Skip to main content

Physical Processes on Interplanetary Dust

  • Chapter

Part of the book series: Astronomy and Astrophysics Library ((AAL))

Abstract

This chapter discusses physical processes affecting interplanetary dust grains, including processes determining dust formation, growth, disruption, and alteration. Computer simulations and laboratory studies of coagulation and aggregation show that mutual collisions between solid grains determine the growth of solid aggregates in the early solar system when the impact energies are too low to destroy the colliding grains. On the other hand, fragmentation occurs at the high impact energies that currently prevail, generating dust from meteoroids, asteroid, and satellite surfaces as well as from sublimating comets. Such impact processes are discussed based on a compilation of laboratory measurements (e.g., size, shape, velocity and spin distributions of fragments). Gradual alteration of the dust grains occurs in the present solar system due to solar radiation and energetic particle impact. Sublimation, sputtering and charging can alter the nature of interplanetary dust grains. Dust grain temperatures, erosion rates due to solar-wind-induced sputtering, and surface charges are studied. The evidence for alteration of physical/chemical/mineralogical properties of interplanetary dust grains is still rather poor. Therefore, we discuss the expected changes, referring to those physical processes that can be simulated in laboratory experiments, and to their analogues obtained through theoretical modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, H. H., and Bay, H. L. 1981. Sputtering yield measurements. In Sputtering by particle bombardment I, ed. R. Berisch (Berlin: Springer Verlag), pp. 145–218.

    Google Scholar 

  • Asada, N. 1985. Fine fragments in high-velocity impact experiments. J. Geophys. Res., 90:12, pp. 445–453.

    Google Scholar 

  • Asphaug, E., Melosh, H. J., and Ryan, E. 1992. Theoretical predictions for fragment size distributions. (abstract) Lunar Planet Sci. Conf., XXIII pp. 45–46.

    ADS  Google Scholar 

  • Baguhl, M., Hamilton, D. P., Grün, E., Dermott, S. F., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Staubach, P., and Zook, H. A. 1995. Dust measurements at high ecliptic latitudes. Science, 268, pp. 1016–1019.

    Article  ADS  Google Scholar 

  • Barkan, A., D’‘Angelo, N. D., and Merlino, R. L. 1994. Charging of dust grains in a plasma. Phys. Rev. Letters, 72, pp. 3093–3096.

    Article  ADS  Google Scholar 

  • Benit, J., and Brown, W. I. 1990. Electronic sputtering of oxygen and water molecules from thin films of water ice bombarded by MeV ions. Nucl. Inst. Methods/, B46, pp. 448–451.

    ADS  Google Scholar 

  • Benz, W., Asphaug, E., and Ryan, E. V. 1994. Numerical simulations of catastrophic disruption: recent results. Planet. Space Sci., 42, pp. 1053–1066.

    Article  ADS  Google Scholar 

  • Betz, G., and Wehner, G. K. 1983. Sputtering of multicomponent materials. In Sputtering by particle bombardment II, ed. R. Berisch (Berlin: Springer Verlag) pp. 11–90.

    Google Scholar 

  • Blum, J. 1995. Laboratory and space experiments to study pre-planetary growth. Adv. Space Res., Vo1. 15, 10, pp. 39–54.

    Article  ADS  Google Scholar 

  • Blum, J., and Miinch, M. 1993. Experimental investigations on aggregate-aggregate collisions in the early solar nebula. Icarus, 106, pp. 151–167.

    Article  ADS  Google Scholar 

  • Blum, J., Schnaiter, M., Wurm, G., and Rott, M. 1996. The De-Agglomeration and Dispersion of Small Dust Particles - Principles and Applications. Rev. Sci. Instrum., 67, pp. 589–595.

    Article  ADS  Google Scholar 

  • Blum, J., and Wurm, G. 2000. Experiments on Sticking, Restructuring and Fragmentation of Preplanetary Dust Aggregates. Icarus, bf 143, pp. 138–146.

    Article  ADS  Google Scholar 

  • Bradley, J. P. 1994. Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science, 265, pp. 925–929.

    Article  ADS  Google Scholar 

  • Bradley, J. P., Brownlee, D. E., and Fraundorf, P. 1984. Discovery of nuclear tracks in interplanetary dust. Science, 226, pp. 1432–1434.

    Article  ADS  Google Scholar 

  • Brown, W. L., Auqutyniak, W. M., Maucoutonio, K. J., Simmous, E. H., Boring, J. W., Johnson, R. E., and Reimana, I. T. 1984. Electronic sputtering of low temperature molecular solids. Nucl. Inst. Methods/, B1, pp. 307–314.

    ADS  Google Scholar 

  • Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, pp. 1–48.

    Article  ADS  Google Scholar 

  • Capaccioni, F., Cerroni, P., Coradini, M., Di Martino, M., Farinella, P., Flamini, E., Martelli, G., Paolicchi, P., Smith, P. N., Woodward, A., and Zappala, V. 1986. Asteroidal catastrophic collisions simulated by hypervelocity impact experiments. Icarus, 66, pp. 487–514.

    Article  ADS  Google Scholar 

  • Capaccioni, F., Cerroni, P., Coradini, M., Farinella, P., Flamini, E., Martelli, G., Paolicchi, P., Smith, P. N., and Zappala, V. 1984. Shapes of asteroids compared with fragments from hypervelocity impact experiments. Nature, 308, pp. 832–834.

    Article  ADS  Google Scholar 

  • Chen, F. F. 1984. Introduction to Plasma Physics and Controlled Fusion., Vol. I, (New York: Plenum Press)

    Book  Google Scholar 

  • Cheng, A. F., and Johnson, R. E. 1989. Effects of magnetospheric interactions on the origin and evolution of atmospheres. In Origin and evolution of atmospheres, eds. S. K. Atreya and J. B. Pollack (Tucson: Univ. of Arizona Press) pp. 682–722.

    Google Scholar 

  • Chiu, C.-S. 1978. Numerical study of cloud electrification in an axisymmetric, timedependent cloud model. J. Geophys. Res., 83, pp. 5025–5049.

    Article  ADS  Google Scholar 

  • Chokshi, A., Tielens, A. G. G. M., and Hollenbach, D. 1993. Dust coagulation. Ap. J., 407, pp. 806–819.

    Article  ADS  Google Scholar 

  • Chow, V. W., Mendis, D. A., and Rosenberg, M. 1993. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res., 98, pp. 19065–19076.

    Article  ADS  Google Scholar 

  • Chow, V. W., Mendis, D. A., and Rosenberg, M. 1994. Secondary emission from small dust grains at high electron densities. IEEE Trans. Plasma Sci., 22, pp. 179–186.

    Article  ADS  Google Scholar 

  • Colwell, J. E., and Taylor, M. 1999. Lowävelocity microgravity impact experiments into simulated regolith. Icarus, 138, pp. 241–248.

    Article  ADS  Google Scholar 

  • Cravens, T. E. 1991. Plasma processes in the inner coma. In Comets in the Post-Halley Era, eds. R. L. Newburn et al. (Amsterdam: Kluwer Acad. Publ.) pp. 1211–1258.

    Google Scholar 

  • Crifo, J. F. 1987. Improved gas kinetic treatment of cometary water sublimation and recondensation, application to comet P /Halley. Astron. Astrophys. 187, pp. 438–450.

    ADS  Google Scholar 

  • Crifo, J. F. 1995. A general physicochemical model of the inner coma of active comets: I. Implications of a spatially distributed gas and dust production. Ap. J., bf 445, pp. 470–488.

    Article  ADS  Google Scholar 

  • Dahneke, B. 1971. The capture of aerosol particles by surfaces. J. Colloid and Interface Sci., 37, No.2, pp. 342–353.

    Article  Google Scholar 

  • Davis, D. R., Chapman, C. R., Weidenschiling, S. J., and Greenberg, R. 1985. Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, pp. 30–53.

    Article  ADS  Google Scholar 

  • Delitsky, M. L., and Thompson, W. R. 1987. Chemical processes in Triton’s atmosphere and surface. Icarus, 70, pp. 354–365.

    Article  ADS  Google Scholar 

  • Dohnanyi, J. S. 1978. Particle Dynamics. In Cosmic Dust, ed. J. A. M. McDonnell (Chichester: Wiley-Interscience Publ.) pp. 527–605.

    Google Scholar 

  • Dominik, C., and Tielens, A. G. G. M. 1997. The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space. Ap. J. 480, pp. 647–673.

    Article  ADS  Google Scholar 

  • Draine, B. T. 1985. Grain evolution in dark clouds. In Protostars and Planets II, eds. D. C. Black and M. D. Matthews, (Tucson: Univ. of Arizona Press), pp. 621–640.

    Google Scholar 

  • Draine, B. T., Roberg, W. G., and Dalgarno, A. 1983. Magnetospheric hydrodynamic shock waves in molecular clouds. Ap. J., bf 264, pp. 485–507.

    Article  ADS  Google Scholar 

  • Draine, B. T., and Salpeter E. E. 1979. Destruction mechanisms for interstellar dust. Ap. J., 231, pp. 438–455.

    Article  ADS  Google Scholar 

  • Eisenhour, D. D., Daulton, T. L., and Buseck, P. R. 1994. Electromagnetic heating in the early solar nebula and the formation of chondrules. Science, 265, pp. 1067–1070.

    Article  ADS  Google Scholar 

  • Englman, R., Rivier, N., and Jaeger, Z. 1988. Size-distribution in sudden breakage by the use of entropy maximization. J. Appl. Phys., 63, pp. 4766–4768.

    Article  ADS  Google Scholar 

  • Evans, A. 1994. The Dusty Universe. (New York: Wiley & Sons.)

    Google Scholar 

  • Farinella, P., and Davis, D. R. 1996. Shortäperiod comets: Primordial bodies or collisional fragments? Science, 273, pp. 938–941.

    Article  ADS  Google Scholar 

  • Feigleson, E. D. 1982. X-ray emission from young stars and the implications for the early solar system. Icarus, 51, pp. 155–163.

    Article  ADS  Google Scholar 

  • Fujimura, A., Takagi, Y., Furumoto, M., and Mizutani, H. 1986. Fractal dimensions of fracture surfaces of rock fragments. Mem. Natl. Inst. Polar Res., 41, pp. 348–357.

    ADS  Google Scholar 

  • Fujiwara, A., Cerroni, P., Davis, D., Ryan, E., Di Martino, M., Holsapple, K., and Housen, K. 1989. Experiments and scaling laws for catastrophic collisions. In Asteroids II, eds. R. P. Binzel, T. Gehrels, M. S. Matthews, (Tucson: Univ. of Arizona Press), pp. 240–269..

    Google Scholar 

  • Fujiwara, A., Kamimoto, G., and Tsukamoto, A. 1977. Destruction of basaltic bodies by high-velocity impact. Icarus, 31, pp. 277–288.

    Article  ADS  Google Scholar 

  • Fujiwara, A., Kamimoto, G., and Tsukamoto, A. 1978. Expected shape distribution of asteroids obtained from laboratory impact experiments. Nature, 272, pp. 602–603.

    Article  ADS  Google Scholar 

  • Gail, H.-P., and Sedlmayr, E. 1975. On the charge distribution of interstellar dust grains. Astron. Astrophys., 41, pp. 359–366.

    ADS  Google Scholar 

  • Gail, H.-P., and Sedlmayr, E. 1980. On the photoelectric yield of insulating dust grains. Astron. Astrophys., 86, pp. 380–385.

    ADS  Google Scholar 

  • Gault, D. E., and Heitowit, E. D. 1963. The partition of energy for hypervelocity impact craters formed in rock. Proc. 6th Hypervelocity Impact Symposium, pp. 419–456.

    Google Scholar 

  • Geiss, J. 1982. Processes affecting abundances in the solar wind. Space Sci. Rev., 33, pp. 201–217.

    Article  ADS  Google Scholar 

  • Giblin, I. 1998. New data on the velocity-mass relation in catastrophic disruption. Planet. Space Sci., 46, pp. 921–928.

    Article  ADS  Google Scholar 

  • Giblin, I., Martelli, G., Smith, P. N., Cellino, A., Di Martino, M., Zappala, V., Farinella, P., and Paollichi, P. 1994. Field fragmentation of macroscopic targets simulating asteroidal catastrophic collisions. Icarus, 110, pp. 203–224.

    Article  ADS  Google Scholar 

  • Gibson, Jr. E. K. 1992. Volatiles in interplanetary dust particles: A review. J. Geophys. Res., 97, pp. 3865–3875.

    Article  ADS  Google Scholar 

  • Gilvarry, J. J. 1961. Fracture of brittle solids. I. Distribution function for fragment size in single fracture (theoretical). J. Appl. Phys., 32, pp. 391–399.

    Article  MathSciNet  ADS  Google Scholar 

  • Grady, D. E., and Kipp, M. E. 1980. Continuum modeling of explosive fracture in Oil Shale. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 17, pp. 147–157.

    Article  Google Scholar 

  • Grady, D. E., and Kipp, M. E. 1985. Mechanisms of dynamic fragmentation: Factors governing fragment size. Mechanics of Materials, 4, pp. 311–320.

    Article  Google Scholar 

  • Grady, D. E., and Lipkin, J. 1980. Criteria for impulsive rock fracture. Geophys. Res. Letters, 7, pp. 255–258.

    Article  ADS  Google Scholar 

  • Greenberg, J. M. 1983. The largest molecules in space - Interstellar dust. In Cosmochemistry and the origin of life, (Dordrecht: D. Reidel Publ. Co.), pp. 71–112.

    Google Scholar 

  • Greenberg, J. M., and Hage, J. I. 1990. From interstellar dust to comets: A unification of observational constraints. Ap. J., 361, pp. 260–274.

    Article  ADS  Google Scholar 

  • Greenberg, J. M., and Shah, G. A. 1971. Interstellar grain temperatures. Effects of Shape. Astron. Astrophys., 12, pp. 250–257.

    ADS  Google Scholar 

  • Griffith, A. A. 1920. The phenomena of rupture and flow in solids. Philosophical Transactions of Royal Society, 221, pp. 163–198.

    Article  ADS  Google Scholar 

  • Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R., Hanner, M. S., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A., Morfill, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A. 1993. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.

    Article  ADS  Google Scholar 

  • Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. 1985. Collisional balance of the meteoritic complex. Icarus, 62, pp. 244–272.

    Article  ADS  Google Scholar 

  • Gustafson B. Å. S. 1994. Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci., 22, pp. 553–595.

    Article  ADS  Google Scholar 

  • Gustafson, B. Å. S., and Misconi, N. Y. 1979. Streaming of interstellar grains in the solar system. Nature, 282, pp. 276–278.

    Article  ADS  Google Scholar 

  • Hage, J. I., and Greenberg, J. M. 1990. A model for the optical properties of porous grains. Ap. J., 361, pp. 251–259.

    Article  ADS  Google Scholar 

  • Hanner, M. S. 1985. A preliminary look at the dust in comet Halley. Adv. Space Res., 5, pp. 325–334.

    Article  ADS  Google Scholar 

  • Hartquist, T. W., Havnes, O., and Morfill, G. E. 1992. The effects of dust on the dynamics of astronomical and space plasmas. Fund. Cosmo Phys., 15, pp. 107–142.

    ADS  Google Scholar 

  • Hasegawa, H., Fujiware, A., Koike, C., and Mukai, T. 1977. Effect of the spin of an interplanetary dust on its motion. Memoirs of the Faculty of Science, Kyoto Univ. Series A of Physics, Astrophysics, Geophysics and Chemistry, 35, pp. 131–139.

    Google Scholar 

  • Havnes, O. 1984. Charges on dust particles. Adv. in Space Res., 4, pp. 75–83.

    Article  ADS  Google Scholar 

  • Havnes, O., Aanesen, T. K., and Melandsø, F. 1990. On dust charges and plasma potentials in a dusty plasma with dust size distribution. J. Geophys. Res., 95, pp. 6581–6585.

    Article  ADS  Google Scholar 

  • Havnes, O., Goertz, C. K., Morfill, E., Grün, E., and Ip, W.-H. 1987. Dust charges, cloud potential and instabilities in a dust cloud embedded in a plasma. J. Geophys. Res., 92, pp. 2281–2287.

    Article  ADS  Google Scholar 

  • Havnes, O., and Morfill, G. E. 1984. Effects of electrostatic forces on the vertical structure of planetary rings. Adv. Space Res., 4, pp. 85–90.

    Article  ADS  Google Scholar 

  • Hertz, H. 1882. Uber die Berü;hrung fester elastischer Körper (on the contact of elastic solids). J. Reine und Angewandte Mathematik, 92, pp. 156–171.

    MATH  Google Scholar 

  • Hirst, E, Kaye, P. H., and Guppy, J. R. 1994. Light scattering from nonspherical airborne particles: experimental and theoretical comparisons. Appl. Optics, 33, pp. 7180–7186.

    Article  ADS  Google Scholar 

  • Holsapple, K. A. 1994. Catastrophic disruptions and cratering of solar system bodies. Planet Space Sci., 42, pp. 1067–1078.

    Article  ADS  Google Scholar 

  • Housen, K. R. 1992. Crater ejecta velocities for impacts on rocky bodies (abstract). Lunar Planet. Sci. Conf. XXIII, pp. 555–556.

    Google Scholar 

  • Housen, K. R., Schmidt, R. M., and Holsapple, K. A. 1983. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. J. Geophys. Res., 88, pp. 2485–2499.

    Article  ADS  Google Scholar 

  • Housen, K. R., Schmidt, R. M., and Holsapple, K. A. 1991. Laboratory simulations of large scale fragmentation events. Icarus, 94, pp. 180–190.

    Article  ADS  Google Scholar 

  • Jancso, G., Pupezin, J., and van Hook, W. A. 1970. The vapor pressure of ice between +10-2 and -10+2°. J. of Physical Chem., 74, pp. 2984–2989.

    Article  Google Scholar 

  • Jenniskens, P., and Blake, D. F. 1994. Structural transitions in amorphous water ice and astrophysical implications. Science, 265, pp. 753–756.

    Article  ADS  Google Scholar 

  • Johnson, K. L. 1985. Contact Mechanics, (Cambridge: Cambridge Univ. Press).

    Book  MATH  Google Scholar 

  • Johnson, K. L., Kendall, K., and Roberts, A. B. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A, 324, pp. 301–313.

    Article  ADS  Google Scholar 

  • Johnson, R. E. 1985. Comment on the evolution of interplanetary grains. In Ices in the Solar System, eds. Klinger, et al. (Dordrecht: D. Reidel Publ. Co.) pp. 337–339.

    Google Scholar 

  • Johnson, R. E. 1990. Energetic charged particle interaction with atmospheres and surfaces, (Berlin: Springer Verlag)

    Book  Google Scholar 

  • Johnson, R. E. 1991. Irradiation of solids: theory. In Solid-State Astrophysics, eds. E. Bussoletti and G. Strazzulla (Amsterdam: North Holland), pp. 129–168.

    Google Scholar 

  • Johnson, R. E. 1996. Sputtering of ices in the outer solar system. Rev. Modern Phys., 68, pp. 305–312.

    Article  ADS  Google Scholar 

  • Johnson, R. E. 1998. Sputtering and desorption from icy surfaces. In Solar System Ices eds. B. Schmitt, C. de Bergh and M. Festou (Dordrecht: Kluwer Acad. Publ.) pp. 303–334.

    Google Scholar 

  • Johnson, R. E., and Baragiola, R. A. 1991. Lunar surface: sputtering and secondary ion mass spectrometry. Geophys. Res. Lett., 18, pp. 2169–2175.

    Article  ADS  Google Scholar 

  • Johnson, R. E., and Lanzerotti, L. J. 1986. Ion bombardment of interplanetary dust. Icarus, 66, pp. 619–624.

    Article  ADS  Google Scholar 

  • Johnson, R. E., and Schou, J. 1993. Sputtering of inorganic insulators. In Fundamental processes in the sputtering of atoms and molecules. ed. P. Sigmund, (Copenhagen: Roy. Dan. Acad.), pp. 403–493.

    Google Scholar 

  • Kato, M., Iijima, Y., Arakawa, M., Okimura, Y., Fujimura, A., Maeno, N., and Mizutani, H. 1995. Ice-on-ice impact experiments. Icarus, 113, pp. 423–441.

    Article  ADS  Google Scholar 

  • Kato, M., Iijima, Y., Okimura, Y., Arakawa, M., Maeno, N., Fujimura, A., and Mizutani H. 1992. Impact experiments on low temperature H2O ice. In Physics and Chemistry of Ice, eds. N. Maeno and T. Hondo (Sapporo: Hokkaido Univ. Press), pp. 237–244.

    Google Scholar 

  • Keller, H. U. 1990. The nucleus. In Physics and chemistry of comets, ed. W. F. Huebner, (Heidelberg: Springer-Verlag), pp. 13–68.

    Google Scholar 

  • Keller, H. U., Delamere, W. A., Huebner, W. F., Reitsema, H. J., Schmidt, H. U., Whipple, F. L., Wilhelm, K., Curdt, W., Kramm, R., Thomas, N., Arpigny, C., Barbieri, C., Bonnet, R. M., Cazes, S., Coradini, M., Cosmovici, C. B., Hughes, D. W., Jamar, C., Malaise, D., Schmidt, K., Schmidt, W. K. H., and Seige, P. 1987. Comet P /Halley’s nucleus and its activity. Astron. Astrophys., 187, pp. 807–823.

    ADS  Google Scholar 

  • Kempf, S., Pfalzner, S., and Henning, Th. K. 1999. N-particle- simulations of dust growth. Icarus, 141, pp. 388–398.

    Article  ADS  Google Scholar 

  • Khare, B. N., Sagan, C., Arakawa, E. T., Suits, F., Callcott, T. A., and Williams, M. W. 1984. Optical constants of organic tholins produced in a simulated Titanian atmosphere - From soft X-ray to microwave frequencies. Icarus, 60, pp. 127–137.

    Article  ADS  Google Scholar 

  • Kissel, J. 1991. Mass-spectrometric in situ analysis of solid-state extraterrestrial samples. Solid-State Astrophysics, eds. E. Bussoletti and G. Strazzulla, pp. 169–195.

    Google Scholar 

  • Kitada, Y., Nakamura, R., and Mukai, T. 1993. Correlation between cross section and surface area of irregularly shaped particle. Proc. of 3rd International Congress on Optical Particle Sizing, ed. K. Takahashi, pp. 121–125.

    Google Scholar 

  • Kouchi, A. 1987. Vapour pressure of amorphous H2O ice and its astrophysical implications. Nature, 330, pp. 550–552.

    Article  ADS  Google Scholar 

  • Kouchi, A. 1990. Evaporation of H2O-CO ice and its astrophysical implications. J. Crystal Growth 99, pp. 1220–1226.

    Article  ADS  Google Scholar 

  • Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T., and Greenberg, J. M. 1994. Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron. Astrophys., 290, pp. 1009–1018.

    ADS  Google Scholar 

  • Kozasa, T., Blum, J., and Mukai, T. 1992. Optical properties of dust aggregates I. Wavelength dependence. Astron. Astrophys., 263, pp. 315–320.

    Google Scholar 

  • Lamy, P. L. 1974. Interaction of interplanetary dust grains with the solar radiation field. Astron. Astrophys., 35, pp. 197–207.

    ADS  Google Scholar 

  • Lange, M. A., and Ahrens, T. J. 1981. Fragmentation of ice by low velocity impact. Proc. Lunar Planet Sci. Conf. XII pp. 1667–1687.

    Google Scholar 

  • Lange, M. A., and Ahrens, T. J. 1983. The dynamic tensile strength of ice and ice-silicate mixtures. J. Geophys. Res., 88, pp. 1197–1208.

    Article  ADS  Google Scholar 

  • Lange, M. A., Ahrens, T. J., and Boslough, M. B. 1984. Impact cratering and spall failure of Gabbro. Icarus, 58, pp. 383–395.

    Article  ADS  Google Scholar 

  • Langmuir, I., Found, C. G., and Dittmer, H. F. 1924. A new type of electric discharges: The streamer discharge. Science, 60, pp. 392–394.

    Article  ADS  Google Scholar 

  • Lanzerotti, L. J. 1987. Solar-terrestrial physics. In Encyclopedia of physical science and technology, (SanDiego: Academic Press) 12, pp. 833–843.

    Google Scholar 

  • Lanzerotti, L. J., Brown, W. L., and Marcantonio, K. J. 1987. Experimental study of erosion of methane ice by energetic ions and some considerations for Astrophysics. Ap. J., 313, pp. 910–919.

    Article  ADS  Google Scholar 

  • Lawn, B. 1993. Fracture of brittle solids, 2nd ed. (Cambridge: Cambridge Univ. Press)

    Book  Google Scholar 

  • Léger, A., Gauthier, S., Defourneau, D., and Rouan, D. 1983. Properties of amorphous H2O ice and origin of the 3.1-micron absorption. Astron. Astrophys., 117, pp. 164–169.

    ADS  Google Scholar 

  • Léger, A., Jura, M., and Omont, A. 1985. Desorption from interstellar grains. Astron. Astrophys., 144, pp. 147–160.

    ADS  Google Scholar 

  • Léger, A., Klein, J., de Cheveigne, S., Guinet, C., Defourneau, D., and Belin, M. 1979. The 3.1 μm absorption in molecular clouds is probably due to amorphous H2O ice. Astron. Astrophys., 79, pp. 256–259.

    ADS  Google Scholar 

  • Leinert, C., Röser, S., and Buitrago, J. 1983. How to maintain the spatial distribution of interplanetary dust. Astron. Astrophys. 118, pp. 345–357.

    ADS  MATH  Google Scholar 

  • Leliwa-Kopystynski, J., Taniguchi, T., Kondo, K., and Sawaoka, A. 1984. Sticking in moderate velocity oblique impact - Application to planetology. Icarus, 67, pp. 280–293.

    Article  ADS  Google Scholar 

  • Levy, E. H., and Jokipii, J. R. 1976. Penetration of interstellar dust into the solar system. Nature, 264, pp. 423–424.

    Article  ADS  Google Scholar 

  • Lien, D. J. 1991. Optical properties of cometary dust. In Comets in the Post-Halley Era, eds. R. L. Newburn, Jr., M. Neugebauer, and J. Rahe, (Dordrecht: Kluwer Acad. Publ.) Vol. 2: pp. 1005–1041.

    Google Scholar 

  • Lou, W., and Charalampopoulos, T. T. 1994. On the electromagnetic scattering and absorption of agglomerated small spherical particles. J. Phys. D: Appl. Physics, 27, pp. 2258–2270.

    Article  ADS  Google Scholar 

  • Love, S. G., and Brownlee, D. E. 1991. Heating and thermal transformation of micrometeoro ids entering the earth’s atmosphere. Icarus, 89, pp. 26–43.

    Article  ADS  Google Scholar 

  • Lunine, J. I., Engel, S., Rizk, B., and Horanyi, M. 1991. Sublimation and reformation of icy grains in the primitive solar nebula. Icarus, 94, pp. 333–344.

    Article  ADS  Google Scholar 

  • Mann, I., Okamoto, H., Mukai, T., Kimura, H., and Kitada, Y. 1994. Fractal aggregate analogues for near solar dust properties. Astron. Astrophys., 291, pp. 1011–1018.

    ADS  Google Scholar 

  • Martelli, G., Ryan, E. V., Nakamura, A. M., and Giblin, I. 1994. Catastrophic disruption experiments: recent results. Planet. Space Sci., 42, pp. 1013–1026.

    Article  ADS  Google Scholar 

  • Matsui, T., and Schultz, P. H. 1984. On the brittle-ductile behavior of iron meteorites: New experimental constraints. J. Geophys. Res., 89, pp. 323–328.

    Article  ADS  Google Scholar 

  • McGuire, A. F., and Hapke, B. W. 1995. An experimental study of light scattering by large, irregular particles. Icarus, 113, pp. 134–155.

    Article  ADS  Google Scholar 

  • Meakin, P. 1991. Fractal aggregates in geophysics. Rev. of Geophys., 29(3), pp. 317–354.

    Google Scholar 

  • Meakin, P., and Donn, B. 1988. Aerodynamic properties of fractal grains; Implications for the primordial solar nebula. Ap. J., 329, pp. L39–L41.

    Article  ADS  Google Scholar 

  • Meakin, P., and Jullien, R. 1988. The Effects of Restructuring on the Geometry of Clusters formed by Diffusion-limited, Ballistic and Reaction-limited Cluster-Cluster Aggregation. J. Chern. Phys., 89, pp. 246–250.

    Article  ADS  Google Scholar 

  • Melosh, H. J. 1984. Impact ejection, spallation, and the origin of meteorites. Icarus, 59, pp. 234–260.

    Article  ADS  Google Scholar 

  • Melosh, H. J. 1987. High-velocity solid ejecta fragments from hypervelocity impacts. Int. J. Impact Engng., 5, pp. 483–492.

    Article  Google Scholar 

  • Melosh, H. J. 1989. Impact Cmtering: A Geologic Process, (New York: Oxford Dniv. Press).

    Google Scholar 

  • Melosh, H. J., Ryan, E. V., and Asphaug, E. 1992. Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts. J. Geophys. Res., 97, pp. 14735–14759.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N. 1982. “Flip-flop” of electric potential of dust grains in space. Astron. Astrophys., 105, pp. 98–106.

    ADS  MATH  Google Scholar 

  • Mizutani, H., Takagi, Y., and Kawakami, S. 1990. New scaling laws on impact fragmentation. Icarus, 87, pp. 307–326.

    Article  ADS  Google Scholar 

  • Moore, M. H., and Hudson, R. 1992. Far-infrared spectral studies of phase changes in water ice by photon irradiation. Ap. J., 401, pp. 353–360.

    Article  ADS  Google Scholar 

  • Mukai, T. 1981. On the charge distribution of interplanetary grains. Astron. Astrophys., 99, pp. 1–6.

    ADS  Google Scholar 

  • Mukai, T. 1986. Analysis of a dirty water-ice model for cometary dust. Astron. Astrophys., 164, pp. 397–407.

    ADS  Google Scholar 

  • Mukai, T., and Fechtig, H. 1983. Packing effect of fluffy particles. Planet. Space Sci., 31, pp. 655–658.

    Article  ADS  Google Scholar 

  • Mukai, T., and Giese, R. H. 1984. Modification of the spatial distribution of interplanetary dust grains by Lorentz forces. Astron. Astrophys., 131, pp. 355–363.

    ADS  Google Scholar 

  • Mukai, T., Ishimoto, H., Kozasa, T., Blum, J., and Greenberg, J. M. 1992. Radiation pressure forces of fluffy porous grains. Astron. Astrophys., 262, pp. 315–320.

    ADS  Google Scholar 

  • Mukai, T., and Mukai, S. 1973. Temperature and motion of the grains in interplanetary space. Pub. Astron. Soc. Japan, 25, pp. 481–488.

    ADS  Google Scholar 

  • Mukai, T., and Schwehm, G. 1981. Interaction of grains with the solar energetic particles. Astron. Astrophys., 95, pp. 373–382.

    ADS  Google Scholar 

  • Muller, E. W., and Tsong, T. T. 1969. Field Ion Microscopy, (New York: Am. Elsevier Press).

    Google Scholar 

  • Mü;ller, D., Schmidt-Ott, A., and Burtscher, H. 1988. Photoelectric quantum yield of free silver particles near threshold. Z. Phys. B - Condo Matter, 73, pp. 103–106.

    Article  ADS  Google Scholar 

  • Nakamura, A. M. 1993. Laboratory simulation on the velocity of fragments from impact disruptions. Institute of Space and Astronautical Science, (Kanagawa, Japan) Report 651.

    Google Scholar 

  • Nakamura, A. M., Fujiwara, A., and Kadono, T. 1994. Velocity of finer fragments from impact. Planet. Space Sci., 42, pp. 1043–1052.

    Article  ADS  Google Scholar 

  • Nakamura, A., Suguiyama, K., and Fujiwara, A. 1992. Velocity and spin of fragments from impact disruptions: an experimental approach to a general law between mass and velocity. Icarus, 100, pp. 127–135.

    Article  ADS  Google Scholar 

  • Nitter, T., Havnes, O., and MelandsØ, F. 1998. Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space. J. Geophys. Res., 103, pp. 6605–6620.

    Google Scholar 

  • Okamoto, H., Mukai, T., and Kozasa, T. 1994. The 10μm-feature of aggregates in comets. Planet. & Space Sci., 42, pp. 643–649.

    Article  ADS  Google Scholar 

  • Palmer, H. B., and Shelef, M. 1968. Vaporization of carbon. Chern. & Phys. of Carbon, 4, pp. 85–135.

    Google Scholar 

  • Patashnick, H., and Rupprecht, G. 1975. The size dependence of sublimation rates for interplanetary ice particles. Ap. J., 197, pp. L79–L82.

    Article  ADS  Google Scholar 

  • Perrin, J.-M., and Lamy, P. L. 1990. On the validity of effective-medium theories in the case of light extinction by inhomogeneous dust particles. Ap. J., 364, pp. 146–151.

    Article  ADS  Google Scholar 

  • Pinho, G. P., and Duley, W. W. 1994. Effect of variable graphitic and diamond-like content on the temperature of carbonaceous dust. Mon. Not. R. Astron. Soc., 269, pp. 121–126.

    ADS  Google Scholar 

  • Polansky, C. A., and Ahrens, T. J. 1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus, 87, pp. 140–155.

    Article  ADS  Google Scholar 

  • Poppe, T., and Blum, J. 1997. Experiments on pre-planetary grain growth. Adv. Space Res., 20, pp. (8)1595–(8)1604.

    Article  ADS  Google Scholar 

  • Poppe, T., Blum, J., and Henning Th. 1999. New experiments on collisions of solid grains related to the preplanetary dust aggregation. Adv. Space Res., 23, pp. (7)1197–(7)1200.

    ADS  Google Scholar 

  • Qiu, S. L., Lin, C. L., Jiang, L. Q., and Strongin, M. 1989. Photo emission studies of the metal-nonmetal transition of sodium on solid ammonia. Phys. Rev. B, 39, pp. 1958–1961.

    Article  ADS  Google Scholar 

  • Reimann, C. T., Boring, J. W., Johnson, R. E., Garrett, J. W., Farmer, K. R., and Brow, W. L. 1984. Ioninduced molecular ejection from D2O ice. Surf. Sci., 147, pp. 227–240.

    Article  ADS  Google Scholar 

  • Roessler, K. 1991. Suprathermal chemistry in space. In Solid-State Astrophysics, eds. E. Bussoletti and G. Strazzulla, (Dordrecht: North-Holland, Elsevier Sci. Publ.), pp. 197–266.

    Google Scholar 

  • Roth, J. 1983. Chemical sputtering. In Sputtering by particle bombardment II, ed. R. Berisch, (Berlin: Springer Verlag), pp. 91–146.

    Google Scholar 

  • Ryan, E. V., Hartmann, W., and Davis, D. R. 1991. Impact experiments 3: Catastrophic fragmentation of aggregate targets and relation to asteroids. Icarus, 94, pp. 283–298.

    Article  ADS  Google Scholar 

  • Sablotny, R. M., Kempf, S., Blum, J., and Henning, Th. 1995. Coagulation simulations for interstellar dust grains using an n-particle code. Adv. Space Res., 15, pp. (10)55–(10)58.

    Article  ADS  Google Scholar 

  • Sack, N. J., and Baragiola, R. A. 1993. Sublimation of vapor-deposited water ice below 170 K, and its dependence on growth conditions. Phys. Rev. B, 48, pp. 9973–9978.

    Article  ADS  Google Scholar 

  • Sandford, S. A., and Allamandola, L. J. 1988. The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity. Icarus, 76, pp. 201–224.

    Article  ADS  Google Scholar 

  • Sandford, S. A., and Allamandola, L. J. 1993. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. Ap. J., 417, pp. 815–825.

    Article  ADS  Google Scholar 

  • Schleicher, B., Burtscher, H., and Siegmann, H. C. 1993. Photoelectric quantum yield of nanometer metal particles. Appl. Phys. Lett., 63, pp. 1191–1193. pp. 190–204.

    Article  ADS  Google Scholar 

  • Sekanina, Z. 1982. Comet Bowell /1980b/ - an active-looking dormant object. Astron. J., 87, pp. 161–169.

    Article  ADS  Google Scholar 

  • Senay, M. C., and Jewitt, D. 1994. Coma formation driven by carbon monoxide release from comet Schwassmann-Wachmann I. Nature, 371, pp. 229–231.

    Article  ADS  Google Scholar 

  • Shi, M., Baragiola, R. A., Grosjean, D. E., Johnson, R. E., Jurac, S., and Schou, J. 1995. Sputtering of water ice surfaces and the production of extended neutral atmospheres. J. Geophys. Res., 100, pp. 26387–26396

    Article  ADS  Google Scholar 

  • Sigmund, P. 1993. Fundamental processes in the sputtering of atoms and molecules, (Copenhagen: Roy. Dan. Acad. of Sci.)

    Google Scholar 

  • Simpson, J. A. 1983. Introduction to the galactic cosmic radiation. In Composition and origin of cosmic rays, ed. M. M. Shapiro, (Amsterdam: Reidel), pp. 1–24.

    Google Scholar 

  • Smirnov, B. M. 1990. The properties of fractal clusters. Physics Reports, 188, pp. 1–78.

    Article  ADS  Google Scholar 

  • Smoluchowski R. 1985. Amorphous and porous ices in cometary nuclei. In “Ices in the Solar System”, eds. J. Klinger, D. Benest, A. Dollfus and R. Smoluchowski, (Dordrecht: D. Reidel Publishing Co.), pp. 397–406.

    Chapter  Google Scholar 

  • Smrekar, S., Cintala, M. J., and Harz, F. 1986. Small-scale impacts into rock: An evaluation of the effects of target temperature on experimental results. Geophys. Res. Lett., 13, pp. 745–748.

    Article  ADS  Google Scholar 

  • Sternberg, A., Dalgarno, A., and Lepp, S. 1987. Cosmic-ray induced photodestruction of interstellar molecules. Ap. J., 320, pp. 676–682.

    Article  ADS  Google Scholar 

  • Sternglass, E. J. 1954. Sci. Paper 1772, (Pittsburgh: Westinghouse Res. Lab.)

    Google Scholar 

  • Strazzulla, G. 1999. Ion Irradiation and the Origin of Cometary Materials. Space Sci. Reviews, 90, pp. 269–274.

    Article  ADS  Google Scholar 

  • Strazzulla, G., and Johnson, R. E. 1991. Irradiation effects on comets and cometary debris. In Comets in the Post-Halley Era, eds. R. L. Newburn et al. (Amsterdam: Kluwer Acad. Publ.), pp. 243–275.

    Google Scholar 

  • Svestka, J., Auer, S., Baguhl, M., and Grün, E. 1996. Measurement of dust electric charges by the Ulysses and Galileo dust detectors. In Physics, Chemistry and Dynamics of Interplanetary Dust, Conf. Series VoL. 104, eds. B. Å. S. Gustafson and M. S. Hanner (San Francisco: Astron. Soc. of the Pacific Press), pp. 481–484.

    Google Scholar 

  • Svestka, J., Cermak, I., and Grün, E. 1993. Electric charging and electrostatic fragmentation of dust particles in laboratory. Adv. Space Res., 13, pp. (10)199–(10)202.

    Article  Google Scholar 

  • Svestsov, V. V., Nemtchinov, I. V., and Teterev, A. V. 1995. Disintegration of large meteoroids in Earth’s atmosphere: Theoretical models. Icarus, 116, pp. 131–153.

    Article  ADS  Google Scholar 

  • Takagi, Y., Kawakami, S., and Mizutani, H. 1984. Impact fragmentation experiments of basalts and pyrophyllites. Icarus, 59, pp. 462–477.

    Article  ADS  Google Scholar 

  • Taylor, S. R. 1982. Planetary science: A lunar perspective (Houston: Lunar and Planet. Inst.) Chap.4.

    Google Scholar 

  • Tomeoka, K. 1991. Aqueous alteration in hydrated interplanetary dust particles. In Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regourd and H. Hasegawa, (Dordrecht: Kluwer Acad. Publ.), pp. 71–78.

    Google Scholar 

  • Umebayashi, T., and Nakano, T. 1990. Magnetic flux loss from interstellar clouds. Mon. Not. R. Astr. Soc., 243, pp. 103–113.

    ADS  Google Scholar 

  • van de Hulst, H. C. 1957. Light Scattering by Small Particles, (New York: Wiley [Also New York: Dover 1981]) 8.41.

    Google Scholar 

  • Verlicchi, A., La Spina, A., Paolicchi, P., and Cellino, A. 1994. The interpretation of laboratory experiments in the framework of an improved semi-empirical model. Planet. Space Sci., 42, pp. 1031–1042.

    Article  ADS  Google Scholar 

  • Wagner, W., Saul, A., and Pruss, A. 1994. International equations for the pressure along the melting and along the sublimation curve of ordinary water substance. J. Phys. Chern. Ref. Data, 23, pp. 515–527.

    Article  ADS  Google Scholar 

  • Walch, B., Honinyi, M., and Robertson, S. 1995. Charging of dust grains in plasma with energetic electrons. Phys. Rev. Letters, 75, pp. 838–841.

    Article  ADS  Google Scholar 

  • Wallis, M. K., and Hassan, M. H. A. 1983. Electrodynamics of submicron dust in the cometary coma. Astmn. Astmphys., 121, pp. 10–14.

    ADS  Google Scholar 

  • Weidenschilling, S. J. 1997. The origin of comets in the solar nebula: A unified model. Icarus, 127, pp. 290–306.

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J., and Cuzzi, J. N. 1997. In Pmtostars and Planets III, eds. E. H. Levy and J. I. Lunine, (Tucson: Univ. of Arizona Press) pp. 1031–1060.

    Google Scholar 

  • Westley, M. A., Baragiola, R. A., Johnson, R. E., and Barratta, G. A. 1995. Photo desorption from low temperature water ice in interstellar and circumstellar grains. Nature, 373, pp. 405–407.

    Article  ADS  Google Scholar 

  • Whipple, E. C. 1981. Potentials of surfaces in space. Rep. Pmg. Phys., 44, pp. 1197–1250.

    Article  ADS  Google Scholar 

  • Wilson, G. R. 1991. The plasma environment, charge state, and currents of Saturn’s C and D rings. J. Geophys. Res., 96, pp. 9689–9701.

    Article  ADS  Google Scholar 

  • Worden, S. P., Schneeberger, T. J., Kuhn, J. R., and Africano, J. L. 1981. Flare activity on T-tauri stars. Ap. J., 244, pp. 520–524.

    Article  ADS  Google Scholar 

  • Wurm, G., and Blum, J. 1998. Experiments on preplanetary dust aggregation. Icarus, 132, pp. 125–136.

    Article  ADS  Google Scholar 

  • Xu, W., D’Angelo, N., and Merlino, R. L. 1993. Dusty plasmas: The effect of closely packed grains. J. Geophys. Res., 98, pp. 7843–7847.

    Article  ADS  Google Scholar 

  • Yamamoto, S., and Nakamura, A. M. 1997. Velocity measurements of impact ejecta from regolith targets. Icarus, 128, pp. 160–170.

    Article  ADS  Google Scholar 

  • Yamamoto, T., and Ashihara, O. 1985. Condensation of ice particles in the vicinity of a cometary nucleus. Astron. Astmphys., 152, pp. LI7–L20.

    Google Scholar 

  • Yamamoto, T., Nakagawa, N., and Fukui, Y. 1983. The chemical composition and thermal history of the ice of a cometary nucleus. Astmn. Astmphys., 122, pp. 171–176.

    ADS  Google Scholar 

  • Yeomans, D. K. 1991. Cometary orbital dynamics and astrometry. In Comets in the Post-Halley Era, eds. R. L. Newburns Jr., M. Neugebauer and J. Rahe (Amsterdam: Kluwer Acad. Publ.), pp. 3–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukai, T., Nakamura, A.M., Blum, J., Johnson, R.E., Havnes, O. (2001). Physical Processes on Interplanetary Dust. In: Grün, E., Gustafson, B.Å.S., Dermott, S., Fechtig, H. (eds) Interplanetary Dust. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56428-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56428-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62647-0

  • Online ISBN: 978-3-642-56428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics