Skip to main content

Zusammenfassung

Die Immissionsökologie ist jener Teilder Ökologie, der sich mit dem Einfluß von Luftverunreinigungen auf die Biosphäre befaßt. Sie untersucht Wirkungen von Luftverunreinigungen auf Pflanze und Tier in ihren Wechselbeziehungen mit den Medien Boden, Wasser und Luft und auf die daraus resultierenden ökosystemaren Strukturen und Funktionen. Hinsichtlich der dabei angewandten Methoden sei u. a. auf die Kapitel 3.2 und 3.3 sowie auf Bd. 2B,Kap. 3.1 bis 3.3 verwiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andersen A, Ott R, Schramm E (1986) Der Freiberger Hüttenrauch 1849-1865. Umweltauswirkungen, ihre Wahrnehmung und Verarbeitung. Technikgeschichte 53:169–199

    Google Scholar 

  • Augustin S (1997) Forstbodenkunde. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. E. Schmidt, Berlin, S 147–292

    Google Scholar 

  • Börtitz S, Däßler HG (1992) J.A. Stöckhardts grundlegende Beiträge zur Immissi-onsforschung und deren heutige Bedeutung. Wiss Z Techn. Universität Chemnitz-Zwickau 34:281–292

    Google Scholar 

  • Dörries W (1932) Über die Brauchbarkeit der spektroskopischen Phäophytinprobe in der Rauchschadendiagnostik. Z Pflanzernkrankh Pflanzenschutz 42:257–273

    Google Scholar 

  • Freytag M (1869) Über die Einwirkung der schwefligen Säure auf die Vegetation. Mitt königllandwirtschaftl Akademie Poppelsdorf 2:34–58

    Google Scholar 

  • Garber C (1967) Luftverunreinigungen und ihre Wirkungen. Gebr Bornträger, Berlin

    Google Scholar 

  • Gerlach C (1908) Die Ermittlung des Säuregehaltes der Luft in der Umgebung von Rauchquellen und der Nachweis seines Ursprungs. In: VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI-Verlag Düsseldorf 1985. Heft 3:3–24

    Google Scholar 

  • Gerlach C (1914) Der Ursprungsnachweis der Rauchsäuren in den an Baumstämmen abfließenden Niederschlagswässern mittels eines selbsttätigen Separators und der Einfluß dieses sauren Wassers auf den Boden. In: VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI-Verlag Düsseldorf 1985. Heft 9:1–56

    Google Scholar 

  • Guderian R (1970) Untersuchungen über die quantitativen Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflanzenkrankh Pflanzenschutz 77:200–220; 289-308; 387-399

    CAS  Google Scholar 

  • Guderian R, Stratmann H (1968) Freilandversuch zur Ermittlung von Schwefel-dioxidwirkungen auf die Vegeatation. III. Teil: Grenzwerte schädlicher SO2-Immissionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsberichte des Landes NRW 1920. West-deutscher Verlag, Köln

    Google Scholar 

  • Guderian R, van Haut H (1970) Nachweis von Schwefeldioxid-Wirkungen an Pflanzen. Staub Reinhalt Luft 30:17–26

    CAS  Google Scholar 

  • Hartig R (1896) Über die Einwirkung des Hütten-und Steinkohlenrauches auf die Gesundheit der Nadelwaldbäume. Forst Naturw Z 5:245–290

    Google Scholar 

  • Haselhoff E (1932) Grundzüge der Rauchschadenskunde. Gebr Bornträger, Berlin

    Google Scholar 

  • Haselhoff E, Lindau G (1903) Die Beschädigung der Vegetation durch Rauch. Gebr Bornträger, Berlin

    Book  Google Scholar 

  • Haselhoff E, Bredemann G, Haselhoff W (1932) Entstehung, Erkennung und Beurteilung von Rauchschäden. Gebr Bornträger, Berlin

    Google Scholar 

  • Hasenclever R (1879) Über die Beschädigung der Vegetation durch saure Gase. Springer-Verlag, Berlin

    Google Scholar 

  • von Haut H, Stratmann H (1970) Farbatlas über Schwefeldioxid-Wirkungen an Pflanzen. Girardet, Essen

    Google Scholar 

  • Hitchcock AE, Zimmermann PW, Coe RR (1962) Results of ten years’ work (1950-1960) on the effects of fluorides on gladiolus. Contrib Boyce Thompson Inst 21 (5):303–344

    CAS  Google Scholar 

  • Katz M (1937) Report on the effect of dilute sulphur dioxide on alfalfa. In: National Research Council of Canada: Trail Smelter Question. Doc. Sero DD Append. DD3, Ottawa

    Google Scholar 

  • Keller T (1977) Begriff und Bedeutung der „latenten Immissionsschädigung“. Allg Forst Jagdz 148:115–120

    Google Scholar 

  • Knabe W (1982) Immissionsökologische Waldzustandserfassung. Ergebnisse und ihre Bedeutung für die Forstwirtschaft in Nordrhein-Westfalen. In: Sonderheft LÖLF-Mitteilungen S 43–57

    Google Scholar 

  • Liesegang W (1932) Über den Nachweis von Verunreinigungen durch Industriegase in der freien atmosphärischen Luft. Kleine Mitt Wasser-, Boden-u Lufthygiene Berlin-Dahlem 8,7(1l):174–181

    Google Scholar 

  • Neger FW (1919) Ein neues untrügliches Merkmal für Rauchsch äden bei Laubhölzern. Angew Bot 1:129–138

    Google Scholar 

  • Noack K (1929) Untersuchungen über die Rauchschäden der Vegetation. Z Angew Chem 42:123–126

    Article  CAS  Google Scholar 

  • O’Gara PJ (1922) Abstract of paper: Sulphur dioxide and fume problems and their solutions. Ind Eng Chem 14:744

    Google Scholar 

  • Ost H (1896) Untersuchungen von Rauchschäden. Chemiker 20:166

    Google Scholar 

  • Ost H (1907) Der Kampf gegen schädliche Industriegase. Z Angew Chem 20: 1689–1693

    Article  Google Scholar 

  • Reuss C (1893) Rauchbeschädigungen in den Gräflich v. Tiele-Winkler’schen For-strevieren Myslowitz-Kattowitz. Goslar

    Google Scholar 

  • Rusnov P (1919) Die Entkalkung des Bodens durch den Einfluß SO2-haltiger Rauchgase. Centralbl Forstwesen 45:283–290

    CAS  Google Scholar 

  • von Schroeder J (1872) Einwirkung der schwefligen Säure auf die Pflanzen. Die LandwVersuchsst 15:321–355

    Google Scholar 

  • von Schoeder J (1873) Einwirkung der schwefligen Säure auf die Pflanzen. Die Landw Versuchsst 22:447–470

    Google Scholar 

  • von Schoeder J, Reuss C (1883) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, Berlin

    Google Scholar 

  • Smith RA (1872) Air and Rain. The beginnings of a chemical climatology. Longmans, Green and Co, London

    Google Scholar 

  • Sorauer P (1911) Die mikroskopische Analyse rauchbeschädigter Pflanzen. In:VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI Verlag Düsseldorf 1985. Heft 7:1–58

    Google Scholar 

  • Sorauer P, Ramann E (1899) Sogenannte unsichtbare Rauchbeschädigungen. Bot Centralbl 80:50–56; 106-116; 156-168; 205-216; 251-262

    Google Scholar 

  • Stöckhardt A (1850a) Ueber einige durch den Bergbau und Hüttenbetrieb für die Landescultur entstehenden Benachteiligungen. In: Z Dtsch Landwirte NS 1:33–38; 129-137

    Google Scholar 

  • Stöckhardt A (1850b) Ueber die Einwirkung des Rauches der Silberhütten auf die benachbarte Vegetation. Polytech Centralbl 257–278

    Google Scholar 

  • Stöckardt A (1871) Untersuchungen über die schädliche Einwirkung des Hütten-und Steinkohlenrauches auf das Wachstum der Pflanzen, insbesondere Fichte und Tanne. Tharandter Forstliches Jahrbuch 21:218–254

    Google Scholar 

  • Stöckardt A (1872) Untersuchungen über die schädliche Einwirkung des Hütten-rauches und des Steinkohlenrauches auf das Pflanzenwachstum. Der Chem Ackersmann 18:24–47; 111-121

    Google Scholar 

  • Stoklasa J (1923) Die Beschädigung der Vegetation durch Rauchgase und Fabrikex-halationen. Urban und Schwarzenberg, Berlin

    Google Scholar 

  • Schwela D (1983) Vergleich der nassen Deposition von Luftverunreinigungen in den Jahren um 1870 mit heutigen Belastungen. Staub-Reinhaltung der Luft 43:135–139

    CAS  Google Scholar 

  • Thomas MD, Hill GR Jr (1935) Absorption of sulphur dioxide by alfalfa and its relation to leaf injury. Plant Physiol l0:291–307

    Article  Google Scholar 

  • Thomas MD, Hendricks RH, Collier TR, Hill GR (1943) The utilization of sulphate and sulphur dioxide for the sulphur nutrition of alfalfa. Plant Physiol 19:227–244

    Article  Google Scholar 

  • Thomas MD (1951) Gas damage to plants. Annu Rev Plant Physiol 2:293–321

    Article  CAS  Google Scholar 

  • Tingey DT, Reinert RA (1975) The effect of ozone and sulfur dioxide singly and in combination on plant growth. Environ Pollut 9:117–125

    Article  CAS  Google Scholar 

  • Turner E, Christison R (1828) Über die Wirkung der giftigen Gase auf Pflanzen. Poggend. Ann Phys 14:259–273

    Article  Google Scholar 

  • Ulrich B (1986) Natural and anthropogenie components of soil acidification. Z Pflanzen ernähr Bodenkd 149:702–717

    Article  CAS  Google Scholar 

  • Wentzel KF (1966) Landschaftsschutz gegen Immissionen. Angew Bot 40:1–11

    Google Scholar 

  • Wentzel KF (1985) Oberförster Reuss aus Goslar-bleibende Erkenntnis der Rauchschadensforschung im 19. Jahrhundert. In: VDI Berichte 560: Waldschäden. Einflußfaktoren und ihre Bewertung. Kommission Reinhaltung der Luft, Düsseldorf, 9–20

    Google Scholar 

  • Wieler A (1897) Über unsichtbare Rauchschäden an Nadelbäumen. Z Forst Jagd-wesen 29:513–529

    Google Scholar 

  • Wieler A (1905) Untersuchungen über die Einwirkung schwefliger Säure auf die Pflanzen. Gebr Bornträger, Berlin

    Google Scholar 

  • Wieler A (1912) Pflanzenwachstum und Kalkmangel im Boden. Gebr Bornträger, Berlin

    Google Scholar 

  • Wienhaus O, Däßler HG, Börtitz S (1994) Tharandter Beiträge zur Phytochemie von SO2-Wirkungen. Essener Ökol Schrift 4:39–51

    Google Scholar 

  • Wislicenus H (1898) Resistenz der Fichte gegen saure Rauchgase bei ruhender und tätiger Assimilation. Tharandter Forstl Jahrb 48:152–172

    Google Scholar 

  • Wislicenus H (1914) Experimentelle Rauchschäden. In: VDI (Hrsg) Waldsterben im 19. Jahrhundert. VDI-Verlag Düsseldorf 1985, Heft 10:1–168

    Google Scholar 

  • Wislicenus H (1931) Die bisherige Arbeit und die nächsten Ziele des Institutes für Pflanzenchemie und Holzforschung, Dresden-Tharandt. Sonderdruck aus dem Tharandter Forstl Jahrbuch 221–241

    Google Scholar 

  • Wislicenus H, Neger FW (1914) Experimentelle Untersuchungen über die Wirkung der Abgassäuren auf die Pflanze. Mitt Königl Sächs Forstl Versuchsanstalt zu Tharandt, Bd 1, Heft 3

    Google Scholar 

Literatur

  • Adams MB, Edwards NT, Taylor GE Jr, Skaggs BL (1990) Whole-plant 14C-photo-synthate allocation in Pinus taeda: seasonal patterns at ambient and elevated ozone levels. Can J For Res 20:152–158

    Article  Google Scholar 

  • Adams MR, Glyer JD, McCarl BA (1988) The NCLAN Economic Assessment: approach, findings and implications. In: Heck WW et al (Hrsg) Assessment of crop loss from air pollutants. Elsevier Applied Science, London, S 473–504

    Chapter  Google Scholar 

  • Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: Understanding carbon allocation priorities. Environ Pollut 73:217–244

    Article  CAS  Google Scholar 

  • Augustin S (1997) Forstbodenkunde. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. UBA, Berlin 6/97

    Google Scholar 

  • Blum U, Tingey DT (1977) A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. Atmos Environ 11:737–739

    Article  CAS  Google Scholar 

  • Bormann FH (1985) Air pollution and forests: an ecosystem perspecvtive. BioScience 35:434–441

    Article  CAS  Google Scholar 

  • Brandt B (1962) Effects of air pollution on plants. In: Stern AC (Hrsg) Air pollution, voll. Academic Press, London, S 255–281

    Google Scholar 

  • Bücker J (1991) Immissionsbedingte Störungen im Kohlenhydrathaushalt junger Pappeln und Fichten. Verlag Westarp Wissenschaften, Magdeburg; ISBN 3-89432-050-8

    Google Scholar 

  • Bücker J, Ballach HJ (1992) Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiol Plant 86:512–517

    Article  Google Scholar 

  • Däßler HG (1991) Einfluß von Luftverunreinigungen auf die Vegetation: Ursachen — Wirkungen — Gegenmaßnahmen. Gustav Fischer, Jena

    Google Scholar 

  • Däßler HG, Börtitz S (1971) Zur Wirkungsweise von Luftverunreinigungen auf landwirtschaftliche Erzeugnisse. Biol Zentralbl 90:611–619

    Google Scholar 

  • Davinson SR, Barnes JD (1998) Effects of ozone on wild plants. New Phytologist 139:135–151

    Article  Google Scholar 

  • Eller MB(1977) Beeinflussung der Energiebilanz von Blättern durch Straßenstaub. Angew Bot 51:9–15

    Google Scholar 

  • Eller MB, Brunner U (1975) Der Einfluß von Straßenstaub auf die Strahlungsab-sorption durch Blätter. Arch Met Geoph Biokl Ser B 23:137–146

    Article  Google Scholar 

  • EPA (Environmental Protection Agency, 1986) Air quality criteria for ozone and other photochemical oxidants, vol III of V. Environmental Criteria and Assessment Office Research Triangle Park NC 27711; EPA/6008-84/020cF

    Google Scholar 

  • EPA (Environmental Protection Agency, 1998) Air quality criteria for ozone and related photochemical oxidants, vol II of III. National Center for Environmental Assessment Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park NC 27711; EPA/600/P-93/004bF

    Google Scholar 

  • Fangmeier A, Hadwiger-Fangmeier A, v. der Eerden L, Jäger HJ (1994) Effects of atmospheric ammonia on vegetation — a review. Environ Pollut 86:43–82

    Article  CAS  Google Scholar 

  • Feder WA (1970) Plant response to chronic exposures to low levels of oxidant type air pollution. Environ Pollut 1:73–79

    Article  CAS  Google Scholar 

  • Grill D, Zellnig G, Bermadinger-Stabentheiner E, Müller M (1993) Strukturelle Veränderungen in Abhängigkeit verschiedener Luftschadstoffe. Forstw Centralbl 112:2–11

    Article  Google Scholar 

  • Guderian R, Küppers K (1980) Responses of plant communities to air pollution. sProc Symp Effects of air pollutants on mediterranian and temperate ecosysterns, Riverside, Ca, S 187–197

    Google Scholar 

  • Guderian R, Tingey DT (1987) Notwendigkeit und Ableitung von Grenzwerten für Stickstoffoxide. UBA-Berichte 1/87, Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Guderian R, van Haut H, Stratmann H (1960) Probleme der Befassung und Beurteilung von Wirkungen gasförmiger Luftverunreinigungen auf die Vegetation. Z Pflanzenkrankh Pflanzenschutz 67:257–264

    CAS  Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1983) Wirkungen von Photooxidantien auf Pflanzen. In: Umweltbundesamt (Hrsg) Luftqualitätskriterien für photochemische Oxidantien. Erich Schmidt, Berlin, Berichte 5/83:205–427

    Google Scholar 

  • Guderian R, Ballach H-J, Klumpp A, Klumpp G, Küppers K, Vogels K, Willenberg IM (1987) Reactions of Norway spruce to air pollution in fumigation experiments and in damaged forest stands. In: EPA (Hrsg) Effects of atmospheric pollutants on the spruce-fir forests of Eastern United States and the Federal Republic of Germany, Burlington, Vermont, S 389–405

    Google Scholar 

  • Guderian R, Wienhaus O(1997) „Neuartige Waldschäden“ und Luftverunreinigungen. In: Deutscher Forstverein e V (Hrsg) Deutscher Forstverein, Jahresbericht 1996, Niedenstein, S 181–200

    Google Scholar 

  • Hampp R, Schäffer C (1995) Mycorrhiza — Carbohydrate and energy metabolism. Mycorrhiza, Springer-Verlag, Berlin Heidelberg NewYork, S 267–296

    Google Scholar 

  • Heggestad HE, Heck WW (1971) Nature, extent, and variation of plant response to air pollutants. Adv Agron 23:111–145

    Article  CAS  Google Scholar 

  • Hoque E (1990) Biochemie und Physiologie erkrankter Fichten. Ecomed Verlag, Landsberg

    Google Scholar 

  • Kluge H (1993) Nur die Buchen überlebten. Forst und Holz 48:462–466

    Google Scholar 

  • Klumpp A, Guderian R (1990a) Leachimg von Magnesium, Calcium und Kalium aus immissionsbelasteten Nadeln junger Fichten (Picea abies (L) Karst). I. Ein-fluß von O3 und SO2 auf die Kationenauswaschung in Abhängigkeit von Nadelalter und der Azidität der Lösung. Forstw Cenralbl l09:13–21

    Article  Google Scholar 

  • Klumpp A, Guderian R (1990) Leaching von Magnesium, Calcium und Kalium aus immissionsbelasteten Nadeln junger Fichten (Picea abies (L) Karst). II. Jahres-zeitlicher Verlauf der Ionenauswaschung O3/SO2-belasteter Fichten unter-schiedlicher Mg-und Ca-Versorgung. Forstw Centralbl l09:21–28

    Google Scholar 

  • Klumpp A, Guderian R (1990c) Leaching von Magnesium, Calcium und Kalium aus immissionsbelasteten Nadeln junger Fichten (Picea abies (L) Karst). III. Wirkung einer regelmäßigen Benebelung auf die Mineralstoffgehalte immissi-onsbelasteter Fichtennadeln. Forstw Cbl 109:28–39

    Article  Google Scholar 

  • Konnert M (1992) Genetische Untersuchungen in gesch ädigten Weißtannenbe-ständen (Abies alba Mill) Südwestdeutschlands. Mitt der Forstl Versuchs-und Forschungsanstalt Baden-Württemberg, H 167, 120 S

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Liebold E, Drechsler M (1991) Schadenszustand und-entwicklung in den SO2-geschädigten Fichtengebieten Sachsens. AFZ 10:492–494

    Google Scholar 

  • Luck RF (1980) Impact of oxidant air pollution on ponderosa and Jeffry pine cone production. In: Miller PR (Hrsg) Proceedings of symposium on effects of air pollutants on Mediterranean and temperate forest ecosysterns, 240. Berkely, CA, US Dep of Agriculture, Forest Service, General Tech Rep PSW-43

    Google Scholar 

  • Materna J (1987) Waldschäden in der CSSR.Österr Forstztg 1:17–19

    Google Scholar 

  • McClenahen JR (1984) Air pollutant effects on forest communities. In: Davis DD et al (eds) Air pollution and the productivity of the forest: proceedings of the symposium: Oct 1983. Izaak Walton League of Arnerica, Washington DC, Arlington VA, pp 83–94

    Google Scholar 

  • Miller PR, Parmeter JR, Taylor OC Jr, Cardiff EA (1963) Ozone injury to the foliage of Pinusponderosa. Phytopathol 53:1072–1076

    CAS  Google Scholar 

  • Miller PL (1973) Oxidant-induced community change in a mixed conifer forest. In: Nägele JA (Hrsg) Air pollution damage to vegetation. American Chemical Society, Washington DC, Adv Chem 122:101–117

    Chapter  Google Scholar 

  • Mohr H (1994) Stickstoffeintrag als Ursache neuartiger Waldschäden. Spektrum der Wissenschaft, 48–53

    Google Scholar 

  • Müller-Starck G (1985) Genetic differences between „tolerant“ und „sensitive“ beeches (Fagus sylvatica L.). Silvae Genetica 34:241–247

    Google Scholar 

  • Odum EP (1985) Trends expected in stressed ecosystems. BioScience 35:419–422

    Article  Google Scholar 

  • Perchorowicz JT, Ting IP (1974) Ozone effects on plant cell permeability. Am J Bot 61:787–793

    Article  CAS  Google Scholar 

  • Pleijel H, Skärby L, Wallin G, Sellden G (1991) Yield and grain quality of spring wheat (Triticum aestivum L. cv. Trabant) exposed to different concentrations of ozone in open top chambers. Environ Pollut 69:151–168

    Article  CAS  Google Scholar 

  • Skärby L, Sellden G, Mortensen L, Bender J, Iones M, DeTemmermann L, Wenzel A, Fuhrer J (1993) Resposes of cereals exposed to air pollutants in open-top chambers. In: Jäger HJ et al (eds) Effcects of air pollution on agricultural crops in Europe. Air Poll Res Rep 46:241–259

    Google Scholar 

  • Thienemann A (1956) Leben und Umwelt: vom Gesamthaushalt der Natur. Rowohlt, Hamburg

    Google Scholar 

  • Tingey DT, Andersen CP (1991) The physological basis of differential plant sensitivity to changes in atmospheric quality. In: Taylor GE Jr et al (eds) Ecological genetics and air pollution. Springer-Verlag, Berlin Heidelberg New York, pp 209–235

    Chapter  Google Scholar 

  • Tingey DT, Taylor GE Jr (1982) Variation in plant response to ozone.: a conceptional model of physiological events. In: Unsworth MH, Ormrod DPM (eds) Effects of gaseous air pollutants in agricvulture and horticulture. Butterworth, London, 111–138

    Google Scholar 

  • Tingey DT, Wilhour RG, Taylor OC (1979) The measurement of plant responses. Handbook of methodology for the assessment of air pollution effects on vegetation. Air Pollut Contr Assoc, Pittsburgh, 7.1–7.35

    Google Scholar 

  • Turunen M, Huttunen S (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual 19:35–45

    Article  CAS  Google Scholar 

  • Weigel HJ, Adaros G, Jäger HJ (1990) Yield responses of different crop species to long-term fumigation with sulfur dioxide in open-top chambers. Environ Pollut 67:15–28

    Article  CAS  Google Scholar 

  • Wentzel KF (1984) Das Erzgebirge im Koma. In: Guratsch D (Hrsg) Baumlos in die Zukunft? Kindler Verlag, München, S 49–59

    Google Scholar 

  • Willenbrink J, Schatten T (1993) CO2-Fixierung und Assimilatverteilung in Fichten unter Langzeitbegasung mit Ozon. Forstw Centralbl 112:50–56

    Article  Google Scholar 

  • Wolak J (1971) Relationship between increase in air pollution toxicity and elevation above ground. Wyd Inst Badascy Lesnictwa, Warschau, Polen

    Google Scholar 

Literatur

  • Albaugh TJ, Mowry FL, Kress LW (1992) A field chamber for testing air pollution effects on mature trees. J Environ Qual 21:476–485

    Article  Google Scholar 

  • Allen LH, Drake BG, Rogers HH, Shinn JH (1993) Field techniques for exposure of plants and ecosystems to elevated CO2 and other trace gases. Crit Rev Plant Sci 11:85–119

    Google Scholar 

  • Arndt U, Nobel W, Schweizer B (1987) Bioindikatoren. Ulmer, Stuttgart

    Google Scholar 

  • Ashenden TW, Tabner PW, Williams P, Whitemore ME, Mansfield TA (1982) A large-scale system for exposing plants to SO2 and NO2. Environ Pollut 3:21–26

    Article  CAS  Google Scholar 

  • Ashmore MR, Bell JNB, Mimmack A (1988) Crop growth along a gradient of ambient air pollution. Environ Pollut 53:99–121

    Article  CAS  Google Scholar 

  • Buckenham AH, Parry MA, Whittingham CP, Young AT (1981) An improved opentopped chamber for pollution studies. Environ Pollut 2:275–282

    Article  Google Scholar 

  • Buckenham AH, Parry MAJ, Whittingham CP (1982) Effects of aerial pollutants on the growth and yield of spring barley. Ann Appl Biol 100:179–187

    Article  CAS  Google Scholar 

  • Chevone BJ, Yang YS, Winner WE, Storks-Colter J, Long SJ (1984) A rainfall simulator for laboratory use in acidic precipitation studies. J Air Pollut Contr Assoc 31:355–359

    Article  Google Scholar 

  • Collvill KE, Bell RM, Roberts TM, Bradshaw AD (1983) The use of open-top chambers to study the effects of air pollutants, in particular sulphur dioxide, on the growth of reyegrass Lolium perenne L, part II. The long term effect of filtering polluted urban air or adding SO2 to rural air. Environ Pollut 31:35–55

    Article  Google Scholar 

  • Darley EF, Lerman S, Oshima RJ (1968) Plant exposure chambers for dust studies. J Air Pollut Contr Assoc 18:28–29

    Article  Google Scholar 

  • DeCormis L, Bonte J, Tisne A (1975) Experimental technique for determining the effect on vegetation of sulphur dioxide pollutants applied continuously in subnecrotic doses. Pollut Atmospherique 17:103–107

    Google Scholar 

  • Ennis CA, Lazrus AL, Kok GL, Zimmerman PR, Monso RK (1990) A branch chamber system and techniques for simultaneous pollutant exposure experiments and gaseous flux determinations. Tellus Ser B 42:170–182

    Article  Google Scholar 

  • EPA (1987) Air pollution exposure systems and experimental protocols, voll: a review and evaluation of performance. US Environmental Protection Agency 600/3-87/037a

    Google Scholar 

  • Evans LS, Lewin KF, Patti MJ, Cunningham FA (1983) Productivity of field-grown soybeans exposed to simultated acidic rain. New Phytol 93:377–388

    Article  CAS  Google Scholar 

  • Fowler D, Duyzer JH, Baldocchi DD (1991) Inputs of trace gases, particles and cloud droplets to terrestial surfaces. Proc R Soc Edinb 97B:35–39

    Google Scholar 

  • Grennwood P, Greenhalgh A, Baker C, Unsworth M (1982) A computer-controlled system for exposing field crops to gaseous air polllutants. Atmospheric Environ 16:2261–2266

    Article  Google Scholar 

  • Grünhage L, Jäger H-J (1994) Influence of the atmospheric conductivity on the ozone exposure of plants under ambient conditions: considerations for establishing ozone standards to protect vegetation. Environ Pollut 85:12–129

    Google Scholar 

  • Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Guderian R, Küppers K, Six R (1985b) Wirkungen von Ozon, Schwefeldioxid und Stickstoffdioxid auf Fichte und Pappel bei unterschiedlicher Versorgung mit Magnesium und Kalzium sowie auf die Blattflechte Hypogymnia physodes. VDI-Berichte 560:657–701

    CAS  Google Scholar 

  • Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. Teil 1. Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsbericht des Landes Nordrhein-Westfalen Nr. 1118. Westdeutscher Verlag, Köln

    Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1985a) Effects of photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants. Ecol Stud 52. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  • Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to assess the impact of air pollution on plants. J Environ Qual 2:365–368

    Article  CAS  Google Scholar 

  • Heagle AS, Miller JE, Sherill DE (1994) A white clover system to estimate effects of tropospheric ozone on plants. J Environ Qual 23: 613–621

    Article  CAS  Google Scholar 

  • Heagle AS, Philbeck RB (1979) Exposure techniques. In: Heck WW, Krupa SV, Linzon SN (eds) Methodology for the assessment of air pollution effects on vegetation. Air Pollution Control Association, Pittsburgh

    Google Scholar 

  • Heagle AS, Philbeck RB, Brewer PF, Ferrell RF (1983) Responses of soybeans to simulated acid rain in the field. J Environ Qual 12:539–543

    Google Scholar 

  • Heck WW, Taylor OC, Tingey DT (1988) Assessment of crop losses from air pollutants. Elsevier Science, London

    Book  Google Scholar 

  • Hendrey GR (1993) FACE: free-air CO2 enrichment for plant research in the field. CRC Press, YBoca Raton

    Google Scholar 

  • Hendrey GR, Lewin KF, Nagy J (1993) Control of carbon dioxide in unconfined field plots. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Ecosystems Research Report 6. Commission of the European Communities, Brussels

    Google Scholar 

  • Hendrey GR, Lewin KF, Zolber Z, Evans LS (1992) Controlled enrichment system for experimental fumigation of plants in the field with sulfur dioxide. J Air Waste Manage Assoc 42:1324–1327

    CAS  Google Scholar 

  • Hertstein U, Fangmeier A, Jäger H-J (1996) ESPACE-Wheat (European Stress Physiology and Climate Experiment) project 1: wheat I: objectives, general approach, and first results. J Appl Bot 70:172–180

    Google Scholar 

  • Hogsett WE, Tingey DT, Hendricks C, Rossi DC (1989) Sensitivity ofwestern conifers to SO2 and seasonal interaction of acid fog and zone. In: Olson RK, Lefohn AS (eds) Effects of air pollution on western forests. Air Pollution Control Association, Pittsburgh

    Google Scholar 

  • Hogsett WE, Tingey DT, Holmann SR (1985) A programmable exposure control system for determination of the effects of pollutant exposure regimes on plant growth. Atmospheric Environ 19:1135–1145

    Article  CAS  Google Scholar 

  • Houpis JLJ, Costella MP, Cowles SC (1991) A branch exposure chamber for fumigating ponderosa pine to atmospheric pollution. J Environ Qual 20:467–474

    Article  Google Scholar 

  • Irving PM (1983) Acidic deposition effects on vegetation: a review and analysis of methodology. VDI-Berichte 500:215–223

    CAS  Google Scholar 

  • Jacobson JS, Troiano J, Heller L (1985) Stage of development, responses, and recovery of radish plants from episodic exposure to simulated acidic rain. J Exp Bot 36:159–167

    Article  CAS  Google Scholar 

  • Jäger H-J, Steubing L (1970) Fraktionierte Schwefelbestimmung in Pflanzenmaterial zur Beurteilung einer SO2-Einwirkung. Angew Bot 44:209–221

    Google Scholar 

  • Jäger H-J, Unsworth M, De Temmermann L, Mathy P (1992) Effects of air pollution on agricultural crops. Air pollution research report 46. Commission of the European Communities, Brussels

    Google Scholar 

  • Jäger H-J, Weigel H-J (1993) The European open-top chamber network — a basis and framework for studies of the effects of elevated CO2 and its interactions with air pollution. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Ecosystems research report 6. Commission of the European Communities, Brussels

    Google Scholar 

  • Jäger H-J, Weigel H-J, Guderian R, Arndt U, Seufert G (1987) Methodological approaches, part I: experiments with open-top chambers — results, advantages and limitations. In: Mathy P (ed) Air pollution and ecosystems. Reidel, Dordrecht

    Google Scholar 

  • Johnston JW, Shriner DS, Abner CH (1986) Design and performance of an exposure system for measuring the response of crops to acid rain and gaseous pollutants in the field. J Air Pollut Control Assoc 36:894–899

    Article  CAS  Google Scholar 

  • Klein H, Priebe A, Weigel H-J, Jäger H-J (1980) Ökophysiologische Aspekte der Kontamination von Kulturpflanzen mit dem Schwermetall Cadmium. Verh Ges Ökol VIII:481–491

    Google Scholar 

  • Könnecker G, Aust HJ. Jäger H-J (1987) Der Einfluß säurehaltiger Niederschläge auf die Entwicklung von Erysiphe graminis DC. f. sp. tritici Marchal. Z Pflanzenkrankh Pflanzenschutz 94:58–67

    Google Scholar 

  • Körner C, Arnone JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675

    Article  Google Scholar 

  • Krause GHM (1974) Zur Aufnahme von Zink und Cadmium durch oberirdische Pflanzenorgane. Dissertation, Univ Bonn

    Google Scholar 

  • Krupa SV, Grünhage L, Jäger H-J, Nosal M, Manning WJ, Legge AH, Hanewald K (1995) Ambient zone (O3) and adverse crop response: a unified view of cause and effect. Environ Pollut 87:119–126

    Article  CAS  Google Scholar 

  • Kuja A, Jones R, Enyedi A (1986) A mobile rain exclusion canopy system to determine dose-response relationships for crops and forest species. Water Air Soil Pollut 31:307–315

    Article  CAS  Google Scholar 

  • Lauenroth WK, Preston EM (1984) The effects of So2 on a grassland. Ecol Stud 45. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Laurence JA, MacLean DC, Mandl RH, Schneider RE, Hansen KS (1982) Field tests of a linear gradient for exposure of row crops to SO2 and HF. Water Air Soil Pollut 17:399–407

    Article  CAS  Google Scholar 

  • Lee JJ, Lewis RA (1978) Zonal air pollution system: design and performance. In: Preston EM, Lewis RA (eds) The bioenvironmental impact of a coal-fired power plant. US Envirommental Protection Agency 600/3-78-021

    Google Scholar 

  • Lee JJ, Neely GE, Perrigan SC, Grothaus LC (1981) Effects of simulated sulphuric acid rain on yield, growth and foliar injury of several crops. Environ Exp Bot 21:171–185

    Article  CAS  Google Scholar 

  • Legge AH, Grünhage L, Nosal M, Jäger H-J, Krupa SV (1995) Ambient ozone and adverse crop response: an evaluation of North American and European data as they relate to exposure indices and criticallevels. J Appl Bot 69:192–205

    CAS  Google Scholar 

  • Lipfert FW, Alexander Y, Hendrey GR, Lewin KF, Nagy J (1992) Performance and analysis of the BNL FACE gas injection system. Crit Rev Plant Sci 11:143–163

    Article  Google Scholar 

  • Lockyer DR, Cowling DW, Jones LHP (1976) A system for exposing plants to atmospheres containing low concentrations of sulphur dioxide. J Exp Bot 27:397–409

    Article  CAS  Google Scholar 

  • Lucas PW, Cottam DA, Mansfield TA (1987) A large-scale fumigation system for investigating interactions between air pollution and cold stress on plants. Environ Pollut 43:15–28

    Article  CAS  Google Scholar 

  • Mandl RH, Laurence JA, Kohut RJ (1989) Development and testing of open-top chambers for exposing large, perennial plants to air pollutants. J Environ Qual 18:534–540

    Article  Google Scholar 

  • McLaughlin SB, Schorn VJ, Jones HC (1976) A programmable exposure system for kinetic dose-response studies with air pollutants. J Air Pollut Contr Assoc 26:132–135

    Article  CAS  Google Scholar 

  • McLeod AR, Fackrell JE, Alexander K (1985) Open-air fumigation of field crops: criteria and design for a new experimental system. Atmospheric Environ 19: 1639–1649

    Article  CAS  Google Scholar 

  • McLeod Ar, Shaw PJA, Holland MR (1992) The Liphook forest fumigation project: studies of sulphur diox ide and ozone effects on coniferous trees. For Ecol Manag 51:121–127

    Article  Google Scholar 

  • Miller JE, Spurgel DG, Muller RN, Smith HJ, Xerikos PB (1980) Open air fumigation system for investigating sulphur dioxide effects on crops. Phytopathol 70:1124–1128

    Article  Google Scholar 

  • Mooi IJ, van der Zalm AJA (1985) Research on the effects of higher than ambient concentrations of SO2 and NO2 on vegetation under semi-natural conditions: the developing and testing of a field fumigation system, process description. First Interim Report to the Commission of the European Communities, Contract ENV-677-NL, Research Institute for Plant Protection, Wageningen NL

    Google Scholar 

  • Musselmann RC, McCool PM, Oshima RJ, Reso RR(1986) Field chambers for assessing crop loss from air pollutants. J Environ Qual 15:152–157

    Article  Google Scholar 

  • Oechel WC, Riechers G, Lawrence WT, Prudhomme TI, Grulke N, Hastings SJ (1992), CO2 LT’ an automated, null-balance system for studying the effects of elevated CO2 and global change on unmanaged ecosystems. Functional Ecol 6:86–100

    Article  Google Scholar 

  • Oshima RJ, Braegelmann PK, Baldwin DW, VanWay V, Taylor OC (1977a) Reduction of tomato fruit size and yield by ozone. J Am Soc Horti Sci 102:298–293

    Google Scholar 

  • Oshima RJ, Poe M, Braegelmann PK, Baldwin DW, Van Way V (1976) Ozone dosage-crop loss function for alfalfa: a standardized method for assessing crop losses from air pollutants. J Air Pollut Contr Assoc 26:861–865

    Article  Google Scholar 

  • Payer HD, Blank LW, Bosch C, Gnatz G, Schmolke W, Schrammel P (1986) Simultaneous exposure of forest trees to pollutants and climatic stress. Water Air Soil Pollut 31:485–491

    Article  CAS  Google Scholar 

  • Posthumus AC (1978) New results from SO2-fumigations of plants. VDI-Berichte 314:225–230

    CAS  Google Scholar 

  • Reece CF, Krupa SV, Jäger H-J, Roberts SW, Hastings SJ, Oechel WC (1995) Evaluating the effects of elevated levels of atmospheric trace gases on herbs and shrubs: a prototype dual array field exposure system. Environ Pollut 90:25–31

    Article  CAS  Google Scholar 

  • Reich PB, Amundson RG, Lassoie JP (1982) Reduction in soybean yield after exposure to ozone and sulphur dioxide using a linear gradient exposure technique. Water Air Soil Pollut 17:29–35

    CAS  Google Scholar 

  • Rogers HH, Jeffries HE, Stahel EP, Heck WW, Ripperton LA, Whitherspoon AM (1977) Measuring air pollutant uptake by plants: a direct kinetic approach. J Air Pollut Contr Assoc 27:1192–1197

    Article  CAS  Google Scholar 

  • Runeckeis VC, Wright EF, White D (1990) A chamberless field exposure system for determining the effects of gaseous air pollutants on crop growth and yield. Environ Pollut 63:61–77

    Article  Google Scholar 

  • Scherbatskoy T, Klein RM (1983) Responses of spruce and birch foliage to leaching by acidic mist. J Environ Qual 12:189–195

    Article  CAS  Google Scholar 

  • Schulze E-D, Mooney HA (1993) Design and execution of experiments on CO2 enrichment. Ecosystems research report 6. Commission of the European Communities, Brussels

    Google Scholar 

  • Seufert G, Arndt U (1985) Open-top Kammern als Teil eines Konzeptes zur ökosystem aren Untersuchung der neuartigen Waldschäden. Allg Forstzeitsch 40:13–18

    Google Scholar 

  • Shinn JH, Clegg BR, Stuart ML (1977) A linear gradient chamber for exposing field plants to controlled levels of air pollutants. Lawrence Livermore Laboratory, University of California, UCRL Reprint No 80411

    Google Scholar 

  • Teskey RO, Dougherty PM, Wiselogel AE (1991) Design and performance of branch chambers suitable for long-term ozone fumigation of foliage in large trees. J Environ Qual 20:591–595

    Article  CAS  Google Scholar 

  • Troiano J, Jacobson JS, Heller L (1984) Effects of simulated acidic rain applied alone and in combination with ambient rain on growth and yield of field-grown snap bean. Agricult Ecosys Environ 11:161–172

    Article  Google Scholar 

  • Van de Geijn SC, Van Veen JA (1993) Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetatio 104/105:283–292

    Article  Google Scholar 

  • Van Haut H (1972) Test methods to prove phytotoxical pollutants. Environ Pollut 3:123–132

    Article  Google Scholar 

  • Wall GW, Kimball BA(1993) Biological data bases derived from free air carbon dio xide enrichment experiments. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Ecosystems research report 6. Commission of the Europoean Communities, Brussels

    Google Scholar 

  • Weigel H-J, Adaros G, Jäger H-J (1987) An open-top chamber study with filtered and non-filtered air to evaluate the effects of air pollutants on crops. Environ Pollut 47:231–244

    Article  CAS  Google Scholar 

  • Weigel H-J, Jäger H-J (1988) Zur Ökotoxikologie von Luftschadstoffen. II. Aufbau und Funktionsweise einer Expositionanlage aus Open-top-Kammern zur Untersuchung von Immissionswirkungen auf Pflanzen. Landbauforschung Völkenrode 38:182–195

    Google Scholar 

Literatur

  1. Ashmore MR, Thwaites RH, Ainsworth N, Cousins DA, Power SA, Morton AJ (1995) Effects of ozone on calcareous grassland communities. Water Air Soil Pollut 85:1527–1532

    Article  CAS  Google Scholar 

  2. Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998) Diversity of an early successional plant community as influenced by ozone. New Phytol 138:653–662

    Article  CAS  Google Scholar 

  3. Bennet JP, Resh HM, Runeekles VC (1974) Apparent stimulations on plant growth by air pollutants. Can J Bot 52:35–41

    Article  Google Scholar 

  4. Bergmann E, Bender J, Weigel H-J (1998) Zur Ozonempfindlichkeit von Wildpflan-zenarten. Verlag Agrarökologie, Bern

    Google Scholar 

  5. BImSch V (1994) Zweiundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung zur Änderung der Verordnung über Immissionswerte — 22. BlmSchV) vom 27. Mai 1994. BGBl I:1095

    Google Scholar 

  6. CEC(1993) The European Open-Top Chamber Project: Assessment ofthe effects of air pollutants on agricultural crops. Air pollution research report 48. CEC — Commission of the European Communities, Directorate-General for Science, Research and Development, Brussels

    Google Scholar 

  7. Davis DD, Wood FA (1973a) The influence of environmental factors on the sensitivity of Virginia pine to ozone. Phytopathology 63:371–376

    Article  CAS  Google Scholar 

  8. Davis DD, Wood FA (1973b) The influence of plant age on the sensitivity of Virginia pine to ozone. Phytopathology 63:381–388

    Article  CAS  Google Scholar 

  9. Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139: 135–151

    Article  CAS  Google Scholar 

  10. Davison A, Ashmore M, Bender J, Chappelka A, Weigel H (1999) Critical levels for semi-natural vegetation. In: Fuhrer J, Achermann B (eds) Critical levels for ozone — level II. UN/ECE workshop, Gerzensee, Switzerland, 11–15 April 1999, pp 41–44

    Google Scholar 

  11. De Santis F (1999) New Directions: will a new European vegetation ozone standard be fair to all European Countries. Atmos Environ 33:3873–3874

    Article  Google Scholar 

  12. EAG — Environmental Assessment Group of EUROTRAC (1998) Policy-related tasks for EUROTRAC-2. EUROTRAC Newslett 20:33–37

    Google Scholar 

  13. EPA — US Environmental Protection Agency (1996) Air quality criteria for ozone and related photochemical oxidants, vol II. EPA/600/P-93/004bF. US Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  14. EU (1992) Richtlinie 92/72/EWG des Rates vom 21. September 1992 über die Luft-verschmutzung durch Ozon. Amtsblatt der Europ äischen Gemeinschaften Nr. L 297:1–7

    Google Scholar 

  15. EU (1996) Richtlinie 96/62/EG des Rates vom 27. September 1996 über die Beurteilung und die Kontrolle der Luftqualität. Amtsblatt der Europäischen Gemeinschaften Nr. L 296:55–63

    Google Scholar 

  16. EU (1999) Richtlinie 1999/30/EG des Rates vom 22. April 1999 über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel und Blei in der Luft. Amtsblatt der Europäischen Gemeinschaften L 163:41–60

    Google Scholar 

  17. Evans LS (1973) Bean leaf growth response to moderate ozone levels. Environ Pollut 4:17–26

    Article  CAS  Google Scholar 

  18. Evans PA, Ashmore MR (1992) The effects of ambient air on a semi-natural grassland community. Agr Ecosyst Environ 38:91–97

    Article  CAS  Google Scholar 

  19. Federal Register (1997) Part V. Environmental Protection Agency, 40 CFR Part 50, National Ambient Air Quality Standards for Ozone; Final Rule. Rules and Regulations. Federal Register 62, no 138, Friday, July 18, 1997:38857–38896

    Google Scholar 

  20. Fowler D, Cape JN (1982) Air pollutants in agriculture and horticulture. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, pp 3–26

    Google Scholar 

  21. Fuhrer J (1994) The criticallevel for ozone to protect agricultural crops-an assessment of data from European open-top chamber experiments. In: Fuhrer J, Achermann B(eds) critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Bern) 16:42–57

    Google Scholar 

  22. Fuhrer J (1996) The criticallevel for effects of ozone on crops, and the transfer to mapping. In: Kärenlampi L, Skärby L (eds) critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, Kuopio, pp 27–43

    Google Scholar 

  23. Fuhrer J, Achermann B (1994) Critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikultur-chemie und Umwelthygiene, Bern) 16

    Google Scholar 

  24. Fuhrer J, Achermann B (1999) Critical levels for ozone — level II. Environmental Documentation 115. Swiss Agency for the Environment, Forests and Landscape, Bern, Switzerland

    Google Scholar 

  25. Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106

    Article  CAS  Google Scholar 

  26. Grünhage L, Haenel H-D (2000) WINDEP — Worksheet-INtegrated Deposition Estimation Programme. In: KRdL — Kommission Reinhaltung der Luft im VDI und DIN (Hrsg) Troposphärisches Ozon. Eine kritische Bestandsaufnahme über Ursache, Wirkung und Abhilfemaßnahmen. Schriftenreihe der KRdL, Bd 32, Düsseldorf, S 157–173

    Google Scholar 

  27. Grünhage L, Jäger H-J, Haenel H-D, Hanewald K, Krupa S (1997) PLATIN (PLant-ATmosphere INteraction) II: co-occurrence of high ambient ozone concentrations and factors limiting plant absorbed dose. Environ Pollut 98:51–60

    Article  Google Scholar 

  28. Grünhage L, Jäger H-J, Haenel H-D, Löpmeier F-J, Hanewald K (1999) The Europe-an critical levels for ozone: improving their usage. Environ Pollut 105:163–173

    Article  Google Scholar 

  29. Grünhage L, Haenel H-D, Jäger H-J (2000a) The exchange of ozone between vegetation and atmosphere: micrometeorological measurement techniques and models. Environ Pollut 109:373–392

    Article  Google Scholar 

  30. Grünhage L, Jäger H-J, Köllner B, Krause G (2000b) Richt-und Grenzwerte für Ozon zum Schutz der Vegetation. In: KRdL— Kommission Reinhaltung der Luft im VDI und DIN (Hrsg) Troposphärisches Ozon. Eine kritische Bestandsauf-nahme über Ursache, Wirkung und Abhilfemaßnahmen. Schriftenreihe der KRdL, Bd 32, Düsseldorf, S 137–156

    Google Scholar 

  31. Grünhage L, Krause GHM, Köllner B, Bender J, Weigel H-J, Jäger H-J, Guderian R (2001) A new flux-orientated concept to derive critical levels for ozone to protect vegetation. Environ Pollut 111:335–362

    Article  Google Scholar 

  32. Guderian R (1970) Untersuchungen über quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. H. Teil.Z Pflanzenkr Pflanzensch 77:289–308

    CAS  Google Scholar 

  33. Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  34. Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxydwirkungen auf die Vegetation. I. Teil: Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1118. Westdeutscher Verlag, Köln

    Google Scholar 

  35. Guderian R, Stratmann H (1968) Freilandversuche zur Ermittlung von Schwefeldi-oxydwirkungen auf die Vegetation. Teil III: Grenzwerte schädlicher SO2-Immis-sionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1920. Westdeutscher Verlag, Köln

    Google Scholar 

  36. Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants and plants. In: Guderian R (ed) Air pollution by photochemical oxidant. Ecological studies, vol 52. Springer-Verlag, Berlin Heidelberg NewYork, pp 127–346

    Chapter  Google Scholar 

  37. Guderian R, Tingey DT, Rabe R (1983) Wirkungen von Photooxidantien auf Pflanzen. In: Umweltbundesamt (Hrsg) Luftqualitätskriterien für photochemische Oxidantien. Erich Schmidt Verlag, Berlin, S 205–427

    Google Scholar 

  38. Guderian R, van Haut H, Stratmann H (1960) Probleme der Erfassung und Beurteilung von Wirkungen gasförmiger Luftverunreinigungen auf die Vegetation. Z Pflanzenkrh (Pflanzenpathol) Pflanzenschutz 67:257–264

    CAS  Google Scholar 

  39. Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoff-Konzentrationen. Forschungs-berichte des Landes Nordrhein-Westfalen 2017. Westdeutscher Verlag, Köln

    Google Scholar 

  40. Heck WW, Brandt CS (1977) Effects on vegetation: native, crops, forests. In: Stern AS (ed) Air pollution, 3rd edn, vol II. The effects of air pollution. Academic Press, NewYork, pp 157–229

    Google Scholar 

  41. Heck WW, Tingey DT (1971) Ozone, time-concentration model to predict acute foliar injury. In: Anonymous Proceedings 2nd International Clean Air Congress, Washington, DC, pp 249–355

    Google Scholar 

  42. Heck WW, Dunning JA, Hindawi IJ (1966) Ozone: nonlinear relation of dose and injury in plants. Science 151:577–578

    Article  CAS  Google Scholar 

  43. Heck WW, Furiness CS, Cowling EB, Sims CK (1998) Effects of ozone on crop, forest, and natural ecosystems: assessment of research needs. Environ Manager October 1998:11–22

    Google Scholar 

  44. Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987) Apreliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  45. Hogsett WE, Herstrom A, Laurence JA, Weber JE, Lee EH, Tingey D (1995) An approach for characterizing tropospheric ozone risk to forests. In: Lee SD, Schneider T (eds) Proceedings of the 4th US/Dutch international symposium: comparative risk analysis and priority setting for air pollution issues. Air and Waste Management Association, Pittsburgh, pp 119–145

    Google Scholar 

  46. ICP-Crops Coordination Centre (1997) Progress report for the ICP-Crops (International Cooperative Programme on effects of air pollution and other stresses on crops and non-wood plants) — August 1996 to August 1997. ICP-Crops Coordination Centre, The Nottingham Trent University, Nottingham

    Google Scholar 

  47. Jacobson JS (1977a) The effects of photochemical oxidants on vegetation. In: Verein Deutscher Ingenieure (Hrsg) Ozon und Begleitsubstanzen im photochemischen Smog. VDI Berichte 270, Düsseldorf, S 163–173

    Google Scholar 

  48. Jacobson JS (1977b) Plants as indicators of photochemical oxidants in the USA.In: Verein Deutscher Ingenieure (Hrsg) Ozon und Begleitsub stanzen im photochemischen Smog. VDI Berichte 270, Düsseldorf, S 191–196

    Google Scholar 

  49. Jäger HJ, Unsworth M, De Temmerman L, Mathy P (1993) Effects of air pollution on agricultural crops in Europe: results of the European Open-Top Chambers Project. Air pollution research report 46. CEC — Commission of the European Communities, Directorate-General for Seience, Research and Development, Brussels

    Google Scholar 

  50. Katz M (1949) Sulfur dioxide in the atmosphere and it’s relation to plant life. Ind Eng Chem 41:2450–2465

    Article  CAS  Google Scholar 

  51. Kärenlampi L, Skärby L (1996) Critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, Kuopio

    Google Scholar 

  52. Kress LW, Miller JE, Smith HJ (1985) Impact of ozone on winter wheat yield. Environ Exp Bot 25:211–228

    Article  CAS  Google Scholar 

  53. Larsen RI, Heck WW (1976) An air quality data analysis system for interrelating effects, standards, and needed source reductions, part 3.Vegetation injury. J Air Pollut Contr Assoc 25:325–333

    Article  Google Scholar 

  54. Lefohn AS, Runeekles VC (1987) Establishing standards to protect vegetation ozone exposure/dose considerations. Atmos Environ 21:561–568

    Article  CAS  Google Scholar 

  55. Linzon SN, Heck WW, Macdowall FDH (1975) Effects of photochemical oxidants on vegetation. In: National Research Council — Subcommittee on Air (ed) Photo-chemical air pollution: formation, transport and effects. National Research Council of Canada, NRC Assoeiate Committee on Seientific Criteria for the Environmental Quality, Ottawa, pp 89–142

    Google Scholar 

  56. Lumis GP, Ormrod DP (1978) Effects of ozone on growth of four woody ornamental plants. Can J Plant Sci 58:769–773

    Article  CAS  Google Scholar 

  57. McCune DC (1969) On the establishment of air quality criteria, with reference to the effects of atmospheric fluorine on vegetation. Air Quality Monograph 69-3. American Petroleum Institute, NewYork

    Google Scholar 

  58. Miller PR, Parmeter JR, Flick BH, Martinez CW (1969) Ozone dosage response of ponderosa pine seedlings. J Air Pollut Contr Assoc 19:435–438

    Article  CAS  Google Scholar 

  59. Nagel H-D, Gregor H-D (1999) Ökologische Belastungsgrenzen — Critical Loads und Levels. Ein internationales Konzept für die Luftreinhaltepolitik. Springer, Berlin Heidelberg New York

    Google Scholar 

  60. O’Gara PJ (1922) Sulfur dioxide and fume problems and their solution. Quoted in: Olsen JC „Fourteenth semiannual meeting of the American Institute of Chernical Engineers“. J Industr Eng Chem 14:744–745

    Google Scholar 

  61. Pöch G (2000) Naturwissenschaftliche-medizinische Grundlagen. In: Streffer C et al. (Hrsg) Umweltstandards. Kombinierte Expositionen und ihre Auswirkungen auf den Menschen und seine Umwelt. (Wissenschaftsethik und Technikfol-genbeurteilung. Schriftenreihe der Europäischen Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen Bad Neuenahr-Ahr-weiler GmbH, Bd 5). Springer, Berlin Heidelberg NewYork, S 46–106

    Google Scholar 

  62. Pütz M (1993) 30 Jahre Luftqualitätsüberwachung. LIS Berichte (Schriftenreihe der Landesanstalt für Immissionsschutz Nordrhein-Westfalen, Essen) 110:35–38

    Google Scholar 

  63. Rajput CBS, Ormrod DP (1986) Stimulation of plant growth in pumpkin by ozone. HortSeience 21:498–499

    CAS  Google Scholar 

  64. Reinert RA, Nelson PV (1979) Sensitivity and growth of twelve Elatior begonia cultivars to ozone. HortScience 14:747–748

    Google Scholar 

  65. Sanders GE, Robinson AD, Geissler PA, Colls JJ (1992) Yield stimulation of a commonly grown cultivar of Phasealus vulgaris L. at near-ambient ozone concentrations. New Phytol 122:63–70

    Article  CAS  Google Scholar 

  66. Schmitz-Dumont W (1896) Versuche über die Einwirkung von Fluorwasserstoff in der Atmosphäre auf Pflanzen. Tharander Forstl Jahrb 46:50–57

    Google Scholar 

  67. Stöckhardt A (1871) Untersuchungen über die schädliche Einwirkung des Hütten-und Steinkohlenrauches auf das Wachsthum der Pflanzen, insbesondere der Fichte und Tanne. Tharander Forstl Jahrb 21:218–254

    Google Scholar 

  68. TA Luft (1986) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissions-schutzgesetz (Technische Anleitung zur Reinhaltung der Luft — TA Luft), vom 28. August 1974 (GMBl.S. 95), ersetzt durch die Neufassung vom 27. Febr 1986 (GMBl.S. 95), mit Berichtigung vom 4. April 1986 (GMBl.S 202)

    Google Scholar 

  69. Thomas MD, Hill GR (1935) Absorption of sulphur dioxide by alfalfa and its relation to leaf injury. Plant Physiol l0:291–307

    Article  Google Scholar 

  70. ]Theophrastus von Hohenheim gen. Paracelsus (1537/38): Defensiones septern. Die verantwortung uber ezlich verunglimpfung seiner misgünner. Zitiert in: Sud-hoff K(1928) Theophrast von Hohenheim gen. Paracelsus — Sämtliche Werke. 1. Abteilung: Medizinische naturwissenschaftliche und philosophische Schriften. Oldenbourg, München, S 125–160

    Google Scholar 

  71. ]Umweltbundesamt (1996) Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. Texte 71/96. Umweltbundesamt, Berlin

    Google Scholar 

  72. ]UN-ECE (1988) ECE critical levels workshop report. Bad Harzburg, Germany, pp 14–18 March 1988. Final draft report. United Nations — Economic Commission for Europe

    Google Scholar 

  73. ]UN-ECE (1996) 1979 Convention on Leng-Range Transboundary Air Pollution and its protocols. United Nations — Economic Commission for Europe, NewYork

    Google Scholar 

  74. van Haut H (1961) Die Analyse von Schwefeldioxydwirkungen auf Pflanzen im Laboratoriumsversuch. Staub 21:52–56

    Google Scholar 

  75. ]VDI 2309 Bl 1 (1983) Ermittlung von Maximalen Immissions-Werten. Grundlagen — Determination of Maximum Immission Values. Fundamentals. Beuth, Berlin

    Google Scholar 

  76. ]VDI 2310 Bl 6E (2000) Maximale Immissions-Werte zum Schutz der Vegetation. Maximale Immissions-Konzentrationen für Ozon. Beuth, Berlin

    Google Scholar 

  77. von Schroeder J, Reuss C (1883) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, Berlin

    Google Scholar 

  78. Wentzel KF (1962) Konkrete Schadwirkungen der Luftverunreinigung in der Ruhrgebietslandschaft. Natur und Landschaft 37:118–124

    Google Scholar 

  79. ]WHO — World Health Organization — Regional Office for Europe (1996) Update and revision of the WHO Air Quality Guidelines for Europe. Ecotoxic effects. Ozone effects on vegetation. Final draft, December 1996. European Centre for the Environment and Health, Bilthoven, The Netherlands

    Google Scholar 

  80. Wislicenus H (1901) Zur Beurteilung und Abwehr von Rauchsch äden. Z Angew Chem 28:689–712

    Article  Google Scholar 

  81. Zahn R (1961) Wirkungen von Schwefeldioxyd auf die Vegetation, Ergebnisse aus Begasungsversuchen. Staub 21:56–60

    CAS  Google Scholar 

  82. Zahn R (1963) Untersuchungen über die Bedeutung kontinuierlicher und intermittierender Schwefeldioxideinwirkungen für die Pflanzenreaktion. Staub 23: 343–352

    CAS  Google Scholar 

Literatur

  • Adaros G, Weigel HJ, Jäger HJ (1991a). Single and interactive effects oflow levels of O3, SO2 and NO2 on the growth and yield of spring rape. Environ Pollut 72:-269–286

    Article  CAS  Google Scholar 

  • Adaros G, Weigel HJ, Jäger HJ (1991b) Concurrent exposure to SO2 and/or NO2 alters growth and yield responses of wheat and barley to low concentrations of O3. New Phytol 118:581–591

    Article  CAS  Google Scholar 

  • Allen LH (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34

    Article  CAS  Google Scholar 

  • Amundson RG, Kohut RJ, Schoettle AW, Raba RM, Reich PB (1987) Correlative reductions in whole-plant photosynthesis and yield of winter wheat caused by ozone. Phytopathology 77:75–79

    Article  CAS  Google Scholar 

  • Ashenden TW, Mansfield TA (1978) Extreme pollution sensitivity of grasses when SO2 and NO2 are present in the atmosphere together. Nature 273:-142–143

    Article  CAS  Google Scholar 

  • Ashmore MR, Önal M (1984) Modification by sulphur dioxide of the responses of Hordeum vulgare to ozone. Environ Pollut 36:31–43

    Article  CAS  Google Scholar 

  • Balaguer L, Barnes JD, Panicucci A, Borland AM (1995). Production and utilization of assimilates in wheat (Triticum aestivum L.) leaves exposed to elevated CO2 and/or O3. New Phytol 129:557–568

    Article  CAS  Google Scholar 

  • Barnes JD, pfirrmann T (1992) The influence of CO2 and O3 singly and in combination, on gas exchange, growth and nutrient status of radish (Raphanus sativus L.). New Phytol 121:403–412

    Article  CAS  Google Scholar 

  • Barnes JD, Wellburn AR (1998) Air pollutant combinations. In: DeKok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 147–164

    Google Scholar 

  • Barnes JD, Ollerenshaw JH, Whitfield C (1995) Effects of elevated CO2 and/or O3 on growth, development and physiology of wheat (Triticum aestivum L.). Global Change Biol l:129–142

    Article  Google Scholar 

  • Barnes JD, Bender J, Lyons T, Borland A (1999) Natural and man-made selection for air pollution resistance. J Exp Bot 50:1423–1435

    CAS  Google Scholar 

  • Beckerson DW, Hofstra G (1979) Response of leaf diffusive resistance of radish, cucumber, and soybean to O3 and SO2 singly or in combination. Atmos Environ 13:1263–1268

    Article  CAS  Google Scholar 

  • Bender J, Weigel HJ (1993) Crop responses to mixtures of air pollutants. In: Jäger HJ, Unsworth M, DeTemmerman L, Mathy P (eds.): Effects of air pollution on agricultural crops in Europe. Air Pollution Research Report 46, pp. 445–453

    Google Scholar 

  • Bender J, Weigel HJ (1994) The role of other pollutants in modifying plant responses to ozone. In: Fuhrer J, Achermann B (eds) critical levels for ozone. Schriftenreihe der FAC Liebefeld 16, pp 240–247

    Google Scholar 

  • Bender J, Jäger HJ, Schweizer B, Seufert G, Arndt U (1989). Leng-term effects of air pollutants on forest trees in open-top chambers. II. Investigation of physiological and biochemical effects. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Interlaken, Switzerland, pp 167–172

    Google Scholar 

  • Bender J, Weigel HJ, Jäger HJ (1991) Response of nitrogen metabolism in beans (Phaseolus vulgaris L.) after exposure to ozone and nitrogen dioxide, alone and in sequence. New PhytoI 119:261–267

    Article  CAS  Google Scholar 

  • Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ‚ESPACE‘-wheat results. Eur J Agron 10:185–195

    Article  Google Scholar 

  • Burian K (1976) Kombinationswirkungen von Umweltgiften auf pflanzliche Organismen. Umschau 76:351–352

    Google Scholar 

  • Chappelka AH, Chevone BI, Seiler JR (1988) Growth and physiological responses of yellow-poplar seedlings exposed to ozone and simulated acid rain. Environ Pollut 49:1–18

    Article  CAS  Google Scholar 

  • Dämmgen U, Weigel HJ (1998) Trends in atmospheric composition (nutrients and pollutants) and their interaction with agroecosystems. In: El Bassam, N, Behl R, Prochnow B (eds) Sustainable agriculture for food, energy and industry: strategies towards achievement. James and James, pp 85–93

    Google Scholar 

  • Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30

    Article  CAS  Google Scholar 

  • Davis DD, Skelly JM (1992). Growth response of four species of eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. J Air Waste Manage Assoc 42:309–311

    Article  CAS  Google Scholar 

  • Fangmeier A (1989) Effects of open-top fumigations with S02’ N02and ozone on the native herb layer of a beech forest. Environ Exp Bot 29:199–213

    Article  CAS  Google Scholar 

  • Feron VJ, Cassee FR, Graten JP (1998) Toxicology of chemical mixtures: International perspectives. Environ Health Perspect 106:1281–1289

    Article  CAS  Google Scholar 

  • Fiscus EI, Reid CD, Miller JE, Heagle AS (1997) Elevated CO2 reduces O3 flux and O3-induced yield losses in soybeans: possible implications for elevated CO2 studies. J Exp Bot 48:307–313

    Article  CAS  Google Scholar 

  • Freer-Smith PH (1984) The responses of six broadleaved trees during long-term exposure to SO2 and NO2. New Phytol 97:49–61

    Article  CAS  Google Scholar 

  • Goodyear SN, Ormrod DP (1988) Tomato response to concurrent and sequential NO2 and O3 exposures. Environ Pollut 51:315–326

    Article  CAS  Google Scholar 

  • Guderian R, Tingey DT (1987) Notwendigkeit und Ableitung von Grenzwerten für Stickoxide. Umweltbundesamt, Berichte 1/87. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Guderian R, Bücker J (2000) Quantitative Zusammenhänge zwischen Mischim-missionen und Wirkungen auf Pflanzen. In: Streffer C et al (Hrsg) Umweltstandards. Kombinierte Expositionen und ihre Auswirkungen auf den Menschen und seine Umwelt. Springer-Verlag, Berlin Heidelberg New York, pp 251–308

    Google Scholar 

  • Guderian R, Wienhaus O (1997) „Neuartige Waldschäden“ und Luftverunreinigungen. Allg Fortstz/DerWald 16:891–895

    Google Scholar 

  • Heagle AS, Miller JE, Sherill DE, Rawlings JO (1993) Effects of ozone and carbon dioxide mixtures on two clones of white clover. New Phytol 123:751–762

    Article  CAS  Google Scholar 

  • Hellmuth M, Weigel HJ, Jäger HJ (1990) Ertrags-und Qualitätsveränderungen bei Welschem Weidelgras (Lolium multiflorum) unter Einzel-und Kombinations-begasung mit den Schadstoffen Ozon und Schwefeldioxid. VDLUFA-Schriftenreihe 32:129–134

    Google Scholar 

  • Hudak C, Bender J, Weigel HJ, Miller JE (1999) Interactive effects of elevated CO2, O3, and soil water deficit on spring wheat (Triticum aestivum L. cv. Nandu). Agronomie 19:677–687

    Article  Google Scholar 

  • Irving PM, Kress LW, Prepechjal W, Smith HJ (1988) Studies on the interaction of ozone with sulfur dioxide on soybeans and corn. US Environmental Protection Agency, Argonne National Laboratory, Technical report no ANL-88-31

    Google Scholar 

  • Ito O, Okano K, Totsuka T (1984) Effects of NO2 and O3 alone and in combination on kidney bean plants: partitioning of assimilates and root activities. J Exp Bot 36:652–662

    Article  Google Scholar 

  • Jäger HJ, Weigel HJ, Grünhage L (1986) Physiologische und biochemische Aspekte der Wirkung von Immissionen auf Waldbäume. Eur J For Pathol 16:98–109

    Article  Google Scholar 

  • Jäger HJ, Unsworth M, De Temmerman L, Mathy P (eds) (1993) Effects of air pollution on agricultural crops in Europe. Air Poll. Research Report 46, Brussels

    Google Scholar 

  • Jensen KF, Dochinger LS (1989) Response of eastern hardwood species to ozone, sulfur dioxide and acid precipitation. JAPCA 39:852–855

    Article  CAS  Google Scholar 

  • Klumpp A, Küppers K, Guderian R (1989) Nitrate reductase activity of needles of Norway spruce fumigated with different mixtures of ozone, sulphur dioxide, and nitrogen dioxide. Environ Pollut 58:261–271

    Article  CAS  Google Scholar 

  • Kohut RJ (1985) The effects of SO2 and O3 on plants. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, pp 296–312

    Google Scholar 

  • Kohut RJ, Amundson RG, Laurence JA Colavito L, Van Leuken P, King P (1987) Effects of ozone and sulfur dioxide on yield of winter wheat. Phytopathology 77:71–74

    Article  CAS  Google Scholar 

  • Kress LW, Miller JE, Smith HJ, Rawlings JO (1986) Impact of ozone and sulphur dioxide on soybean yield. Environ Pollut 41:105–123

    Article  CAS  Google Scholar 

  • Küppers K, Boomers J, Hestermann C, Hanstein S, Guderian K (1994) Reaction of forest trees to different exposure profiles of ozone-dominated air pollutant mixtures. In: Fuhrer J, Achermann B (eds) Critical levels for ozone. Schriften-reihe der FAC Liebefeld 16, pp 98–110

    Google Scholar 

  • Mansfield TA, McCune DC (1988) Problems of crop loss assessment when there is exposure to two or more gaseous pollutants. In: Heck WW, Taylor OC, Tingey DT (eds) Assessment of crop loss from air pollutants. Elsevier Applied Science, London, pp 317–344

    Chapter  Google Scholar 

  • McLeod AR, Skeffington RA (1995) The Liphook Forest fumigation project: an overview. Plant Cell Environ 18:327–335

    Article  Google Scholar 

  • McKee IF, Bullimore JF, Long SP (1997) Will elevated CO2 concentrations protect the yield of wheat from O3 damage? Plant Cell Environ 20:77–84

    Article  CAS  Google Scholar 

  • Menser HA, Heggestad HE (1966) Ozone and sulfur dioxide synergism: injury to tobacco plants. Science 153:424–425

    Article  CAS  Google Scholar 

  • Mudd JB (1996) Biochemical basis for the toxicity of ozone. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, London, pp 267–283

    Google Scholar 

  • Mulchi CL, Slaughter L, Saleem M, Lee EH, Pausch R, Rowland R (1992) Growth and physiological characteristics of soybean in open-top chambers in response to ozone and increased atmospheric carbon dioxide. Agric Ecosyst Environ 38:107–118

    Article  CAS  Google Scholar 

  • Mulholland BJ, Craigon J, Black CR, Colls JJ, Atherton J, Landon G (1997) Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestivum L.). J Exp Bot 48:1853–1863

    CAS  Google Scholar 

  • Murray F, Wilson S, Monk R (1992) NO2 and SO2 mixtures stimulate barley grain production but depress clover growth. Environ Exp Bot 32:185–192

    Article  CAS  Google Scholar 

  • Murray F, Wilson S, Samaraweera S (1994) NO2 increases wheat grain yield even in the presence of SO2 Agric Ecosyst Environ 48:115–123

    Article  CAS  Google Scholar 

  • Olszyk DM, Tibbits TW (1981) Stomatal response and leaf injury of Pisum sativum L. with SO2 and O3 exposures: I. Influence of pollutant level and leaf maturity. Plant Physiol 67:539–544

    Article  CAS  Google Scholar 

  • Ormrod DP (1982) Air pollutant interactions in mixtures. In: Unsworth MH, Orrnrod DP (eds) Effects of gaseous air pollutants in agriculture and horticulture. Butterworths, London, pp 307–311

    Google Scholar 

  • Oshima RJ, Bennett JP (1979) Experimental design and analysis. In: Heck WW, Krupa SV, Linzon SN (eds) Handbook of methodology for the assessment of air pollution effects on vegetation. Air PoIl Control Assoc, Pittsburgh, pp 4–122

    Google Scholar 

  • Polle A, Pell EJ (1999) Role of carbon dioxide in modifying the plant response to ozone. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic Press, San Diego, pp 193–213

    Chapter  Google Scholar 

  • Rao MV, HaIe BV, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiol 109:421–432

    CAS  Google Scholar 

  • Reinert RA (1984) Plant response to air pollutant mixtures. Ann Rev Phytopathol 22:421–442

    Article  CAS  Google Scholar 

  • Reinert RA, Gray TN (1981) The response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination. J Environ Qual 10:240–243

    Article  CAS  Google Scholar 

  • Rennenberg H, Herschbach C (1996) Responses of plants to atmospheric sulphur. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, London, pp 285–294

    Google Scholar 

  • Runeckles VC (1984). Impact of air pollutant combinations on plants. In: Treshow M (ed) Air pollution and plant life. Wiley, NewYork, pp 239–285

    Google Scholar 

  • Runeckles VC, Palmer K (1987) Pretreatment with nitrogen dioxide modifies plant response to ozone. Atmos Environ 21:717–719

    Article  CAS  Google Scholar 

  • Runeckles VC, Krupa SV (1994) The impact of UV-B radiation and ozone on terrestrial vegetation. Environ Pollut 83:191–213

    Article  CAS  Google Scholar 

  • Sanders JS, Reinert RA (1982) Screening azalea cultivars for sensitivity to nitrogen dioxide, sulfur dioxide, and ozone alone and in mixtures. J Am Soc Hortic Sci 107:87–90

    CAS  Google Scholar 

  • Segschneider HJ (1995) Auswirkungen atmosphärischer Stickoxide (NOx) auf den pflanzlichen Stoffwechsel: eine Literaturübersicht. Angew Bot 69:60–85

    CAS  Google Scholar 

  • Seufert G, Arndt U, Jäger HJ, Bender J (1989) Long-term effects of air pollutants on forest trees in open-top chambers. I. Experimental approach and results on mineral cycling. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest deeline. Interlaken, Switzerland, pp 159–165

    Google Scholar 

  • Shriner DS, Heck WW, McLaughlin SB, Johnson DW, Irving PM, Joslin JD, Peterson CE (1991) Response of vegetation to atmospheric deposition and air pollution. In: Irving PM (ed) Acidic deposition: state of science and technology. The US National Acid Precipitation Assessment Program, Washington, DC

    Google Scholar 

  • Streffer C, Bücker J, Cansier A, Cansier D, Gethmann CF, Guderian R, Hanekamp G, Henschler D, Pöche G, Rehbinder E, Renn 0, Slesina M, Wuttke K (2000) Umweltstandards — Kombinierte Expositionen und ihre Auswirkungen auf den Mernschen und seine Umwelt. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Suter G (Ed.) (1993). Ecological risk assessment. Lewis Publishers, Chelsea, MI

    Google Scholar 

  • ]USEPA (US Environmental Protection Agency) (1984) A review and assessment of the effects of pollutant mixtures on vegetation — research recommendations, EPA-600/3-84. US Environmental Protection Agency. Corvallis, Oregon

    Google Scholar 

  • ]USEPA (US Environmental Protection Agency) (1996) Air quality criteria for ozone and related photochemical oxidants, vol II. EPA/600/P-93/004bF. US Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) Air pollution and elimate change. The biological impact. Longman Scientific and Technical, Essex

    Google Scholar 

  • Wellburn AR, Higginson C, Robinson D, Walmsley C (1981) Biochemical explanation of more than additive inhibitory effects of low atmospheric levels of sulfur dioxide plus nitrogen dioxide upon plants. New Phytol 88:223–237

    Article  CAS  Google Scholar 

Literatur

  • ]13. BImSchV (1983) Dreizehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Großfeuerungsanlagen-13. BImSchV) vom 22. Juni 1983. BGBl I: 719

    Google Scholar 

  • ]3. BlmSchV (1975/1994) Dritte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Schwefelgehalt von leichtem Heizöl und Dieselkraftstoff — 3. BImSchV) vom 15. Januar 1975 (BGBl. I S. 264) zuletzt geändert am 26.9.1994. BGBl I: 2640

    Google Scholar 

  • Ács F (1994) A coupled soil-vegetation scheme: description, parameters, validation, and sensitivity studies. J Appl Meteorol 33:268–284

    Article  Google Scholar 

  • Amthor JS, Goulden ML, Munger JW, Wofsy SC (1994) Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: carbon dioxide and ozone uptake by a mixed oak-maple stand. Aust J Plant Physiol 21:623–651

    Article  CAS  Google Scholar 

  • Baldocchi D (1988) A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy. Atmos Environ 22:869–884

    Article  CAS  Google Scholar 

  • Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ 18:1157–1173

    Article  Google Scholar 

  • Baldocchi DD, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101

    Article  CAS  Google Scholar 

  • Braden H (1995) The model AMBETI. A detailed description of a Soil-Plant-Atmosphere model. Ber Dtsch Wetterdienst Nr, 195

    Google Scholar 

  • Braud I, Dantas-Antonio AC, Vauclin M, Thony JL, Ruelle P (1995) A simple soil-plant-atmosphere transfer model (SiSPAT): development and field verification. J Hydrol 166:231–250

    Article  Google Scholar 

  • Brutsaert W (1979) Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Bound-Lay Meteorol 16:365–388

    Article  Google Scholar 

  • Brutsaert W (1984) Evaporation into the atmosphere, 2nd edn. Reidel, Dordrecht

    Google Scholar 

  • Bugter RJF, Tonneijck AEG (1990) Ziehtbare beschadiging bij indicatorplanten in relatie tot ozon en zwaveldioxide. Rapport nr. R-89-10. Centre for Agrobiological Research, Institute for Plant Protection, Wageningen

    Google Scholar 

  • Cassardo C, Ji JJ, Longhetto A (1995) A study of the performance of aland surface pro cess model (LSPM). Bound-Lay Meteorol 72:87–121

    Article  Google Scholar 

  • Chan WH, Lusis MA, Stevens RDS, Vet RJ (1984) A precipitation sampler inter-comparison. Water Air Soil Pollut 23:1–13

    Article  CAS  Google Scholar 

  • Choudhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q J Roy Meteorol Soc 114:373–398

    Article  Google Scholar 

  • Cowan IR (1968) Mass, heat and momentum exchange between stands of plants and their atmospheric environment. Q J Roy Meteorol Soc 94:523–544

    Article  Google Scholar 

  • Daamen CC (1997) Two source model of surface fluxes for millet fields in Niger. Agr Forest Meteorol 83:205–230

    Article  Google Scholar 

  • Dämmgen U, Grünhage L (1998) Response of a grassland ecosystem to air pollutants. V.A toxicologic al model for the assessment of dose-response relationships for air pollutants and ecosystems. Environ Pollut 101:375–380

    Article  Google Scholar 

  • Dämmgen U, Grünhage L, Haenel H-D, Jäger H-J (1993) Climate and stress in ecotoxicology. A coherent system of definitions and terms. Angew Bot 67:157–162

    Google Scholar 

  • Dämmgen U, Grünhage L, Küsters A, Jäger H-J (1994) Response of a grassland ecosystem to air pollutants. II. The chemical climate: fluxes of sedimenting airborne matter. Environ Pollut 85:35–42

    Article  Google Scholar 

  • Dämmgen U, Grünhage L, Küsters A, Scholz-Seidel C, Jäger H-J (1996) Flußdichten sedimentierender Partikel. I. Depositionen anorganischer Spezies. In: Dämmgen U (Hrsg) Untersuchungen zum chemischen Klima in Südost-niedersachsen. Arbeiten des Teilprojekts A10 „Stoffflüsse in der boden-nahen Atmosphäre“ des Sonderforschungsbereichs 179„Wasser-und Stoff-dynamik in Agrar-Ökosystemen“. Landbauforschung Völkenrode Sonderheft 170:103–153

    Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res Atmos 83:1889–1903

    Article  Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Dickinson RE (1984) Modeling evapotranspiration for three-dimensional global climate models. Geophys Monogr, Amer Geophys Union 29:58–72

    Google Scholar 

  • ]DIN ISO 4225 (1996) Luftbeschaffenheit-Allgemeine Gesichtspunkte. Begriffe. Beuth, Berlin

    Google Scholar 

  • Duyzer J, Walton S, Gallagher M, Pilegaard K (1995) A multilayer model to describe the above and below canopy exchange of NOx and O3 with forests. Report No.TNO-MW R95/113. TNO, Apeldoom, The Netherlands

    Google Scholar 

  • ]DVWK — Deutscher Verband für Wasserwirtschaft und Kulturbau eV (1994) Grundsätze zur Ermittlung der Stoffdeposition. DVWK-Merkblätter zur Wasserwirtschaft 229. Wirtschaft-und Verlagsgesellschaft Gas und Wasser, Bonn

    Google Scholar 

  • Erickson E (1954) Composition of atmospheric precipitation. H. Sulfur, chloride, iodine compounds. Tellus 4:280–303

    Google Scholar 

  • Erisman JW, Draaijers GPJ (1995) Atmospheric deposition in relation to acidification and eutrophication. Studies in Environmental Science 63. Elsevier, Amsterdam

    Google Scholar 

  • Erisman JW, van Pul A, Wyers P (1994) Parameterization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos Environ 28:2595–2607

    Article  CAS  Google Scholar 

  • Etling D (1987) The planetary boundary layer PBL. In: Landoldt-Börnstein D (ed) New series, group IV, vol 4, meteorology, subvol c, climatology, part 1. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Falge EM (1997) Die Berechnung der Kronendachtranspiration von Fichten-beständen (Picea abies (L.) Karst.) mit unterschiedlichen Modellierung-sansätzen. Bayreuther Forum Ökologie 48

    Google Scholar 

  • Fick A (1855) Über Diffusion. Poggendorffs Annalen 94:59–86

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, NewYork

    Google Scholar 

  • Foken Th, Handorf D, Weisensee U (1997) Modell-und Meßkonzepte für das LITFASS-Monitoring-Meßnetz. Deutscher Wetterdienst, Forschung und Entwicklung, Arbeisergebnisse Nr. 42

    Google Scholar 

  • Fowler D, Cape JN (1982) Air pollutants in agriculture and horticulture. In: Unsworth MH, Ormrod DP (Hrsg) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London

    Google Scholar 

  • Fuhrer J, Achermann B (1994) Critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikul-turchemie und Umwelthygiene, Bern) 16:1–328

    Google Scholar 

  • Gallagher M, Fontan J, Wyers P, Ruijgrok W, Duyzer J, Humrnelshøj P, Pilegaard K, Fowler D (1997) Atmospheric particles and their interactions with natural surfaces. In: Slanina J (ed) Biosphere-atmosphere exchange of pollutants and trace substances. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Galloway JN, Likens GE (1978) The collection of precipitation for chemical analysis. Tellus 30:71–82

    Article  CAS  Google Scholar 

  • Gao W, Wesely ML, Doskey PV (1993) Numerical modeling of the turbulent diffusion and chemistry of NOx, o3 isoprene, and other reactive trace gases in and above a forest canopy. J Geophys Res Atmos 98:18339–18353

    Article  CAS  Google Scholar 

  • Grünhage L, Dämmgen U, Haenel H-D, Jäger H-J (1994) Response of a grassland ecosystem to air pollutants. III. The chemical climate: vertical flux densities of gaseous species in the atmosphere near the ground. Environ Pollut 85:43–49

    Article  Google Scholar 

  • Grünhage L, Dämmgen U, Hertstein U, Jäger H-J (1993) Response of grassland ecosystem to air pollutants. 1.Experimental concept and site of the Braun-schweig Grassland Investigation Program. Environ Pollut 81:163–171

    Article  Google Scholar 

  • Grünhage L, Haenel H-D (1997) PLATIN (PLant-ATmosphere INteraction) I: a model of plant-atmosphere interaction for estimating absorbed doses of gaseous air pollutants. Environ Pollut 98:37–50

    Article  Google Scholar 

  • Grünhage L, Haenel H-D (2000) WINDEP — Worksheet-INtegrated Deposition Estimation Programme. In: KRdL — Kommission Reinhaltung der Luft im VDI und DIN (Hrsg) Troposphärisches Ozon. Eine kritische Bestandsauf-nahme über Ursache, Wirkung und Abhilfemaßnahmen. Schriftenreihe der KRdL, Bd 32, Düsseldorf, S 157–173

    Google Scholar 

  • Grünhage L, Jäger H-J (1994) Atmospheric ozone exposure-potential for vegetation: how suitable are critical levels? In: Fuhrer J, Achermann B (eds) Critical levels for ozone — a UN-ECE workshop report. FAC Schriftenreihe (Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Bern) Nr 16, S 222–230

    Google Scholar 

  • Grünhage L, Jäger H-J, Haenel H-D, Hanewald K, Krupa S (1997) PLATIN (PLant-ATmosphere INteraction) II: co-occurrence of high ambient ozone concentrations and factors limiting plant absorbed dose. Environ Pollut 98:51–60

    Article  Google Scholar 

  • Grünhage L, Jäger H-J, Haenel H-D, Löpmeier F-J, Hanewald K (1999) The European critical levels for ozone: improving their usage. Environ Pollut 105:163–173

    Article  Google Scholar 

  • Grünhage L, Haenel H-D, Jäger H-J (2000) The exchange of ozone between vegetation and atmosphere: micrometeorological measurement techniques and models. Environ Pollut 109:373–392

    Article  Google Scholar 

  • Guderian R, van Haut H, Stratman H (1960) Probleme der Erfassung und Beur-teilung von Wirkungen gasförmiger Luftverunreinigungen auf die Vegetation. Z Pflanzenkr Pflanzensch 67:257–264

    CAS  Google Scholar 

  • Haenel H-D (1993) Surface-layer profile evaluation using a generalization of Robinson’s method for determination of d and Z 0 Bound-Lay Meteorol 65:55–67

    Article  Google Scholar 

  • Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  • Incl án MG (1996) Modellierung nichtlokaler Austauschprozesses in und über hohen Pflanzenbeständen. Münchener Universitätsschriften, Fakultät für Physik, Meteorol. Institut, Wissenschaftliche Mitteilung Nr 70

    Google Scholar 

  • Inclán MG, Forkel R, Dlugi R, Stull RB (1996) Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies. Bound-Lay Meteorol 79:315–344

    Article  Google Scholar 

  • Jarvis PG, McNaughton KG (1996) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Jetten TH (1992) Physical description of transport processes inside an Open Top Chamber in relation to field conditions. PhD thesis, Agricultural University, Wageningen

    Google Scholar 

  • Kärenlampi L, Skärby L (1996) critical levels for ozone in Europe: testing and finalizing the concepts. UN-ECE workshop report. University of Kuopio, Department of Ecology and Environmental Science, Kuopio

    Google Scholar 

  • Kramm G (1995) Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre. IFU Schriftenreihe, Fraunhofer-Institut für Atmosphärische Umweltforschung Garmisch-Partenkirchen Nr 34

    Google Scholar 

  • Krupa SV, Grünhage L, Jäger H-J, Nosal M, Manning WJ, Legge AH, Hanewald K (1995) Ambient ozone (O3) and adverse crop response: a unified view of cause and effect. Environ Pollut 87:119–126

    Article  CAS  Google Scholar 

  • Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90:1163–1167

    Article  CAS  Google Scholar 

  • Lefohn AS, Runeekles VC (1987) Establishing standards to protect vegetation-ozone exposure/dose considerations. Atmos Environ 21:561–568

    Article  CAS  Google Scholar 

  • Legge AH, Grünhage L, Nosal M, Jäger H-J, Krupa SV (1995) Ambient ozone and adverse crop response: an evaluation of North American and European data as they relate to exposure indiees and critieal levels. J Appl Bot 69:192–205

    CAS  Google Scholar 

  • Leser H (1984) Zum Ökologie-, Ökosystem-und Ökotopbegriff. Natur und Landschaft 59:351–357

    Google Scholar 

  • Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284

    Article  Google Scholar 

  • Lloyd J, Grace J, Miranda AC, Meir P, Wong SC, Miranda HS, Wright IR, Gash JHC, McIntyre J (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell Environ 18:1129–1145

    Article  Google Scholar 

  • Lo Seen D, Chehbouni A, Njoku E, Saatchi S, Mougin E, Monteny B (1997) An approach to couple vegetation functioning and soil-vegetation-atmosphere-transfer models for semiarid grassland during the HAPEX-Sahel experiment. Agr Forest Meteorol 83:49–74

    Article  Google Scholar 

  • Lovett GM (1984) Rates and mechanisms of doud water deposition to a sub-alpine balsam fir forest. Atmos Environ 18:361–371

    Article  Google Scholar 

  • Matsushima D, Kondo J (1997) A proper method for estimating sensible heat flux above a horizontal-hornogeneous vegetation canopy using radiometrie surface observations. J Appl Meteorol 36:1696–1711

    Article  Google Scholar 

  • Meyers T, Paw U KT (1986) Testing of a higher-order dosure model for modeling airflow within and above plant canopies. Bound-Lay Meteorol 37:297–311

    Article  Google Scholar 

  • Meyers TP, Paw UKT(1987) Modeling the plant canopy micrometeorology with higher-order dosure principles. Agr Forest Meteorol 41:143–163

    Article  Google Scholar 

  • Meyers TP, Finkelstein P, Clarke J, Ellestad TG, Sims PF (1998) A multilayer model for inferring dry deposition using standard meteorological measurements. J Geophys Res Atmos 103:22645–22661

    Article  CAS  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground (Translation in Aerophysics of airpollution edited by JA Fay, DP Hoult, American Institute of Aeronautics and Astronautics, New York, pp 90–119, 1969). Akademiia Nauk SSSR, Leningrad, Trudy Geofizi-cheskowo Instituta 151 (24):163–187

    Google Scholar 

  • Nagel H-D, Smiatek G, Werner B (1994) Das Konzept der kritischen Eintrags-raten als Möglichkeit zur Bestimmung von Umweltbel astungs-und-qualitätskriterien — Critical Loads and Critical Levels-. Metzler-Poeschel, Stuttgart

    Google Scholar 

  • Nicholson KW (1988) A review of particle resuspension. Atmos Environ 22:2639–2651

    Article  CAS  Google Scholar 

  • ]NLW — Niedersächsisches Landesamt für Wasserwirtschaft (1987) Belastung von Wasser und Boden durch Niederschläge. Bestandsaufnahme und Konzept für ein Untersuchungs-und Forschungsprogramm. Niedersächsisches Landesamt für Wasserwirtschaft, Hildesheim

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • O’Gara PJ (1922) Sulfur dioxide and fume problems and their solution. Quoted in: Olsen JC „Fourteenth semiannual meeting of the American Institute of Chemical Engineers“. J Industr Eng Chem 14:744–745

    Google Scholar 

  • Oltchev A, Constantin J, Gravenhorst G, Ibrom A, Ioo Y-T, Kim Y-C (1996) A sixlayer SVAT model for energy and mass transfer and its application to a spruce (Picea abies (L.) Karst) forest in Central Germany. J Korean For Soc 85:210–224

    Google Scholar 

  • Oltchev A, Constantin J, Gravenhorst G, Ibrom A (1997) Asix-layer SVAT model for a simulation of water vapour and sensible heat fluxes in a spruce forest. J Hydrol Hydromech 45:5–37

    Google Scholar 

  • Riehm H, Quellmalz, Kraus M (1965) Ergebnisse atmosphärisch-chemischer Untersuchungen in Mitteleuropa. Zentralbl Biol Aerosolforsch 12:434–454

    Google Scholar 

  • Roedel W (1992) Physik unserer Umwelt: Die Atmosphäre. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Schädler G, Kalthoff N, Fiedler F (1990) Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Beitr Phys Atmosph 63:85–100

    Google Scholar 

  • Sehmel GA (1980) Particle and gas dry deposition: a review. Atmos Environ 14:983–1011

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use in general eirculation models. J Atmos Sci 43:505–531

    Article  Google Scholar 

  • Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops — an energy combination theory. Q J Roy Meteorol Soc 111:839–855

    Article  Google Scholar 

  • Smith RA (1872) Air and rain. The beginnings of a chemical climatology. Longmans Green, London

    Google Scholar 

  • Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmos Environ 34:3757–3777

    Article  CAS  Google Scholar 

  • Su H-B, Paw UKT, Shaw RH (1996) Development of a coupled leaf and canopy model for the simulation of plant-atmosphere interaction. J Appl Meteorol 35:733–748

    Article  Google Scholar 

  • Tingey DT, Taylor GE (1982) Variation in plant response to ozone: a conceptual model of physiological events. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Seientific, London

    Google Scholar 

  • ]UBA — Umweltbundesamt (1998) Emissionen nach Emittentengruppen im bisherigen Bundesgebiet 1970 bis 1995 (Stand: Februar 1998). Umweltbundesamt, Berlin

    Google Scholar 

  • van Eimern J, Häckel H (1984) Wetter-und Klimakunde. Ulmer, Stuttgart

    Google Scholar 

  • ]VDI 2309 Bl. 1 (1983) Ermittlung von Maximalen Immissions-Werten. Grundlagen — Determination of Maximum Immission Values. Fundamentals. Beuth, Berlin

    Google Scholar 

  • ]VDI 2310 Bl.6 (1989) Maximale Immissions-Werte zum Schutz der Vegetation. Maximale Immissions-Konzentrationen für Ozon — Maximum Immission Values to Protect Vegetation. Maximum Immission Concentrations for Ozone. Beuth, Berlin

    Google Scholar 

  • ]VDI 2310 Bl. 19 (1992) Maximale Immissions-Werte zum Schutz des Menschen. Maximale Immissions-Konzentrationen für Schwebstaub — Maximum Immission Values Referring to Human Health. Maximum Immission Concentrations for Suspended Particulate Matter. Beuth, Berlin

    Google Scholar 

  • ]VDI 2450 Bl. 1 (1977) Messen von Emission, Transmission und Immission luft-verunreinigender Stoffe. Begriffe, Definitionen, Erläuterungen. Beuth, Berlin

    Google Scholar 

  • ]VDI 2463 Bl. 1 (1999) Messen von Partikeln. Gravimetrische Bestimmung der Massenkonzentration von Partikeln in der Außenluft. Grundlagen. Beuth, Berlin

    Google Scholar 

  • Wang D, Hinckley M, Cumming AB, Braatne J (1995) A comparison of measured and modeled ozone uptake into plant leaves. Environ Pollut 89:247–254

    Article  CAS  Google Scholar 

  • Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304

    Article  CAS  Google Scholar 

  • Wilson NR, Shaw RH (1977) A high er order closure model for canopy flow. J Appl Meteorol 16:1197–1205

    Article  Google Scholar 

  • ]WMO — World Meteorological Organization (1971) WMO Operations Manual — sampling and analysis techniques for chemical constituents in air and precipitation. WMO 299, Geneva

    Google Scholar 

  • Zhang L, Dawes WR, Hatton TJ (1996) Modelling hydrologie processes using a biophysically based model-application of WAVES to FIVE and HAPEX-MOBILHY. J Hydrol 185:147–169

    Article  CAS  Google Scholar 

Literatur

  • Adams DF, Hendrix JW, Applegate HG (1957) Relationship among exposure periods, foliar burn and fluorine content of plants exposed to hydrogen fluoride. J Agric Food Chem 5:108–116

    Article  CAS  Google Scholar 

  • Agrawal M, Agrawal SB, Krizek DT, Kramer GF, Lee EH, Mirecki RM, Rowland RA (1991) Physiological and morphological responses of snapbean plants to ozone stress as influenced by pretreatment with UV-B radiation. In: Abrol YP et al (eds) Impact of global climate change on photosynthesis and plant productivity. Oxford-IBH Publ, New Delhi, India, pp 133–146

    Google Scholar 

  • Andersen CP, Scagel CF (1997) Nutrient availibility alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol 17 (in press)

    Google Scholar 

  • Atkinson CJ, Winner WE, Mooney HA (1988) Gas exchange and SO2 fumigation studies with irrigated and non irrigated field grown Diplacus aurantiacus and Heteromeles arbutifolia. Oecologia 75:386–393

    Article  Google Scholar 

  • Baker CK, Unsworth MH, Greenwood P (1982) Leaf injury on wheat plants exposed in the field in winter to SO2. Nature 299:149–151

    Article  CAS  Google Scholar 

  • Barnes JD, Davison AW (1988) Interaction between ozone and frost sensitivity in clonal trees of Norway spruce (Picea abies L Karst). Environ Pollut 53:415–417

    Article  Google Scholar 

  • Booker FL, Miller JE, Fiscus EL (1992) Effects of ozone and UV-B radiation on pigments, biomass and peroxidase activities in soybean. In: Berglund RL (ed) tropospheric ozone II: effects, modeling and control. Transaction Series 20. Air and Waste Management Assoc, Pittsburg, USA, S. 489–503

    Google Scholar 

  • Brennan E, Leone IA, Daines RH (1950) Fluorine toxicity in tomato as modified by alterations in the nitrogen, calcium and phosphorus nutrition of the plant. Plant Physiol 25:736–747

    Article  CAS  Google Scholar 

  • Bressan RA, Wilson LG, Filner P (1978) Mechanisms of resistance to sulfur dioxide in the Cucurbitaceae. Plant Physiol 61: 761–767

    Article  CAS  Google Scholar 

  • Brewer RF, Guillemet FB, Creveling RK (1961) Influence of NPK fertilization on ineidence and severity of oxidant injury to mangels and spinach. Soil Sci 92:298–301

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Olszyk DM, Fox CA, Dawson PJ, Kats G, Morrison CL, Wolf J (1988) Responses of desert annual plants to ozone and water stress in an in situ experiment. JAPCA 38:1145–1151

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Poth M, Takemoto BK (1990) Effects of photochemical smog and mineral nutrition on ponderosa pine seedlings. Environ Pollut 67:233–248

    Article  CAS  Google Scholar 

  • Chappelka AH, Freer-Smith PH (1995) Predisposition of trees by air pollutants to low temperatures and moisture stress. Environ Pollut 87:105–117

    Article  CAS  Google Scholar 

  • Cowling DW, Lockyer DR (1978) The effect of SO2 on Lolium perenne L grown at different levels of sulphur and nitrogen nutrition. J Exp Bot 29:257–265

    Article  CAS  Google Scholar 

  • Dobson MC, Taylor G, Preer-Smith PH (1990) The control of ozone uptake by Picea abies (L) Karst and P. sitchensis (Bong) Carr during drought and interacting effects on shoot water relations. New Phytol 116:465–474

    Article  CAS  Google Scholar 

  • Dugger WM Jr, Taylor OC, Klein WH, Shropshire W (1963) Action spectrum of peroxyacetyl nitrate damage to bean plants. Nature 198:75–76

    Article  CAS  Google Scholar 

  • Dugger Jr WM, Ting IP (1968) The effect of peroxyacetyl nitrate on plants: photo-reductive reactions and susceptibility of bean plants to PAN. Phytopathology 56:1102–1107

    Google Scholar 

  • Dunning JA, Heck WW (1977) Response of bean and tobacco to ozone: effect of light intensity, temperature and relative humidity. JAPCA 27:882–886

    CAS  Google Scholar 

  • Dunning JA, Heck WW, Tingey DT (1974) Foliar sensistivity of pinto bean and soybean to ozone as affected by temperature, potassium nutrition and ozone dose. Water Air Soil Pollut 3:305–313

    CAS  Google Scholar 

  • Edwards GS, Pier PA, Kelly JM (1990) Infleunce of ozone and soil magnesium status on the cold hardiness of loblolly pine (Pinus taeda L) seedlings. New Phytol 115:157–164

    Article  CAS  Google Scholar 

  • Eisenstat DM, Syvertsen JP, Dean TJ, Yelenosky G, Johnson JD (1991) Sensitivity of frost resistance and growth in citrus and avocado to chronic ozone exposure. New Phytol 118:139–146

    Article  Google Scholar 

  • Enderlein H, Kästner W (1967) Welchen Einfluß hat der Mangel eines Nährstoffes auf die SO2-Resistenz 1 jähriger Kiefern. Arch Forstwes 16:431–435

    Google Scholar 

  • EPA (United States Environmental Protection Agency) (1986) Air Quality criteria for ozone and other photochemical oxidants, Vol III (of V). EPA 600/8-84/020cF, US EPA, Center for Environmental Research Information, Cincinnati OH 45268

    Google Scholar 

  • Feder WA, Shrier R (1990) Combination of UV-B and ozone reduces pollen tube growth more than either stress. Environ Exp Bot 30:451–454

    Article  CAS  Google Scholar 

  • Fincher J, Alseher RG (1992) The effect oflong-term ozone exposure on injury in seedlings of red spruce (Picea rubens Sarg). New Phytol 120:49–59

    Article  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Freer-Smith PH, Mansfield TA (1987) The combined effects of low temperature and SO2-NO2pollution on the new seasons’s growth and water realtions of Picea sit-chensis. New Phytol 106:237–250

    Article  CAS  Google Scholar 

  • Gerant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P (1996) Carbon metabolism enzyme activities and carbon partitioning in Pinus halipensis Mill exposed to mild drought and ozone. J Plant Physiol 148:142–147

    Article  CAS  Google Scholar 

  • Greitner CS, Pell EJ, Winner WE (1994) Analysis of aspen foliage exposed to multiple stresses: ozone, nitrogen deficiency and drought. New Phytol 127:579–589

    Article  CAS  Google Scholar 

  • Guderian R (1970) Untersuchungen über quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflan-zenkrh Pflanzensch 77:200–220

    CAS  Google Scholar 

  • Guderian (1971) Einfluß der Nährstoffversorgung auf die Aufnahme von Schwefeldioxid aus der Luft und auf die Pflanzenanfälligkeit. Schriftenr Landesanstalt für Immissions-und Bodennutzungschutz des Landes NW, Essen 23: 51–57

    Google Scholar 

  • Guderian R (1977) Air pollution. Phytotoxicity of aeidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Guderian R, Wienhaus O (1996), Neuartige Waldschäden’ und Luftverunreini-gungen aus gegenwärtiger Sicht. Deutscher Forstverein Jahresbericht 1996:181–200

    Google Scholar 

  • Harkov R, Brennan E (1980) The influence of soil fertility and water stress on the ozone response of hybrid poplar trees. Phytopathology 70:991–994

    Article  CAS  Google Scholar 

  • Heagle AS (1979) Effects of growth media, fertilizer rate and hour and season of exposure on sensitivity of four soybean cultivars to ozone, Environ Pollut 18:313–322

    Article  CAS  Google Scholar 

  • Heagle AS, Letchworth MB, Mitchell CA (1983) Effects of growth medium and fertilizer rate on the yield response of soybeans exposed to chronic doses of ozone. Phytopathology 73:134–139

    Article  CAS  Google Scholar 

  • Heagle AS, Flagler RB, Patterson RP, Lesser VM, Shafer SR, Heck WW (1987) Injury and yield response of soybean to chronic doses of ozone and soil moisture deficit. Crop Sci 27:1016–1024

    Article  CAS  Google Scholar 

  • Heck WW, Dunning JA (1967) The effects of ozone on tobacco and pinto bean as conditioned by several ecological factors. JAPCA 17:112–114

    CAS  Google Scholar 

  • Heck WW, Heagle AS, Miller JE (1994) Factors affecting plant response to ozone an overview. In: Kuttler W, Jochimsen M (eds) Immissionsökologische Forschung im Wandel der Zeit. Westarp Wissenschaften, Essen, S 113–130

    Google Scholar 

  • Heggestad HE, Heck WW (1971) Nature, extent, and variation of plant response to air pollutants. Adv Agron 23:111–145

    Article  CAS  Google Scholar 

  • Heggestad HE, Burleson FR, Middleton JT, Darley EF (1964) Leaf injury on tobacco varieties resulting from ozone, ozonated hexene-1 and ambient air of metropolitan areas. Int J Air Pollut 8:1–10

    CAS  Google Scholar 

  • Huttunen S (1984) Interactions of disease and other stress factors with atmospheric pollution. In: Treshow M (ed)Air pollution and plant life. Wiley, Chichester, pp 321–355

    Google Scholar 

  • Jones T, Mansfield TA (1982) The effect of SO2 O2 on growth and development of seedlings of Phleum pratense under different light and temperature environments. Environ Pollut 27:57–71

    Article  CAS  Google Scholar 

  • Juhren M, Noble W, Went FW (1957) The standardization of Poa annua as an indicator of smog concentrations. I: Effects of temperature, photoperiod, and light intensity during growth of the test plants. Plant Physiol 32:576–586

    Article  CAS  Google Scholar 

  • Jung I, Winter K (1992) Mineral nutrient deficiency increases the sensitivity of photosynthesis to sulfur dioxide in needles of a coniferous tree, Abies nordmannia. Oecologia 90:70–73

    Article  Google Scholar 

  • Kobayashi K, Miller JE, Flagler RB, Heck WW (1993) Model analyses of interactive effects of ozone and water stress on the yield of soybean. Environ Pollut 82: 39–45

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (1979) Stomatal responses of Fraxinus pennsylvanica seedlings during and after flooding. Physiol Plant 46:155–158

    Article  Google Scholar 

  • Kropff MJ, Smeets WLM, Meijer EMJ, van der Zalm AJA, Bakx EJ (l990) Effects of sulfur dioxide on leaf photosynthesis: the role of temperature and humidity. Physiol Plant 655–661

    Google Scholar 

  • Kuiper PJC (l964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio edoris. Plant Physiol 39:952–955

    Article  Google Scholar 

  • Lange OL (l975) Plant water relations. Prog Bot 37:78–97

    Google Scholar 

  • Leone IA, Brennan E (1970) Ozone toxieity in tomato as modified by phosphorus nutrition. Phytopathology 60:1521–1524

    Article  CAS  Google Scholar 

  • Leone IA, Brennan E (l972) Modification of sulfur dioxide injury to tobacco and tomato by nitrogen and sulfur nutrition. JAPCA 544–547

    Google Scholar 

  • MacDowall FDH (1965) Predisposition of tobacco to ozone damage. Can J Plant Sci 45:1–12

    Article  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Maurer S, Keller T (1995) Nighttime exposure to ozone reduces whole-plant production in Betulapendula. Tree Physiol 15:159–165

    Article  CAS  Google Scholar 

  • McCune DC, Hitchcock AE, Weinstein LH (l966) Con Boyce Tompson. Plant Res 23:295–299

    Google Scholar 

  • McLean DC, Schneider RE, McCune DC (l976) J Am Soc Hort Sci 101:347–352

    Google Scholar 

  • Mehlhorn H, Wenzel AA (l995) Manganese defieiency enhances ozone toxicity in bush beans (Phaseolus vulgaris L cv Saxa). J Plant Physiol 148:155–159

    Article  Google Scholar 

  • Meidner H (l968) The comparative effect of blue and red light on the stomata of Allium cepa L. and Xanthium pennsylvanicum. J Exp Bot 19:146–151

    Article  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaexte I, Frenchilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Mortensen LM (1989) Review: effects of ozone on plants in relation to other environmental conditions. Meddelelser fra Norsk Institutt for Skogforskning 42:57–66

    Google Scholar 

  • Noland TL, Kozlowski TT (1979) Effect of SO2 on stomatal aperture and sulfur up-take of woody angiosperm seedlings. Can J For Res 9:57–62

    Article  CAS  Google Scholar 

  • Norby RJ, Kozlowski TT (1981) Relative sensitivity of three species of woody plants to SO2 at high or low exposure temperature. Oecologia 51:33–36

    Article  Google Scholar 

  • Norby RJ, Kozlowski TT (l983) Flooding and SO2 stress interaction in Betula papyrifera and B.nigra seedlings. For Sci 29:739–750

    Google Scholar 

  • Pääkönen E, Holopainen T (1995) Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth) to ozone. New Phytol 129:595–603

    Article  Google Scholar 

  • Pell EJ, Winner WE, Vinten-Johansen C, Mooney HA (l990) Response of radish to multiple stresses. I. Physiological and growth responses to changes in ozone and nitrogen. New Phytol 115:439–446

    Article  Google Scholar 

  • Pell EJ, Sinn JP, Vinten Johansen C (1995) Nitrogen supply as a limiting factor determining the sensitivity of Populus tremuloides Michx to ozone stress. New Phytol 130:437–446

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (l996) Ultraviolet-B and ozone-induced bioehemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  Google Scholar 

  • Rao MV, Ormrod DP (l995) Ozone exposure decreases UVB sensitivity in a UVB-sensitive flavonoid mutant of Arabidopsis. Phytochem Phytobiol 61:71–78

    Article  Google Scholar 

  • Rist DL, Davis DD (l979) The influence of exposure temperature and relative humidity on the response of pinto bean foliage to sulfur dioxide. Phytopathology 69:231–235

    Article  Google Scholar 

  • Rowland AJ, Drew MC, Wellburn AR (1987) Foliar entry and incorporation of atmospheric nitrogen dioxide into barley plants of different nitrogen status. New Phytol l07:357–371

    Article  Google Scholar 

  • Rowland-Bamford AJ, Drew MC (1988) NO2 assimilation and on the gas exchange characteristics of barley plants exposed to atmospheric NO2. J Exp Bot 39:1287–1297

    Article  CAS  Google Scholar 

  • Saurer M, Maurer S, Matyssek R, Landolt W, Günthardt-Goerg MS, Siegenthaler U (1995) The influence of ozone and nutrition on δ13C in Betula pendula. Oecologia 103:397–406

    Article  Google Scholar 

  • Schulze ED (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu Rev Plant Physiol 37:247–274

    Article  Google Scholar 

  • Senser M (1990) Infleunce of soil substrate and ozone plus acid mist on the frost resistance of younf Norway spruce. Environ Pollut 64:265–278

    Article  CAS  Google Scholar 

  • Shanklin J, Kozlowski TT (1984) Effect of temperature preconditioning on responses of Fraxinuspennsylvanica seedlings to SO2 Environ Pollut 36:311–326

    Article  CAS  Google Scholar 

  • Shanklin J, Kozlowski TT (1985) Effect of flooding of soil on growth and subsequent responses of Taxodium distichum seedlings to SO2 Environ Pollut 38:199–212

    Article  CAS  Google Scholar 

  • Sheriff DW (1977) The effect of humidity on water uptake by, and viscous flow resistance of excised leaves of a number of species: physiological an anatomical observations. J Exp Bot 28:1399–1407

    Article  Google Scholar 

  • Srivastava HS, Ormrod DP (1984) Effects of nitrogen dioxide and nitrate nutrition on growth and nitrate assimilation in bean leaves. Plant Physiol 76:418–423

    Article  CAS  Google Scholar 

  • Srivastava HS, Iolliffe PA, Runeckless VC (1975) The effects of environmental conditions on the inhibition of leaf gas exchange by NO2. Can J Bot 53:475–482

    Article  CAS  Google Scholar 

  • Temple PJ, Taylor OC, Benoit LF (1985) Cotton yield responses to ozone as media-ted by soil moisture and evapotranspiration. J Environ Qual 14:55–60

    Article  CAS  Google Scholar 

  • Tesche M, Feiler S, Michael G, Ranft H, Bellmann C (1989) Physiologische Reaktionen der Fichte (Picea abies) auf komplexen SO2-und Trockenstreß. I: Reaktionen auf gleichzeitiges Einwirken von SO2und Trockenheit. Eur J For Pathol 19:281–292

    Article  Google Scholar 

  • Thomas MD, Hendricks RH, Bryner CC, Hill GR (1943) The utilization of sulphate and sulphur dioxide for the sulphur nutrition of alfalfa. Plant Physiol 18:345–371

    Article  CAS  Google Scholar 

  • Tingey DT, Hogsett WE (1985) Water stress reduces ozone injury via astomatal mechanism. Plant Physiol 77:944–947

    Article  CAS  Google Scholar 

  • Tingey DT, Thutt GL, Gumpertz ML, Hogsett WE (1982) Plant water status influences ozone sensitivity of bean plants. Agric Environ 7:243–254

    Article  CAS  Google Scholar 

  • Tjoelker MG, Luxmoore RJ (1991) Soil nitrogen and chronic ozone stress influence on physiology, growth and nutrient status of Pinus taeda Land Liridendron tulipifera L seedlings. New Phytol 119:69–81

    Article  CAS  Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1993) dark respiration and growth. New Phytol 124:627–636

    Article  CAS  Google Scholar 

  • UBA (Umweltbundesamt) (1997) Daten zur Umwelt. Der Zustand der Umwelt in Deutschland. E.Schmidt Verlag, Berlin

    Google Scholar 

  • Vogel R (1960) Über die Strahlungseinflüsse auf die Stomatabewegung sowie deren Bedeutung für die Anwendung von Kunstlicht zur Pflanzenzucht. Gartenbau-wissenschaft 24:488–525

    Google Scholar 

  • Weinstein LH, Alseher-Hermann R (1982) Physiologieal responses of plants to fluorine. In: Unsworth MH, Ormrod DP (eds) Effeets of gaseous air pollution in agriculture and hortieulture. Butterworth Seientifie, London, pp 139–167

    Google Scholar 

  • Wellburn AR, Higginsdon C, Robinson D, Walmsley C (1981) Bioehemieal explanation of more than additive inhibitory effeets of low atmospherie levels of sulfur dioxide plus nitrogen dioxide upon plants. New Phytol 88:223–237

    Article  CAS  Google Scholar 

  • Wentzel KF (1956) Winterfrost 1956 und Rauehsehäden. Allgem Forstz 11:541–543

    Google Scholar 

  • Wenzel AA, Mehlhorn H (1995) Zinc defieieney enhances ozone toxicity in bush beans (Phaseolus vulgaris L. cv. Saxa). J Exp Bot 46:867–872

    Article  CAS  Google Scholar 

  • Willekens H, Van Camp W, Van Montagu M, Inzé D, Langebartels C, Sandermann Jr H (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effeets on mRNA accumulation of antioxidant genes in Nicotianaplumbaginifolia L. Plant Physiol 106:1007–1014

    CAS  Google Scholar 

  • Zimmermann F et al (1997) Wintersehäden 1995/96 in den Kamm-und Hoehlagen des Erzgebirges. AFZ/Der Wald 11:570–582

    Google Scholar 

Literatur

  • Ayazloo M, Bell JNB (1981) Studies on the tolerance to sulfur dioxide of grass populations in polluted areas. I. Identification of tolerant populations. New Phytol 88:203–222

    Article  CAS  Google Scholar 

  • Barnes J, Bender J, Borland A (1998) Natural and man-made selection for air pollution resistance. In: Omasa K (ed) Air pollution and biotechnology in plants. Springer-Verlag, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Beckerson DW, Hofstra G, Wukash R (1979) The relative sensitivities of 33 bean cultivars to ozone and sulfur dioxide singly and in combination in controlled exposures and to oxidants in the field. Plant Dis Rep 63:478–482

    CAS  Google Scholar 

  • Bender J, Weigel H-J (1995) Zur Gefährdung landwirtschaftlicher Kulturpflanzen durch troposphärische Ozonkonzentrationen. Ber Ldw 73:136–156

    Google Scholar 

  • Bergmann E, Bender J, Weigel H-J (1998) Zur Ozonempfindlichkeit von Wildpflan-zenarten. Agrarökologie Bd 30, Verl Agrarökologie, Berne, Hannover

    Google Scholar 

  • Berrang P, Karnosky DF, Bennett JP (1991) Natural selection for ozone tolerance in Populus tremuloides: an evaluation of nationwide trends. Can J For Res 21: 1091–1097

    Article  Google Scholar 

  • Blanchard RO, Baas J, van Cotter H (1979) Oxidant damage to eastern white pine in New Hamshire. Plant Dis Rep 63:177–182

    Google Scholar 

  • Bowler C, Slooten L, Van den Branden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by ozone radicals in transgenic plants. EMBO J 10: 1723–1732

    CAS  Google Scholar 

  • Bressan RA, LeCureux L, Wilson LG, Filner P, Baker LR (1981) Inheritance of resistance to sulfur dioxide in cucumber. Hort Sci 16:332–333

    CAS  Google Scholar 

  • Bücker J, Ballach HJ (1992) Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiol Plant 86:512–517

    Article  Google Scholar 

  • Burr KE, Tinus RW (1996) Use of clones increases the power of physiological experiments on coastal Douglas-fir. Physiol Plant 96:458–466

    Article  CAS  Google Scholar 

  • Buttler LK, Tibbitts TW (1979) Variation in ozone sensitivity and symptom expression among cultivars of Phaseolus vulgaris L. JAm Soc Hort 104:208–210

    Google Scholar 

  • Davis DD, Wilhour RG (1976) Susceptibility of woody plants to sulfur dioxide and photochemical oxidants. US-EPA-Report 600/3-76-102. Corvallis, Oregon

    Google Scholar 

  • Degen B, Scholz F (1994) Wirkungen von Luftverunreinigungen auf Waldökosysteme — ein systemanalytischer Ansatz aus Sicht der Ökologischen Genetik. In: Burghardt W et al (Hrsg) Essener Ökologische Schriften, Westarp Wiss, Magdeburg, S 79–99

    Google Scholar 

  • Dochinger LS, Seliskar CE (1965) Results from grafting chlorotic dwarf of eastern white pine. Phytopathology 55:404–407

    Google Scholar 

  • Engle RL, Gableman WH (1966) Inheritance an machanism for resistance to ozone damage in onion, Allium cepa L. Proc Am Soc Hort Sci 89:423–430

    Google Scholar 

  • Forberg E, Aarnes H, Nilsen S (1987) Effect of ozone on net photosynthesis in oat (Avena sativa) and duckweed (Lemna gibba). Environ Pollut 47:285–291

    Article  CAS  Google Scholar 

  • Galliano H, Heller W, Sandermann H Jr (1993) Ozone induction and purification of spruce cinnamyl alcohol dehydrogenase. Phytochemistry 32:557–563

    Article  CAS  Google Scholar 

  • Genys JB, Heggestad HE (1983) Relative sensitivity of various type s of eastern white pine, Pinus strobus, to sulfur dioxide. Can J For Res 13:1262–1265

    Article  CAS  Google Scholar 

  • Glombitza S, Bender J, Weigel HJ (1998) Bewertung von Ozonwirkungen auf mittel-europäische Pflanzenarten unter Verwendung existierender Literaturdatenbanken. Bericht der FAL, Braunschweig, PAÖ 9707.02

    Google Scholar 

  • Guderian R (1966) Reaktionen von Pflanzengemeinschaften des Feldfutterbaus auf Schwefeldioxideinwirkungen. Schriftenreihe der Landesanstalt für Immissions-und Bodennutzungsschutz des Landes Nordrhein-Westfalen 4:80–100

    Google Scholar 

  • Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and ist significance in air pollution control. Ecol Stud 22. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoff-Konzentrationen. Forschungsberichte des Landes NW Nr 2017. Westdeutscher Verlag, Köln

    Google Scholar 

  • Guderian R, Stratmann H (1962) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. 1.Teil:Übersicht zur Versuchsmethodik und Versuchsauswertung. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1118. Westdeutscher Verlag, Köln

    Google Scholar 

  • Guderian R, Stratmann H (1968) Freilandversuche zur Ermittlung von Schwefeldi-oxidwirkungen auf die Vegetation. III. Teil:Grenzwerte schädlicher SO2-Immis-sionen für Obst-und Forstkulturen sowie für landwirtschaftliche und gärtnerische Pflanzenarten. Forschungsberichte des Landes Nordrhein-Westfalen Nr 1920, Westdeutscher Verlag, Köln

    Google Scholar 

  • Gupta AS, Alseher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiol 96:650–655

    Article  CAS  Google Scholar 

  • Guri A (1983) Variation in glutathione and ascorbic acid content among selected cultivars of Phasealus vulgaris prior to and after exposure to ozone. Can J Plant Sci 63:733–737

    Article  CAS  Google Scholar 

  • Hanson GP, Addis DH, Thorne L (1976) Inheritance of photochemical air pollution tolerance in petunias. Can J Genet Cytol 18:579–592

    CAS  Google Scholar 

  • Haut van H, Stratmann H (1970) Farbtafelatlas über SO2-Wirkungen an Pflanzen. Giradet, Essen

    Google Scholar 

  • Havranek WEM, Wieser G (1993) Zur Ozontoleranz der europäischen Lärche (Larix decidua Mill). Forstw Centralbl 112:56–64

    Article  Google Scholar 

  • Heagle AS (1979) Ranking of soybean cultivars for resistance to ozone using different ozone doses and response measures. Environ Polut 19:1–10

    Article  CAS  Google Scholar 

  • Heath RL (1980) Initial events in injury to plants by air polltants. Annu Rev Plant Physiol 31:395–431

    Article  CAS  Google Scholar 

  • Heggestad HE, Menser HA (1962) Leaf spot-sensitive tobacco strain Bel W3, a biological indicator of the air pollutant ozone. Phytopathology 52:735

    Google Scholar 

  • Howell RK, Devine TE, Hanson CH (1971) Resistance of selected alfalfa strains to ozone. Crop Sci 11:114–115

    Article  CAS  Google Scholar 

  • Hüve K, Dittrich A, Kindermann G, Slovik S, Heber U (1995) Detoxification of SO2 in conifers differing in SO2-tolerance. A comparison of Picea abies, Picea pungens and Pinus sylvestris. Planta 195:578–585

    Article  Google Scholar 

  • Kärenlampi SO, Airaksinen K, Miettinen ATE, Kokko HI, Holopainen JK, Kärenlampi LV, Karjalainen RO (1994) Pathogenesis-related proteins in ozone-exposed Norway spruce (Picea abies (Karst) L). New Phytol 126:81–89

    Article  Google Scholar 

  • Karnosky DF (1976) Threshold levels for ozone injury to Populus tremuloides by sulfur dioxide and ozone. Can J For Res 6:166–169

    Article  Google Scholar 

  • Karnosky DF (1985) Genetic variability in growth responses to SO2.In: Winner WE et al. (eds) Sulfur dioxide and vegetation. Physiology, ecology and policy issues. Stanford University Press, Stanford CA, pp 346–356

    Google Scholar 

  • Karnosky DF, Steiner KC (1981) Provenance and family variation in response of Fraxinus americana and F. pennsylvanica to ozone and sulfur dioxide. Phytopathology 8:804–807

    Article  Google Scholar 

  • Karnosky DF, Berrang PC, Scholz F, Bennett IP (1989) Variation in and natural selection for air pollution tolerances in trees. In: Scholz F et al (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin Heidelberg NewYork, pp 29–37

    Chapter  Google Scholar 

  • Kerstiens G, Lendzian KJ (1989) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112: 13–19

    Article  CAS  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1981) Stomatal conductance and sulfur uptake of five clones of Populus tremuloides exposed to sulfur dioxide. Plant Physiol 67:990–995

    Article  CAS  Google Scholar 

  • Kondo N, Akiyama Y, Fujiwara M, Sugahara K (1980) Sulfite-oxidizing activities in plants. In: National Institute of Environmental Studies, Japan (ed) Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. Res Rep 11:137–150

    Google Scholar 

  • Krupa SV, Tonneijck AEG, Manning WJ (1998) Ozone. In: Flagler RB (ed) Recognition of air pollution injury to vegetation: a pictural atlas. Air Waste Management Association, Pittsburgh, Pennsyvania

    Google Scholar 

  • Kress LW, Skelly JM, Hinkelmann KH (1982) Relative sensitivity of 18 full-sib families of Pinus taeda to O3. Can J For Res 12:203–209

    Article  CAS  Google Scholar 

  • Larcher W (1987) Streß bei Pflanzen. Naturwissenschaften 74:158–167

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic Press, London

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Luwe MWF, Heber U (1995) Ozone detoxification in the apoplasm and symplasm of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air. Planta 197:448–455

    Article  CAS  Google Scholar 

  • Luwe MWF, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacea oleraceaL) leaves. Plant Physiol 101:969–976

    CAS  Google Scholar 

  • Mac Dowall FDH, Vickery LS, Runeckless VC, Patrick ZA (1963) Ozone damage to tobacco in Canada. Can Plant Dis Surv 43:131–151

    Google Scholar 

  • Madamanchi NR, Alseher RG (1991) Metabolic bases for differences in sensitivity to two pea cultivars to sulfur dioxide. Plant Physiol 97:88–93

    Article  CAS  Google Scholar 

  • Madamanchi NR, Anderson JV, AIscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol 100:138–145

    Article  CAS  Google Scholar 

  • Madamanchi NR, Donahue JL, Cramer CL, Alseher RG, Pedersen K (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26:95–103

    Article  CAS  Google Scholar 

  • Mächler F, Wasescha MR, Krieg F, Oertli JJ (1995) Damage by ozone and protection by ascorbic acid in barley leaves. J Plant Physiol 147:469–473

    Article  Google Scholar 

  • Materna J (1987) Waldschäden in der CSSR. Österr Forstztg 1187:17–19

    Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase aetivity proteets plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13: 971–976

    Article  CAS  Google Scholar 

  • Miller PR, Taylor OC, Wilhour RG (1982) Oxidant air pollution effeets on a western coniferous forest ecosystem.EPA Rep 600/D-82-276

    Google Scholar 

  • NAS (National Aeademy of Science) (1977) Ozone and other photoehemieal oxidants. Committee on Medical and Biologie Effeets of Environmental Pollutants, Washington DC

    Google Scholar 

  • NRCC (National Research Couneil of Canada, 1975) Photochemical air pollution. Formation, transport and effeets. Associate Committee on Scientifie Criteria for Environmental Quality, report 12

    Google Scholar 

  • O’Connor JA, Parbery DG, Strauss W (1974) The effeets of phytotoxic gases on native Australian plant species, part I: aeute effeets of sulfur dioxide. Environ Pollut 7:7–23

    Article  Google Scholar 

  • O’Connor JA, Parbery DG, Strauss W (1975) The effeets of phytotoxie gases on native Australian plant species, part 2. Acute injury due to ozone. Environ Pollut 9:181–192

    Article  Google Scholar 

  • Oshima RJ, Braegelmann PK, Baldwin DW, van Way V, Taylor OC (1977) Reponses of five cultivars of fresh martket tomato to ozone: a contrast of cultivar screening with foliar injury and yield. Jam Soe Hort Sci 102:286–289

    CAS  Google Scholar 

  • Pääkkönen E, Holopainen T, Kärenlampi L (1997) Variation in ozone sensitivity among clones of Betula pendula and Betulapubescens. Environ Pollut 95:37–44

    Article  Google Scholar 

  • Pande PC (1985) An examination of the sensitivity of five barley cultivars to SO2 pollution. Environ Pollut 37:27–41

    Article  CAS  Google Scholar 

  • Peiser G, Yang SF (1985) Bioehemieal and physiologieal effeets of SO2 on non-photosynthetic processes in plants. In: Winner WE et al (eds) Sulfur dioxide and vegetation. Physiology, ecology and poliey issues. Stanford University Press, Stanford CA

    Google Scholar 

  • Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol 81:597–602

    Article  CAS  Google Scholar 

  • Pfanz H, Martinoia E, Lange OL, Heber U (l987) Mesophyll resistances to SO2 fluxes into leaves. Plant Physiol 85:922–927

    Article  Google Scholar 

  • Piteher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (l991) Overproduction of Petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone toleranee in transgenic tobacco. Plant Physiol 97:452–455

    Article  Google Scholar 

  • Piteher LH, Zilinskas BA (l996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistanee to ozoneinduced foliar necrosis. Plant Physiol 110:583–588

    Google Scholar 

  • Pitelka LF (l988) Evolutionary responses of plants to anthropogenic pollutants. Trends Ecol Evol 3:233–236

    Article  Google Scholar 

  • Polle A, Chakrabarti K, Schürmann W, Rennenberg H (1990) Composition and pro perties of hydrogen peroxide deeomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L Karst). Plant Physiol 94:312–319

    Article  CAS  Google Scholar 

  • Ranft H, Dässler HG (l970) Rauchhärtetest an Gehölzen im SO2-Kabinenversueh. Flora 159:573–588

    Google Scholar 

  • Reich PB (l987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3: 63–91

    Article  Google Scholar 

  • Reiling K, Davison AW (l992) Spatial variation in ozone resistance of British populations of Plantago majorL. New Phytol 122:699–708

    Article  Google Scholar 

  • Reinert RA (l975) Monitoring, detecting and effects of air pollutants on horticultural crops, sensitivity of genera and species. Hort Sci 10:495–500

    Google Scholar 

  • Rennenberg H, Huber B, Schröder P, Stahl K, Haunold W, Georgii H-W, Slovik S, Pflanz H (1990) Emission of volatile sulfur compounds from spruce trees. Plant Physiol 92:560–564

    Article  CAS  Google Scholar 

  • Rentschler I (l973) Die Bedeutung der Wachsstruktur auf den Blättern für die Empfindlichkeit der Pflanzen gegenüber Luftverunreinigungen. In: VDI (Hrsg) Proc 3rd Int Clean Air Congr, Düsseldorf, S A139–A142

    Google Scholar 

  • Reuter F, Dässler HG (1983) Der Einfluß von Fluorwasserstoff auf Kernobstgehölze, insbesondere auf die Obstart Apfel. I. Untersuchungen zur Resistenz der Kernobstgehölze gegenüber gasförmigen Fluorverbindungen. Arch Gartenbau 31:299–314

    Google Scholar 

  • Roose ML, Bradshaw AD, Roberts TM (l982) Evolution of resistance to gaseous air pollutants. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, pp 379–409

    Google Scholar 

  • Rosemann D, Heller W, Sandermann H Jr (l99l) Biochemical plant responses to ozone. II. Induction of stibene biosynthesis in Scots pine (Pinus sylvestris L) seedlings. Plant Physiol 97:1280–1286

    Google Scholar 

  • Sandermann H Jr, Bahnweg G, Ernst D, Heller W, Langebartels C (l999) Molecular biomarkers for ozone/plant genotype and ozone/biotic disease interactions. In: Fuhrer J (ed) Criticallevels for ozone. UNECEWorkshop April 1999, Bern

    Google Scholar 

  • Schindlbeck WE (l987) Iso-Peroxidasemuster von Fichtenklonen unterschiedlicher relativer Immissionsresistenz; Zymogrammvergleiche in der Austriebsphase 1986. Eur J For Pathol 17:255–265

    Article  Google Scholar 

  • Scholz F (l984) Drohen unsere Wälder durch Luftverunreinigungen genetisch zu verarmen? AFZ 39:1258–1261

    Google Scholar 

  • Scholz F, Timmann T, Krusche D (l979) Untersuchungen zur Variation der Resistenz gegen HF-Begasung bei Picea abies Familien. Mitt Inst f Forst-und Holzw, Ljubjana, Jugoslawien, S 249–258

    Google Scholar 

  • Sekiya J, Wilson LG, Filner P (l982) Resistance to injury by sulfur dioxide. Correlation with its reduction to, and emission of, hydrogen sulfide in Cucurbitaceae. Plant Physiol 70:437–441

    Article  Google Scholar 

  • Selye H (l936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  • Simontacchi M, Caro A, Fraga CF, Puntarulo S (l993) Oxidative stress affects α-tocopherol content in soybean embryonie axes upon imbibition and following germination. Plant Physiol 103:949–953

    Google Scholar 

  • Smith HJ, Davis DD (1977) The influence of needle age on sensitivity of Scotch pine to acute doses of SO2. Plant Dis Rep 61:870–874

    CAS  Google Scholar 

  • Steiner KG, Davis DD (l979) Variation among Fraxinus families in foliar response to ozone. Can J For Res 9:106–109

    Article  Google Scholar 

  • Stocker O (l947) Probleme der pflanzlichen Dürreresistenz. Naturwissenschaften 34:362–371

    Article  Google Scholar 

  • Stoklasa J (1923) Die Beschädigung der Vegetation durch Rauchgase und Fabrikex-halationen. Urban und Schwarzenberg, München

    Google Scholar 

  • Sutton R, Ting IP (l977) Evidence for the repair of ozone-induced membrane injury. Am J Bot 64:404–411

    Article  Google Scholar 

  • Takahama U, Veljovic-Iovanovic S, Heber U (l992) Effects of the air pollutant SO2 on leaves. Inhibition of sulfite oxidation in the apoplast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol 100:261–266

    Article  Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbat-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431

    CAS  Google Scholar 

  • Tanaka K, Saji H, Kondo N (1988) Immunological properties of spin ach glutathione reductase and inductive biosynthesis of the enzyme with ozone. Plant Cell Physiol 29:637–642

    CAS  Google Scholar 

  • Taylor GE Jr, Tingey DT, Gunderson CA (1986) Photosynthesis, carbon allocation, and growth of sulfur dioxide ecotypes of Geranium carolinianum L. Oecologia 68:350–357

    Article  Google Scholar 

  • Taylor GE Jr, Tingey DT, Ratsch HC (1982) Ozone flux in Glycinemax (L) Merr: sites of regulation and relationship to leaf injury. Oecologia 53:179–186

    Article  Google Scholar 

  • Temple PJ, Jones TE, Lennox RW (1990) Yield loss assessments for cultivars of broccoli, lettuce, and onion exposed to ozone. Environ Pollut 66:289–299

    Article  CAS  Google Scholar 

  • Teppermann JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxieity. Plant Mol Biol 14:501–511

    Article  Google Scholar 

  • Thomas MD, Alther EW (1966) The effects of fluoride on plants. Handbook Exp Pharmakol 20/1:231–306

    Google Scholar 

  • Tingey DT, Andersen CP (1991) The physiological basis of differential plant sensitivity to changes in atmospheric quality. In Taylor GE Jr et al (eds) Ecological genetics and air pollution. Springer, Berlin Heidelberg New York, pp 209–235

    Chapter  Google Scholar 

  • Tingey DT, Standley C, Field RW (1976) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10:969–974

    Article  CAS  Google Scholar 

  • Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537

    CAS  Google Scholar 

  • Treshow M, Stewart D (1973) Ozone sensitivity of plants in natural communities. Biol Conserv 5:205–214

    Article  Google Scholar 

  • Tsukahara H, Kozlowski TT, Shanklin J (1984) Tolerance of Pinus densijlora, Pinus thunbergii, and Larix leptolepis seedlings to SO2. Plant Soil 88:385–397

    Article  Google Scholar 

  • Tzschacksch O (1982) Untersuchungen zur Erblichkeit der SO2-Resistenz bei Kiefer (Pinus silvestris L.) und Douglasie (Pseudotsuga menziesii [Mirb Francvo]) mit Schlußfolgerungen für die Forstwirtschaft. Beitr Forstwirtsch 3:103–106

    Google Scholar 

  • Varshney SRK, Varshney CK (1984) Effects of SO2 on ascorbic acid in crop plants. Environ Pollut 35:285–290

    Article  CAS  Google Scholar 

  • von Schroeder J, Reuss C (1873) Die Beschädigung der Vegetation durch Rauch und die Oberharzer Hüttenrauchschäden. Parey, Berlin

    Google Scholar 

  • Wentzel KF (1968) Empfindlichkeit und Resistenzunterschiede der Pflanzen gegenüber Luftverunreinigung. Forstarchiv 39(9):189–194

    Google Scholar 

  • Westman WE (1979) Oxidant effects on California coastal sage scrub, Science 205:1001–1003

    Article  CAS  Google Scholar 

  • Wingsle G, Mattson A, Ekblad A, Hällgren JE, Selstam E (1992) Activities of glutathione reductase and superoxide dismutase in relation to changes of lipids and pigments due to ozone in seedlings of Pinus sylvestris (L). Plant Sci 82:167–178

    CAS  Google Scholar 

  • Winner WE, Gillespie C, Shen WS, Mooney HA (1988) Stomatal responses to SO2 and O3. In: Schulte-Hostede S et al (eds) Air pollution and plant metabolism. Elsevier Appl Sci, London, pp 255–271

    Google Scholar 

  • Wood FA, Coppolino JB (1972) The influence of ozone on deeiduous forest tree species. Mitt Forstl Bundesversuchsanstalt, Mariabrunn 97:233–25

    Google Scholar 

Literatur

  • Andrae S, Bücker J (1996) Biochemische Indikation von phytorelevanten O3-und/oder SO2 Konzentrationen mit unterschiedlich resistenten Pappelvarie-täten: Zur Persistenz der biochemischen Reaktion. In: Arndt U et al. (Hrsg) Bioindikation: Neue Entwicklungen, Nomenklatur und synökologische Aspekte. Günter Heimbach, Ostfildern, S 187–193

    Google Scholar 

  • Berry CR (1974) Age of pine seedlings with primary needles affects sensitivity to ozone and sulfurdioxide. Pytopathology 64:207–209

    Article  CAS  Google Scholar 

  • Berry CR, Ripperton RA (1963) Ozone, a possible cause of white pine emergence tipburn. Phytopathology 53:552–557

    CAS  Google Scholar 

  • BMELF (Bundesministerium für Ernährung Landwirtschaft und Forsten, 1996) Waldzustandsbericht der Bundesregierung 1996, Bonn

    Google Scholar 

  • Bücker J, Drogies T (1994) Practical application of the poplar cultivars Loenen and Rochester to indicate the presence of phytorelevant O3 and/or SO2 In: Burghardt W et al. (Hrsg.) Essener Ökologische Schriften, Westarp Wiss, Magdeburg, S 133–140

    Google Scholar 

  • Davis DD (1977) Response of ponderosa pine primary needles to seperate and simultaneous ozone and PAN exposures. Plant Dis Rep 61:640–644

    CAS  Google Scholar 

  • Edwards GS, Wullschleger SD, Kelly JM (1994) Growth and physiology of northern red oak: Preliminary comparisons of mature tree and seedling responses to ozone. Environ Pollut 83:215–221

    Article  CAS  Google Scholar 

  • Fialho RC, Bücker J (1996) Changes in levels of foliar carbohydrates and myo-ino-sitol before premature leaf senescence of Populus nigra induced by a mixture of O3 and SO2. Can J Bot 74:965–970

    Article  Google Scholar 

  • Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE, Snyder KR (1995) Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. Environ Pollut 89:273–283

    Article  CAS  Google Scholar 

  • Glater RB, Solberg RA, Scott FM (1962) A developmental study of the leaves of Nicotiana glutinosa as related to their smog sensitivity. Am J Bot 49:954–970

    Article  CAS  Google Scholar 

  • Grulke NE, Miller PR (1994) Changes in gas exchange characteristics during the life span of giant sequoia: implications for response to current and future concentrations of atmospheric ozone. Tree Physiol 14:659–668

    Article  CAS  Google Scholar 

  • Guderian R (1970) Untersuchungen über quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflanzenkrh (Pflanzenpathol) Pflanzensch 77, II. Teil 6/70:289–308

    Google Scholar 

  • Guderian R (1977) Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Ecol Stud 22. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. In: Guderian R (Hrsg) Air pollution by photochemical oxidants. Ecol Stud 52. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  • Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoff-Konzentrationen. Forschungsbericht des Landes NW 2017, Westdeutscher Verlag, Köln

    Google Scholar 

  • Haas JH (1970) Relation of crop maturity to air pollution incited bronzing of Phaseolus vulgaris. Phytopathology 60:407–410

    Article  Google Scholar 

  • Hanson PJ, Thorne L, Addis DH (1975) The ozone sensitivity of Petunia hybrida Vilm as related to physiological age. J Am Soc Hort Sci 100:188–190

    CAS  Google Scholar 

  • Hill AC, Heggestad HE, Linzon SN (1970) Ozone. In: Iacobson JS, Hill AC (eds) Recognition of air pollution injury to vegetation: a pictorial atlas. Air Pollut Control Assoc, Pittsburgh, Pa, pp B1–B22

    Google Scholar 

  • Howell RK, Kremer DF (1972) Ozone injury to soybean cotyledonary leaves. J Environ Qual 1:94–97

    Article  Google Scholar 

  • Kasana MS (1991) Sensitivity of three leguminous crops to 0 3 as influenced by different stages of growth and development. Environ Pollut 69:131–149

    Article  CAS  Google Scholar 

  • Keller T (1988) Growth and premature leaf fall in American aspen as bioindications for ozone. Environ Pollut 52:183–192

    Article  CAS  Google Scholar 

  • Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1998) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208

    Article  Google Scholar 

  • Kozlowski TT, Constantinidou HE (1986) Environmental Pollution and tree growth, part II. Factors affecting responses to pollution and alleviation of pollution effects. For Abstr 47:105–132

    Google Scholar 

  • Liebold E, Zimmermann F, Wienhaus O (1996) Die Beziehungen neuartiger Wald-schäden aller Fichtenbestände eines großen Waldgebietes im Mittleren Thüringer Wald zum ökologischen Komplex der Klima-und Bodenfaktoren. Forstwiss Centralbl 116:140–157

    Article  Google Scholar 

  • McNulty JB, Newman DW (1961) Mechanism of fluoride induces chlorosis. Plant Physiol 36:385–388

    Article  CAS  Google Scholar 

  • Mooi J (1984) O3 und ihrer Mischungen auf Pappeln und einige andere Pflanzenarten. Forst Holzw 39:438–444

    Google Scholar 

  • Noodén LD, Leopold AC (1988) Senescence and aging in plants. Academic Press, San Diego, Ca

    Google Scholar 

  • Pääkkönen E, Metsärinne S, Holopainen T, Kärenlampi L (1995) The ozone sensitivity of birch (Betula pendula) in relation to the developmental stage of leaves. New Phytol 132:145–154

    Google Scholar 

  • Price A, Lucas PW, Lea PJ (1990) Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J Exp Bot 41: 1309–1317

    Article  CAS  Google Scholar 

  • Rebbeck J, Jensen KF (1993) Ozone effects on grafted mature and juvenile red spruce: photosynthesis, stom atal conductance, and chlorophyll concentration. Can J for Res 23:450–456

    Article  CAS  Google Scholar 

  • Richards GA, Mulchi CL, Hall JR (1980) Influence of plant maturity on the sensitivity of turfgrass species to ozone. J Environ Qual 9:49–53

    Article  CAS  Google Scholar 

  • Samuelson LJ, Edwards GS (1993) Acomparison of sensitivity to ozone in seedlings and trees of Quercus robur L. New Phytol 125:373–379

    Article  CAS  Google Scholar 

  • Samuelson LJ, Kelly JM, Mays PA, Edwards GS (1996) Growth and nutrition of Quercus rubra L seedlings and mature trees after three seasons of ozone exposure. Environ Pollut 91:317–323

    Article  CAS  Google Scholar 

  • Schmieden U (1997) Forstpflanzenphysiologie. In: Umweltbundesamt (Hrsg) Auswertung der Waldschadensforschungsergebnisse (1982-1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. UBA, Berlin 6/97:15–146

    Google Scholar 

  • Sutton R, Ting IP (1977) Evidence for the repair of ozone-induced membrane injury. Am J Bot 64:404–411

    Article  CAS  Google Scholar 

  • Tingey DT, Dunning JA, Jividen GM (1973) Radish root growth reduced by acute ozone exposures. Proc 3rd Int Clean Air Congr, Düsseldorf, VDI, Düsseldorf, S A154–A156

    Google Scholar 

  • van Haut H (1961) Die Analyse von Schwefeldioxidwirkungen auf Pflanzen im Laboratoriumsversuch. Staub 21:52–56

    Google Scholar 

  • van Haut H, Stratmann H (1970) Farbtafelatlas über Schwefeldioxid-Wirkungen an Pflanzen. Giradet, Essen

    Google Scholar 

  • Weinstein LH, Alseher-Hermann R (1982) Physiological responses of plants to fluorine. In: Unsworth MH, Ormrod DP (Hrsg) Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London, S 139–167

    Google Scholar 

  • Wentzel KF (1963) Waldbauliche Maßnahmen gegen Immissionen. AFZ 18:101–106

    Google Scholar 

  • Wentzel KF (1968) Empfindlichkeit und Resistenzunterschiede der Pflanzen gegenüber Luftverunreinigungen. Forstarchiv 39(9):189–194

    Google Scholar 

  • Wienhaus O, Liebold E, Zimmermann F (1994) Beziehungen zwischen Standort, Klima und immissionsbedingten Waldschäden in den Fichtenbeständen der Mittelgebirge. Forst Holz 49:411–415

    Google Scholar 

  • Younglove T, McCool PM, Musselman RC, Kahl ME (1994) Growth-stage dependent crop yield response to ozone exposure. Environ Pollut 86:287–295

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guderian, R. et al. (2001). Wirkungen auf Pflanzen: Grundlagen. In: Guderian, R. (eds) Handbuch der Umweltveränderungen und Ökotoxikologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56416-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56416-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63107-8

  • Online ISBN: 978-3-642-56416-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics