ADSCrossRefGoogle Scholar
  106. Lange, M. A., Ahrens, T. J., and Boslough, M. B. 1984. Impact cratering and spall failure of Gabbro. Icarus, 58, pp. 383–395.ADSCrossRefGoogle Scholar
  107. Langmuir, I., Found, C. G., and Dittmer, H. F. 1924. A new type of electric discharges: The streamer discharge. Science, 60, pp. 392–394.ADSCrossRefGoogle Scholar
  108. Lanzerotti, L. J. 1987. Solar-terrestrial physics. In Encyclopedia of physical science and technology, (SanDiego: Academic Press) 12, pp. 833–843.Google Scholar
  109. Lanzerotti, L. J., Brown, W. L., and Marcantonio, K. J. 1987. Experimental study of erosion of methane ice by energetic ions and some considerations for Astrophysics. Ap. J., 313, pp. 910–919.ADSCrossRefGoogle Scholar
  110. Lawn, B. 1993. Fracture of brittle solids, 2nd ed. (Cambridge: Cambridge Univ. Press)CrossRefGoogle Scholar
  111. Léger, A., Gauthier, S., Defourneau, D., and Rouan, D. 1983. Properties of amorphous H2O ice and origin of the 3.1-micron absorption. Astron. Astrophys., 117, pp. 164–169.ADSGoogle Scholar
  112. Léger, A., Jura, M., and Omont, A. 1985. Desorption from interstellar grains. Astron. Astrophys., 144, pp. 147–160.ADSGoogle Scholar
  113. Léger, A., Klein, J., de Cheveigne, S., Guinet, C., Defourneau, D., and Belin, M. 1979. The 3.1 μm absorption in molecular clouds is probably due to amorphous H2O ice. Astron. Astrophys., 79, pp. 256–259.ADSGoogle Scholar
  114. Leinert, C., Röser, S., and Buitrago, J. 1983. How to maintain the spatial distribution of interplanetary dust. Astron. Astrophys. 118, pp. 345–357.ADSzbMATHGoogle Scholar
  115. Leliwa-Kopystynski, J., Taniguchi, T., Kondo, K., and Sawaoka, A. 1984. Sticking in moderate velocity oblique impact - Application to planetology. Icarus, 67, pp. 280–293.ADSCrossRefGoogle Scholar
  116. Levy, E. H., and Jokipii, J. R. 1976. Penetration of interstellar dust into the solar system. Nature, 264, pp. 423–424.ADSCrossRefGoogle Scholar
  117. Lien, D. J. 1991. Optical properties of cometary dust. In Comets in the Post-Halley Era, eds. R. L. Newburn, Jr., M. Neugebauer, and J. Rahe, (Dordrecht: Kluwer Acad. Publ.) Vol. 2: pp. 1005–1041.Google Scholar
  118. Lou, W., and Charalampopoulos, T. T. 1994. On the electromagnetic scattering and absorption of agglomerated small spherical particles. J. Phys. D: Appl. Physics, 27, pp. 2258–2270.ADSCrossRefGoogle Scholar
  119. Love, S. G., and Brownlee, D. E. 1991. Heating and thermal transformation of micrometeoro ids entering the earth’s atmosphere. Icarus, 89, pp. 26–43.ADSCrossRefGoogle Scholar
  120. Lunine, J. I., Engel, S., Rizk, B., and Horanyi, M. 1991. Sublimation and reformation of icy grains in the primitive solar nebula. Icarus, 94, pp. 333–344.ADSCrossRefGoogle Scholar
  121. Mann, I., Okamoto, H., Mukai, T., Kimura, H., and Kitada, Y. 1994. Fractal aggregate analogues for near solar dust properties. Astron. Astrophys., 291, pp. 1011–1018.ADSGoogle Scholar
  122. Martelli, G., Ryan, E. V., Nakamura, A. M., and Giblin, I. 1994. Catastrophic disruption experiments: recent results. Planet. Space Sci., 42, pp. 1013–1026.ADSCrossRefGoogle Scholar
  123. Matsui, T., and Schultz, P. H. 1984. On the brittle-ductile behavior of iron meteorites: New experimental constraints. J. Geophys. Res., 89, pp. 323–328.ADSCrossRefGoogle Scholar
  124. McGuire, A. F., and Hapke, B. W. 1995. An experimental study of light scattering by large, irregular particles. Icarus, 113, pp. 134–155.ADSCrossRefGoogle Scholar
  125. Meakin, P. 1991. Fractal aggregates in geophysics. Rev. of Geophys., 29(3), pp. 317–354.Google Scholar
  126. Meakin, P., and Donn, B. 1988. Aerodynamic properties of fractal grains; Implications for the primordial solar nebula. Ap. J., 329, pp. L39–L41.ADSCrossRefGoogle Scholar
  127. Meakin, P., and Jullien, R. 1988. The Effects of Restructuring on the Geometry of Clusters formed by Diffusion-limited, Ballistic and Reaction-limited Cluster-Cluster Aggregation. J. Chern. Phys., 89, pp. 246–250.ADSCrossRefGoogle Scholar
  128. Melosh, H. J. 1984. Impact ejection, spallation, and the origin of meteorites. Icarus, 59, pp. 234–260.ADSCrossRefGoogle Scholar
  129. Melosh, H. J. 1987. High-velocity solid ejecta fragments from hypervelocity impacts. Int. J. Impact Engng., 5, pp. 483–492.CrossRefGoogle Scholar
  130. Melosh, H. J. 1989. Impact Cmtering: A Geologic Process, (New York: Oxford Dniv. Press).Google Scholar
  131. Melosh, H. J., Ryan, E. V., and Asphaug, E. 1992. Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts. J. Geophys. Res., 97, pp. 14735–14759.ADSCrossRefGoogle Scholar
  132. Meyer-Vernet, N. 1982. “Flip-flop” of electric potential of dust grains in space. Astron. Astrophys., 105, pp. 98–106.ADSzbMATHGoogle Scholar
  133. Mizutani, H., Takagi, Y., and Kawakami, S. 1990. New scaling laws on impact fragmentation. Icarus, 87, pp. 307–326.ADSCrossRefGoogle Scholar
  134. Moore, M. H., and Hudson, R. 1992. Far-infrared spectral studies of phase changes in water ice by photon irradiation. Ap. J., 401, pp. 353–360.ADSCrossRefGoogle Scholar
  135. Mukai, T. 1981. On the charge distribution of interplanetary grains. Astron. Astrophys., 99, pp. 1–6.ADSGoogle Scholar
  136. Mukai, T. 1986. Analysis of a dirty water-ice model for cometary dust. Astron. Astrophys., 164, pp. 397–407.ADSGoogle Scholar
  137. Mukai, T., and Fechtig, H. 1983. Packing effect of fluffy particles. Planet. Space Sci., 31, pp. 655–658.ADSCrossRefGoogle Scholar
  138. Mukai, T., and Giese, R. H. 1984. Modification of the spatial distribution of interplanetary dust grains by Lorentz forces. Astron. Astrophys., 131, pp. 355–363.ADSGoogle Scholar
  139. Mukai, T., Ishimoto, H., Kozasa, T., Blum, J., and Greenberg, J. M. 1992. Radiation pressure forces of fluffy porous grains. Astron. Astrophys., 262, pp. 315–320.ADSGoogle Scholar
  140. Mukai, T., and Mukai, S. 1973. Temperature and motion of the grains in interplanetary space. Pub. Astron. Soc. Japan, 25, pp. 481–488.ADSGoogle Scholar
  141. Mukai, T., and Schwehm, G. 1981. Interaction of grains with the solar energetic particles. Astron. Astrophys., 95, pp. 373–382.ADSGoogle Scholar
  142. Muller, E. W., and Tsong, T. T. 1969. Field Ion Microscopy, (New York: Am. Elsevier Press).Google Scholar
  143. Mü;ller, D., Schmidt-Ott, A., and Burtscher, H. 1988. Photoelectric quantum yield of free silver particles near threshold. Z. Phys. B - Condo Matter, 73, pp. 103–106.ADSCrossRefGoogle Scholar
  144. Nakamura, A. M. 1993. Laboratory simulation on the velocity of fragments from impact disruptions. Institute of Space and Astronautical Science, (Kanagawa, Japan) Report 651.Google Scholar
  145. Nakamura, A. M., Fujiwara, A., and Kadono, T. 1994. Velocity of finer fragments from impact. Planet. Space Sci., 42, pp. 1043–1052.ADSCrossRefGoogle Scholar
  146. Nakamura, A., Suguiyama, K., and Fujiwara, A. 1992. Velocity and spin of fragments from impact disruptions: an experimental approach to a general law between mass and velocity. Icarus, 100, pp. 127–135.ADSCrossRefGoogle Scholar
  147. Nitter, T., Havnes, O., and MelandsØ, F. 1998. Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space. J. Geophys. Res., 103, pp. 6605–6620.Google Scholar
  148. Okamoto, H., Mukai, T., and Kozasa, T. 1994. The 10μm-feature of aggregates in comets. Planet. & Space Sci., 42, pp. 643–649.ADSCrossRefGoogle Scholar
  149. Palmer, H. B., and Shelef, M. 1968. Vaporization of carbon. Chern. & Phys. of Carbon, 4, pp. 85–135.Google Scholar
  150. Patashnick, H., and Rupprecht, G. 1975. The size dependence of sublimation rates for interplanetary ice particles. Ap. J., 197, pp. L79–L82.ADSCrossRefGoogle Scholar
  151. Perrin, J.-M., and Lamy, P. L. 1990. On the validity of effective-medium theories in the case of light extinction by inhomogeneous dust particles. Ap. J., 364, pp. 146–151.ADSCrossRefGoogle Scholar
  152. Pinho, G. P., and Duley, W. W. 1994. Effect of variable graphitic and diamond-like content on the temperature of carbonaceous dust. Mon. Not. R. Astron. Soc., 269, pp. 121–126.ADSGoogle Scholar
  153. Polansky, C. A., and Ahrens, T. J. 1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus, 87, pp. 140–155.ADSCrossRefGoogle Scholar
  154. Poppe, T., and Blum, J. 1997. Experiments on pre-planetary grain growth. Adv. Space Res., 20, pp. (8)1595–(8)1604.ADSCrossRefGoogle Scholar
  155. Poppe, T., Blum, J., and Henning Th. 1999. New experiments on collisions of solid grains related to the preplanetary dust aggregation. Adv. Space Res., 23, pp. (7)1197–(7)1200.ADSGoogle Scholar
  156. Qiu, S. L., Lin, C. L., Jiang, L. Q., and Strongin, M. 1989. Photo emission studies of the metal-nonmetal transition of sodium on solid ammonia. Phys. Rev. B, 39, pp. 1958–1961.ADSCrossRefGoogle Scholar
  157. Reimann, C. T., Boring, J. W., Johnson, R. E., Garrett, J. W., Farmer, K. R., and Brow, W. L. 1984. Ioninduced molecular ejection from D2O ice. Surf. Sci., 147, pp. 227–240.ADSCrossRefGoogle Scholar
  158. Roessler, K. 1991. Suprathermal chemistry in space. In Solid-State Astrophysics, eds. E. Bussoletti and G. Strazzulla, (Dordrecht: North-Holland, Elsevier Sci. Publ.), pp. 197–266.Google Scholar
  159. Roth, J. 1983. Chemical sputtering. In Sputtering by particle bombardment II, ed. R. Berisch, (Berlin: Springer Verlag), pp. 91–146.Google Scholar
  160. Ryan, E. V., Hartmann, W., and Davis, D. R. 1991. Impact experiments 3: Catastrophic fragmentation of aggregate targets and relation to asteroids. Icarus, 94, pp. 283–298.ADSCrossRefGoogle Scholar
  161. Sablotny, R. M., Kempf, S., Blum, J., and Henning, Th. 1995. Coagulation simulations for interstellar dust grains using an n-particle code. Adv. Space Res., 15, pp. (10)55–(10)58.ADSCrossRefGoogle Scholar
  162. Sack, N. J., and Baragiola, R. A. 1993. Sublimation of vapor-deposited water ice below 170 K, and its dependence on growth conditions. Phys. Rev. B, 48, pp. 9973–9978.ADSCrossRefGoogle Scholar
  163. Sandford, S. A., and Allamandola, L. J. 1988. The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity. Icarus, 76, pp. 201–224.ADSCrossRefGoogle Scholar
  164. Sandford, S. A., and Allamandola, L. J. 1993. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. Ap. J., 417, pp. 815–825.ADSCrossRefGoogle Scholar
  165. Schleicher, B., Burtscher, H., and Siegmann, H. C. 1993. Photoelectric quantum yield of nanometer metal particles. Appl. Phys. Lett., 63, pp. 1191–1193. pp. 190–204.ADSCrossRefGoogle Scholar
  166. Sekanina, Z. 1982. Comet Bowell /1980b/ - an active-looking dormant object. Astron. J., 87, pp. 161–169.ADSCrossRefGoogle Scholar
  167. Senay, M. C., and Jewitt, D. 1994. Coma formation driven by carbon monoxide release from comet Schwassmann-Wachmann I. Nature, 371, pp. 229–231.ADSCrossRefGoogle Scholar
  168. Shi, M., Baragiola, R. A., Grosjean, D. E., Johnson, R. E., Jurac, S., and Schou, J. 1995. Sputtering of water ice surfaces and the production of extended neutral atmospheres. J. Geophys. Res., 100, pp. 26387–26396ADSCrossRefGoogle Scholar
  169. Sigmund, P. 1993. Fundamental processes in the sputtering of atoms and molecules, (Copenhagen: Roy. Dan. Acad. of Sci.)Google Scholar
  170. Simpson, J. A. 1983. Introduction to the galactic cosmic radiation. In Composition and origin of cosmic rays, ed. M. M. Shapiro, (Amsterdam: Reidel), pp. 1–24.Google Scholar
  171. Smirnov, B. M. 1990. The properties of fractal clusters. Physics Reports, 188, pp. 1–78.ADSCrossRefGoogle Scholar
  172. Smoluchowski R. 1985. Amorphous and porous ices in cometary nuclei. In “Ices in the Solar System”, eds. J. Klinger, D. Benest, A. Dollfus and R. Smoluchowski, (Dordrecht: D. Reidel Publishing Co.), pp. 397–406.CrossRefGoogle Scholar
  173. Smrekar, S., Cintala, M. J., and Harz, F. 1986. Small-scale impacts into rock: An evaluation of the effects of target temperature on experimental results. Geophys. Res. Lett., 13, pp. 745–748.ADSCrossRefGoogle Scholar
  174. Sternberg, A., Dalgarno, A., and Lepp, S. 1987. Cosmic-ray induced photodestruction of interstellar molecules. Ap. J., 320, pp. 676–682.ADSCrossRefGoogle Scholar
  175. Sternglass, E. J. 1954. Sci. Paper 1772, (Pittsburgh: Westinghouse Res. Lab.)Google Scholar
  176. Strazzulla, G. 1999. Ion Irradiation and the Origin of Cometary Materials. Space Sci. Reviews, 90, pp. 269–274.ADSCrossRefGoogle Scholar
  177. Strazzulla, G., and Johnson, R. E. 1991. Irradiation effects on comets and cometary debris. In Comets in the Post-Halley Era, eds. R. L. Newburn et al. (Amsterdam: Kluwer Acad. Publ.), pp. 243–275.Google Scholar
  178. Svestka, J., Auer, S., Baguhl, M., and Grün, E. 1996. Measurement of dust electric charges by the Ulysses and Galileo dust detectors. In Physics, Chemistry and Dynamics of Interplanetary Dust, Conf. Series VoL. 104, eds. B. Å. S. Gustafson and M. S. Hanner (San Francisco: Astron. Soc. of the Pacific Press), pp. 481–484.Google Scholar
  179. Svestka, J., Cermak, I., and Grün, E. 1993. Electric charging and electrostatic fragmentation of dust particles in laboratory. Adv. Space Res., 13, pp. (10)199–(10)202.CrossRefGoogle Scholar
  180. Svestsov, V. V., Nemtchinov, I. V., and Teterev, A. V. 1995. Disintegration of large meteoroids in Earth’s atmosphere: Theoretical models. Icarus, 116, pp. 131–153.ADSCrossRefGoogle Scholar
  181. Takagi, Y., Kawakami, S., and Mizutani, H. 1984. Impact fragmentation experiments of basalts and pyrophyllites. Icarus, 59, pp. 462–477.ADSCrossRefGoogle Scholar
  182. Taylor, S. R. 1982. Planetary science: A lunar perspective (Houston: Lunar and Planet. Inst.) Chap.4.Google Scholar
  183. Tomeoka, K. 1991. Aqueous alteration in hydrated interplanetary dust particles. In Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regourd and H. Hasegawa, (Dordrecht: Kluwer Acad. Publ.), pp. 71–78.Google Scholar
  184. Umebayashi, T., and Nakano, T. 1990. Magnetic flux loss from interstellar clouds. Mon. Not. R. Astr. Soc., 243, pp. 103–113.ADSGoogle Scholar
  185. van de Hulst, H. C. 1957. Light Scattering by Small Particles, (New York: Wiley [Also New York: Dover 1981]) 8.41.Google Scholar
  186. Verlicchi, A., La Spina, A., Paolicchi, P., and Cellino, A. 1994. The interpretation of laboratory experiments in the framework of an improved semi-empirical model. Planet. Space Sci., 42, pp. 1031–1042.ADSCrossRefGoogle Scholar
  187. Wagner, W., Saul, A., and Pruss, A. 1994. International equations for the pressure along the melting and along the sublimation curve of ordinary water substance. J. Phys. Chern. Ref. Data, 23, pp. 515–527.ADSCrossRefGoogle Scholar
  188. Walch, B., Honinyi, M., and Robertson, S. 1995. Charging of dust grains in plasma with energetic electrons. Phys. Rev. Letters, 75, pp. 838–841.ADSCrossRefGoogle Scholar
  189. Wallis, M. K., and Hassan, M. H. A. 1983. Electrodynamics of submicron dust in the cometary coma. Astmn. Astmphys., 121, pp. 10–14.ADSGoogle Scholar
  190. Weidenschilling, S. J. 1997. The origin of comets in the solar nebula: A unified model. Icarus, 127, pp. 290–306.ADSCrossRefGoogle Scholar
  191. Weidenschilling, S. J., and Cuzzi, J. N. 1997. In Pmtostars and Planets III, eds. E. H. Levy and J. I. Lunine, (Tucson: Univ. of Arizona Press) pp. 1031–1060.Google Scholar
  192. Westley, M. A., Baragiola, R. A., Johnson, R. E., and Barratta, G. A. 1995. Photo desorption from low temperature water ice in interstellar and circumstellar grains. Nature, 373, pp. 405–407.ADSCrossRefGoogle Scholar
  193. Whipple, E. C. 1981. Potentials of surfaces in space. Rep. Pmg. Phys., 44, pp. 1197–1250.ADSCrossRefGoogle Scholar
  194. Wilson, G. R. 1991. The plasma environment, charge state, and currents of Saturn’s C and D rings. J. Geophys. Res., 96, pp. 9689–9701.ADSCrossRefGoogle Scholar
  195. Worden, S. P., Schneeberger, T. J., Kuhn, J. R., and Africano, J. L. 1981. Flare activity on T-tauri stars. Ap. J., 244, pp. 520–524.ADSCrossRefGoogle Scholar
  196. Wurm, G., and Blum, J. 1998. Experiments on preplanetary dust aggregation. Icarus, 132, pp. 125–136.ADSCrossRefGoogle Scholar
  197. Xu, W., D’Angelo, N., and Merlino, R. L. 1993. Dusty plasmas: The effect of closely packed grains. J. Geophys. Res., 98, pp. 7843–7847.ADSCrossRefGoogle Scholar
  198. Yamamoto, S., and Nakamura, A. M. 1997. Velocity measurements of impact ejecta from regolith targets. Icarus, 128, pp. 160–170.ADSCrossRefGoogle Scholar
  199. Yamamoto, T., and Ashihara, O. 1985. Condensation of ice particles in the vicinity of a cometary nucleus. Astron. Astmphys., 152, pp. LI7–L20.Google Scholar
  200. Yamamoto, T., Nakagawa, N., and Fukui, Y. 1983. The chemical composition and thermal history of the ice of a cometary nucleus. Astmn. Astmphys., 122, pp. 171–176.ADSGoogle Scholar
  201. Yeomans, D. K. 1991. Cometary orbital dynamics and astrometry. In Comets in the Post-Halley Era, eds. R. L. Newburns Jr., M. Neugebauer and J. Rahe (Amsterdam: Kluwer Acad. Publ.), pp. 3–17.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.Graduate School of Sci. & Tech.Kobe UniversityNada-kuKobeJapan
  2. 2.Friedrich Schiller University Jena Schillergäßchen 2Astrophysical Institute and University ObservatoryJenaGermany
  3. 3.University of VirginiaJ. L. Newcomb Professor Engineering Physics and Department of Astronomy Thornton HallCharlottesvilleUSA
  4. 4.University of TromsøDepartment of Physics Faculty of ScienceNorway

Personalised recommendations