Skip to main content

Änderungen in der Atmosphäre in ihren Auswirkungen auf die Vegetation

  • Chapter
Handbuch der Umweltveränderungen und Ökotoxikologie

Zusammenfassung

Innerhalb des Eiszeitalters, des Quartärs (letzte 2500000 Jahre), hat das Klima der Erde mehrfach zwischen Zeiten sehr kalter Bedingungen und solchen geschwankt, die den heutigen mehr oder weniger entsprochen hatten oder die sogar deutlich wärmer und meist auch feuchter gewesen waren. Die Kaltzeiten hatten ab etwa 610000 vor heute (v.h.) den Aufbau großer Inlandeismassen ermöglicht. Sie waren also als Eiszeiten zu bezeichnen. Die zwischengeschalteten, bedeutenden Warmzeiten gelten als Interglaziale, obwohl nicht stets erwiesen ist, daß sie tatsächlich zwischen Eiszeiten vermittelt hatten, wenn sich auch immer mehr Hinweise auf noch frühere große Eisvorstöße als erst ab 610000 Jahren v. h. häufen. So weit bekannt, dauerten die Interglaziale in der Regel zwischen etwa 15000 und 10000 Jahren. Dies ergab sich aus der Analyse jahreszeitlich geschichteter Ozean- oder Seeablagerungen (d.h. lakustriner Sedimente). Die bisher letzte Warmzeit bedeutenden Ausmaßes, die Nacheiszeit oder das Holozän, begann nach Ausweis jahreszeitlich geschichteten Inlandeises, von Seeablagerungen und Jahrringen langlebiger Bäume (Björck et al. 1996; Spurk et al. 1998) vor etwa 11550 Jahren. Wesentlich länger dauerten die Kaltzeiten, und zwar seit etwa 610.000 v. h. jeweils ungefähr 100000Jahre, vorher aber um 80000 Jahre oder etwas weniger (Berger et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aaby B, Tauber M (1995) Eemian climate and pollen. Nature 376:27–28

    CAS  Google Scholar 

  • Adam KD (1953) Die Bedeutung der altpleistozänen Säugetier-Faunen Südwestdeutschlands für die Gliederung des Eiszeitalters. Geologica Bavarica 19:357–363

    Google Scholar 

  • Alcala-Herrera JA, Jacob JS, Machain Castillo ML, Neck RW (1994) Holocene palaeosalinity in a Maya wetland, Belize, inferred from the microfaunal assemblages. Quat Res 41:121–130

    Google Scholar 

  • Alloway BV, Steward RB, Neall VE, Vucetich CG (1992) Climate of the Last Glaciation in New Zealand, based on aerosolic quartz influx in an andesitic terrain. Quat Res 38:170–179

    Google Scholar 

  • An ZS, Kukla GJ, Porter SC, Xiao JL (1991) Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130000 years. Quat Res 36:29–36

    Google Scholar 

  • Andel TH van (1998) Middle and Upper Palaeolithic environments and the calibration of 14C dates beyond 10000 BP. Antiquity 72:26–33

    Google Scholar 

  • Anderson PM, Lozhkin AV, Belaya BV, Glushkova OY, Brubaker LB (1997) A lacustrine pollen record from near altitudinal forest limit, Upper Kolyma region, northeastern Siberia. Holocene 7:331–335

    Google Scholar 

  • Anderson RS (1993) A 35 000 year vegetation and climate history from Potato Lake, Mogollon Rim, Arizona. Quat Res 40:351–359

    Google Scholar 

  • Andreeva SM, Isaeva LL, Kind NV, Nikol’skaja (1982) Oledenenija, morskie transgressii i klimat v pozdnem plejstocene i golocene (Vergletscherungen, marine Transgressionen und Klima im späten Pleistozän und Holozän). In: Kind NV, Leonov BN (eds) Antropogen Tajmyra. Nauka, Moskva, pp 157–165 (russisch)

    Google Scholar 

  • Andrews JT, Erlenkeuser H, Tedesco K, Aksu AE, Jull AJT (1994) Late Quaternary (stage 2 and 3) meltwater and Heinrich events, Northwest Labrador Sea. Quat Res 41:26–34

    Google Scholar 

  • Anhuf D (1996) Untersuchungen zur holozänen Vegetationsgeschichte des nördlichen Afrika. Mannheimer Geogr Arb 44:427–445

    Google Scholar 

  • Aucour A-M, Hillaire-Marcel C, Bonnefille R (1994) Late Quaternary biomass changes from l3C measurements in a higland peatbog from Equatorial Africa (Burundi). Quat Res 41:225–233

    Google Scholar 

  • Behre K-E (1962) Pollen-und diatomeenanalytische Untersuchungen an letztinterglazialen Kieselgurlagern der Lüneburger Heide (Schwindebeck und Grevenhof im oberen Luhetal). Flora 152:325–370

    Google Scholar 

  • Behre K-E (1988) The role of man in European vegetation history. In: Huntley B, Webb vT (eds) Vegetation history. Handb Veget Sci 7:633–672

    Google Scholar 

  • Benson L (1993) Factors affecting 14C ages of lacustrine carbonates: Timing and duration of the last highstand lake in the Lahontan Basin. Quat Res 39:163–174

    CAS  Google Scholar 

  • Berger A, Loutre M-F (1996) Modelling the climate response to astronomical and CO2 foreings. CR Acad Sei Paris 323 (I1a):1–16

    CAS  Google Scholar 

  • Berger A, Loutre M-F (1997) Palaeoclimate sensitivity to CO2 and insolation. Ambio 26:32–37

    Google Scholar 

  • Berger WH, Bickert T, Iansen E, Yasuda M, Wefer G (1994) Das Klima im Quartär. Rekonstruktion aus Tiefseesedimenten mit Hilfe der Milankovitch Theorie. Geowissenschaften 12:258–266

    Google Scholar 

  • Bernabo JC, Webb T III (1977) Changing patterns in the Holocene pollen record of northeastern North America; a mapped summary. Quat Res 8:64–96

    Google Scholar 

  • Berthold P (1990) Vogelzug, eine kurze, aktuelle Gesamtübersicht, 252 S. Wiss Buchgesellschaft, Darmstadt

    Google Scholar 

  • Bertin N, Staudt M, Hansen U, Seufert G, Ciceioli P, Foster P, Fugit, J-L, Torres, I. (1997) Diurnal and seasonal course of monoterpene emissions from Quercus ilex (1.) under natural conditions — application of light and temperature algorithms. Atmos Environ 31 (SI):135–144

    CAS  Google Scholar 

  • Biasi GP, Weldon R Jr (l994) Quantitative refinement of calibrated 14C distributions, Quat Res 41:1–18

    Google Scholar 

  • Björck S, Kromer B, Johnsen S, Benniko O, Hammarlund D, Lemdahl G, Possnert G, Rasmussen TL, Wohlfahrt B, Hammer CU, Spurk M (1996) Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. Science 274:1155–1160

    Google Scholar 

  • Bonnefille R, Mohammed U (l994) Pollen-inferred climatic fluctuations in Ethiopia during the last 3000 years. Palaeogeogr Palaeoclimat Palaeoecol 109: 331–343

    Google Scholar 

  • Brady PV, Gíslason SR (l997) Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim Acta 61:965–973

    Google Scholar 

  • Broecker WS, Klas M, Clark E, Trumbore S, Bonani G, Wölfli W, Ivy S (l990) Accelerator mass spectrometric radiocarbon measurements on foraminifera shells from deepsea cores. Radiocarbon 32:119–133

    Google Scholar 

  • Brook EJ, Sowers T, Orchardo J (l996) Rapid variations in atmospheric methane concentration during the past 110000 years. Science 273:1087–1090

    Google Scholar 

  • Brunnacker K, Schütt H, Brunnacker M (l981) über das Hoch-und Spätglazial in der Küstenebene von Israel. Beih zum Tübinger Atlas des Vorderen Orients, Reihe A (Naturwissenschaften) Nr 8; Frei W, Uerpmann H-P (Hrsg) Beiträge zur Umweltgeschichte des Vorderen Orients, S 61–79

    Google Scholar 

  • Burga CA, Perret R (l998) Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter, 805 S. Ott, Thun

    Google Scholar 

  • Burney DA (l993) Late Holocene environmental changes in arid southwestern Madagascar. Quat Res 40:98–106

    Google Scholar 

  • Campo E van, Gasse F (l993) Pollen-and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13000 yr BP. Quat Res 39:300–313

    Google Scholar 

  • Casanova I, Hilaire-Marcel C (l992) Chronology and paleohydrology of Late Quaternary high lake levels in the Manyara Basin (Tanzania) from isotopic data (18O, 13C, 14C, Th/U) on fossil stromatolites. Quat Res 38:205–226

    Google Scholar 

  • Catt JA (1992) Angewandte Quartärgeologie, 358 S. Enke, Stuttgart

    Google Scholar 

  • Chapellaz J, Blunier T, Raynaud D, Barnola JM, Schwander J, Stauffer B (l993) Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366:443–445

    Google Scholar 

  • Chapellaz J, Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1994) Historical CH4 record from the Vostok ice core. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss FW (eds) Trends’ 93: a compendium of data on Global Change, S 229–232. ORNL/CDIAG-6). Carbon dioxide information analysis center, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA

    Google Scholar 

  • Chapellaz J, Blunier T, Kints S, Dällenbach A, Barnola JM, Schwander J, Raynaud D, Stauffer B (l997) Changes in atmospheric CH4 gradients between Greenland and Antarctica during the Holocene. I Geophys Res 102, no.D13:15, 98715, 997

    Google Scholar 

  • Chen FH, Li JJ (l994) The preliminary study on climatic record by Longxi loess during the last interglacial stage. Study of formation and evolution, environmental changes and ecological systems on the Tibetan Plateau. Science Press, Beijing, pp 96–102 (chinesisch)

    Google Scholar 

  • CLIMAP Project Members (l981) Seasonal reconstructions of the Earth’s surface at the last glacial maximum. The Geological Society of America Map and Chart Series, MC-36

    Google Scholar 

  • Coope GR (1977) Fossil coleopteran assemblages as sensitive indicators of c1imatic changes during the Devensian (Last) cold stage. Philos Trans R Soc Lond B 280:313–340

    Google Scholar 

  • Cortijo E, Duplessy JC, Labeyrie L, Leclaire H, Duprat J, van Weering TCE (1994) Eemian cooling in the Norwegian Sea and North Atlantic Ocean preceding continental ice-sheet growth. Nature 372:446–449

    CAS  Google Scholar 

  • Dambach K (2000) Ein Versuch zur Quantifizierung der gerodeten Landfläche einzelner Landschaften Mitteleuropas mit Hilfe der Pollenanalyse. Dissertationes Botanicae 336:151 S., J. Cramer, Berlin-Stuttgart

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H (1984) North Atlantic c1imatic oscillations revealed by deep Greenl and ice cores. Geophys Monogr 29:288–298

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen H, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past c1imate from a 250 kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • De Angelis M, Steffensen JF, Legrand M, Clausen H, Hammer C (1997) Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cyc1e — comparison with East Antarctic records. J Geophys Res Oceans 102 (HC12):26681–26698

    Google Scholar 

  • Dethier DP, McCoy WD (1993) Aminostratigraphie relations and age of Quaternary deposits, northern Española Basin, New Mexico. Quat Res 39:222–230

    Google Scholar 

  • Devender TR van, Burgess TL, Piper JC, Turner RM (1994) Paleoc1imatic implications of Holocene plant remains from the Sierra Bacha, Sonora, Mexico. Quat Res 41:99–108

    Google Scholar 

  • Dlugokencky EJ, Dutton EG, Novelli PC, Tans PP, Masarie KA, Lantz KO, Madronich S (1996) Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropospheric UV flux. Geophys Res Lett 23:2761–2764

    CAS  Google Scholar 

  • Dupont LM, Weinelt M (1996) Vegetation history of the savanna corridor between the Guinean and Congolian rain forest during the last 150,000years. Veget Hist Archaeobot 5:273–292

    Google Scholar 

  • Dupont LM, Jahns S, Marret F, Shi N (1996) Podocarpus in West Africa during the Late Pleistocene. Palaeoecol Africa 24:85–101

    Google Scholar 

  • Dupont LM, Jahns S, Marret F, Shi N (2000) Vegetation change in equatorial Africa: time slices for the last 150 Ka. Palaeogeogr Palaeoclimat Palaeoecol 155:95–122

    Google Scholar 

  • Edwards ME, Barker ED Jr (1994) Climate and vegetation in Northeastern Alaska 18000yr BP to present. Palaeogeogr Palaeoc1imat Palaeoecol 109:127–135

    Google Scholar 

  • Ehhalt DH (1987) Der troposphärische Kreislaufklimarelevanter Spurengase. AEF, Menschlicher Einfluß auf das Klima, 26. und 27. 11. 1987,33–35

    Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Google Scholar 

  • Elenga H, Schwartz D, Vincens A (1994) Pollen evidence of Late Quaternary vegetation and inferred c1imate changes in Congo. Palaeogeogr Palaeoclimat Palaeoecol 109: 345–378

    Google Scholar 

  • Faegri K, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley, Chiehester, 328pp

    Google Scholar 

  • Fang XM, Dai XR, Li JJ, Cao DH, Guang YP, Hao YP, Wang JL, Wang JM (1995) Abruptness and instability of Asian monsoon. An example from soil genesis during the last interglaciaI. Sci China B26:154–160

    Google Scholar 

  • Fang XM, Li JJ, Voo R van der, Niocaill CM, Dai XR, Kemp R, Derbyshire E, Cao JX, Wang JM, Wang G (1997) Arecord of the Blake Event during the last interglaeial paleosol in the Western Loess Plateau of China. Earth Planet Sci Lett 146:73–82

    CAS  Google Scholar 

  • Fassl K (1996) Die Bewertung von Zeigerarten in europäischen Pollendiagrammen für die Rekonstruktion des Klimas im Holozän. Paläoklimaforsch Palaeoclimate Res 22:371. Fischer, Stuttgart

    Google Scholar 

  • Fiedler F (1987) Klimabeeinflussung durch veränderte Wasser-und Energiebilanz des Bodens. AGF, „Menschlicher Einfluß auf das Klima“, 26. und 27.11.1987, S 46–49

    Google Scholar 

  • Field MH, Huntley B, Müller H (1994) Eemian climate fluctuations observed in a European pollen record. Nature 371:779–783

    CAS  Google Scholar 

  • Firbas F (1949) Spät-und nach eiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. 1.Allgemeine Waldgeschichte, 480 S, Fischer, Jena

    Google Scholar 

  • Fischer H, Graßl H (1987) Strahlungs-und Klimaeffekte durch Konzentrationsänderungen atmosphärischer Spurenstoffe. AGF, „Menschlicher Einfluß auf das Klima“, 26. und 27.11.1987, S 42–45

    Google Scholar 

  • Flessa H, Dörsch P (1995) Seasonal var iations of N2O and CH4 fluxes in differently managed arable soils in southern Germany. J Geophys Res 100, no.D11: 23,115–123,124

    Google Scholar 

  • Prédoux A (1994) Pollen analysis of a deep-sea core in the Gulf of Guinea: vegetation and climatic changes during the last 225 000 years BP. Palaeogeogr Palaeoclimat Palaeoecol 109:317–330

    Google Scholar 

  • Frenzel B (1963) Floren-und Vegetationsgeschichte seit dem Ende des Tertiärs. Fortsehr Bot 25:172–189

    Google Scholar 

  • Frenzel B (1968) Grundzüge der pleistozänen Vegetationsgeschichte Nord-Eurasiens. Erdwissenschaftliche Forschung 1. Steiner, Wiesbaden, 322 S.

    Google Scholar 

  • Frenzel B (1980) Klima der Letzten Eiszeit und der Nacheiszeit in Europa. Veröff Joachim Jungius Ges Wiss Hamburg 44:9–46

    Google Scholar 

  • Frenzel B (1982) The history of flora and vegetation during the Quaternary. Prog Bot 44:406–417

    Google Scholar 

  • Frenzel B (1983a) Die Vegetationsgeschichte Süddeutschlands im Eiszeitalter. In: Müller-Beck H-J (Hrsg) Urgeschichte in Baden-Württemberg. Theiss, Stuttgart, S 91–166

    Google Scholar 

  • Frenzel B (1983b) Mires — repositories of climatic information or self-perpetuating ecosystems? In: Gore AJP (ed) Mires: swamp, bog, fen and moor. Ecosystems of the World 4A. Elsevier, Amsterdam, pp 35–65

    Google Scholar 

  • Frenzel B (1985) Die Umwelt des Menschen im Eiszeitalter. Quartär 35/36:7–33

    Google Scholar 

  • Frenzel B (1989) Theoretische Grundprobleme der botanischen Biostratigraphie des Eiszeitalters. In: Rose J, Schlüchter C (eds) Quaternary type sections: imagination or reality? Brookfield, Rotterdam, pp 33–39

    Google Scholar 

  • Frenzel B (1991a) Das Klima des Letzten Interglazials in Europa. In: Klimageschichtliche Probleme der letzten 130000 Jahre. Paläoklimaforschung/Palaeoclimate Res 1:449–451

    Google Scholar 

  • Frenzel B (1991b) The history of flora and vegetation during the Quaternary. Prog Bot 52:359–380

    Google Scholar 

  • Frenzel B (1993) The histoy of flora and vegetation during the Quaternary. Prog Bot 54:402–427

    Google Scholar 

  • Frenzel B (1994a) Projektgruppe „Terrestrische Paläoklimatologie“ im Klimaforschungsprogramm der Bundesregierung. Jahrbuch 1993, Akad d Wiss u d Lit Mainz, S 201–231

    Google Scholar 

  • Frenzel B (1994b) über Probleme der holozänen Vegetationsgeschichte Osttibets. Göttinger Geogr Abh 95:143–166

    Google Scholar 

  • Frenzel B (1998) 40000 Jahre Geschichte des Klimas in der Alten Welt. In: LozánI L, Gral H, Hupfer P (Hrsg.) Warnsignal Klima. Das Klima des 21. Jahrhunderts: 65–71. Wissenschaftl Auswertungen, Hamburg

    Google Scholar 

  • Frenzel B (1999) History of flora and vegetation during the Quaternary. Prog Bot 61:303–334

    Google Scholar 

  • Frenzel B, Bludau W (1987) On the duration of the interglacial to glacial transition at the end of the Eemian interglacial (deep sea stage 5). Botanical and sedimentological evidence. In: Berger WH, Labeyrie LD (eds) Abrupt climatic change. Reidel, Dordrecht, pp 151–162

    Google Scholar 

  • Frenzel B, Gliemeroth AK (1995) Zur Vegetationsgeschichte Mitteleuropas: Alpen-Mittelgebirge-Tiefland. Angew Landschaftsökol 4:15–50

    Google Scholar 

  • Frenzel B, Gliemeroth AK (1998) Paläoklimatologie des mittleren Teilesder Letzten Eiszeit im Hochland von Tibet. Petermanns Geogr Mitt 142:181–189

    Google Scholar 

  • Frenzel B, Pecsi M, Velichko AA (eds) (1992a) Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere; Late Pleistocene — Holocene, 135pp. Fischer, Stuttgart

    Google Scholar 

  • Frenzel B, Reisch L, Gläser B (eds) (1992b) Evaluation of land surfaces cleared from forests by prehistoric man in Early Neolithic times and the time of migrating Germanie tribes. Paläoklimaforschung/Palaeoclimate Res 8:225. Fischer, Stuttgart

    Google Scholar 

  • Frenzel B, Reisch L, Weiß MM (eds) (1994a) Evaluation of land surfaces cleard from forests in the Mediterranean region during the time of the Roman empire. Paläoklimaforschung/Palaeoclimate Res 10:170. Fischer, Stuttgart

    Google Scholar 

  • Frenzel B, Andersen ST, Berglund BE, Gläser B (eds) (1994b) Evaluation of land surfaces cleared from forests in the Roman Iran Age and the time of migrating Germanie tribes based on regional pollen diagrams. Paläoklimaforschungl Palaeoclimate Res 12:134. Fischer, Stuttgart

    Google Scholar 

  • Friend AD, Cox PM (1995) Modelling the effects of atmospheric CO2 on vegetation — atmosphere interactions. Agricultural Forest Meteoral 73:285–295

    Google Scholar 

  • Fronval T, Iansen E (1997) Eemian and Early Weichselian (140–60 Ka) paleoceanography and paleoclimate in the Nordic Seas with comparisons to Holocene conditions. Paleoceanography 12:443–462

    Google Scholar 

  • Gaillard M-J, Berglund BE (eds) (1998) Quantification of land surfaces cleared of forests during the Holocene — modern pollen/vegetation/landscape relationships as an aid to the interpretation of fossil pollen data. Paläoklimaforschungl Palaeoclimate Res 27:148. Fischer, Stuttgart

    Google Scholar 

  • Geel B van, Bergman R, Molen PC van der, Dupont LM, van Driel-Murray C (1989) Holocene raised bog deposits in the Netherlands as geochemical archives of prehistoric aerosols. Acta Bot Neerl 38:467–476

    Google Scholar 

  • Geyh MA (1980) Einführung in die Methoden der physikalischen und chemischen Altersbestimmung, 276 S. Wiss Buchgesellschaft, Darmstadt

    Google Scholar 

  • Geyh MA, Gu WZ, Jäkel D (1996) Groundwater recharge study in the Gobi Desert, China. Geowissenschaften 14:279–280

    Google Scholar 

  • Gliemeroth AK (1995) Paläoökologische Untersuchungen über die letzten 22000Jahre in Europa. Paläoklimaforschung/Palaeoclimate Res 18:252. Fischer, Stuttgart

    Google Scholar 

  • Godwin H (1975) The history of the British flora. A factual basis for phytogeography, 2nd edn, 541pp. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Görres M (1991) über den Eintrag anorganischer Nährstoffe in ombrogene Moore als Indikator der ehemaligen Aerosolbelastung. Diss Bot 181:179. Cramer, Berlin

    Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271:1576–1578

    CAS  Google Scholar 

  • GRIP Members (1993) Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364:203–207

    Google Scholar 

  • Groenman van Waateringe W (1992) The impact of man on the neolithic and bronze age landscape of the Netherlands from a general methodological aspect. Paläoklimaforschung/Palaeoclimate Res 8:13–24

    Google Scholar 

  • Grosjean M (1994) Paleohydrology of the Laguna Lejia (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeogr Palaeoclimat Palaeoecol 109:89–100

    Google Scholar 

  • Gupta M, Tyler S, Cicerone R (1996) Modeling atmospheric δ13 CH4 and the causes of recent changes in atmospheric CH4 amounts. J Geophys Res 101 no.Dl7 22, 923–922,932

    Google Scholar 

  • Haberle SG, Maslin MA (1999) Late Quaternary vegetation and climate change in the Amazon Basin based on a 50 000 year pollen record from the Amazon Fan, ODP site 932. Quat Res 51:27–38

    Google Scholar 

  • Haigh JD (1996) The impact of solar variability on climate. Science 272:981–984

    CAS  Google Scholar 

  • Hall DO, Ojima DS, Parton WJ, Scurlock JMD (1995) Response of temperate and tropical grasslands to CO2 and climate change. J Biogeogr 22:537–57

    Google Scholar 

  • Hall GH, Simon BM, Pickup RW (1996) CH4 production in blanket bog peat: a procedure for sampling, sectioning and incubating samples whilst maintaining anaerobic conditions. Soil Biol Biochem 28:9–15

    CAS  Google Scholar 

  • Hammen T van der, Absy ML (1994) Amazonia during the last glacial. Paleogeogr Palaeoclimat Palaeoecol 109:247–261

    Google Scholar 

  • Hansen BCS, Seltzer GO, Wright HE Jr (1994) Late Quaternary vegetational change in the central Peruvian Andes. Palaeogeogr Palaeoclimat Palaeoecol 109: 263–285

    Google Scholar 

  • Hansson ME (1994) The Greenland ice core — a Northern Hemisphere record of aerosol composition over 120000 years. Tellus B Chem Phys Meteorol 46: 390–418

    Google Scholar 

  • Harris SE, Mix AC (l999) Pleistocene precipitation balance in the Amazonas Basin recorded in deep sea sediments. Quat Res 51:14–26

    Google Scholar 

  • Heinze C, Hasselmann K (1993) Inverse multiparameter modeling of paleoclimate carbon cycle indices. Quat Res 40:281–296

    Google Scholar 

  • Henderson-Sellers A, McGuffie K, Gross C (1995) Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases. J Climate 8:1738–1756

    Google Scholar 

  • Henfling E, Pflaumenbaum H (1991) Neue Aspekte zur klimatischen Interpretation der hohen pharaonischen Nilflutmarken am 2. Katarakt aus ägyptologischer und geomorphologischer Sicht. Würzburger Geogr Arb 80: 87–109

    Google Scholar 

  • Heusser LE, Shackleton NJ (1994) Tropical climatic variation on the Pacific slopes of the Ecuadorian Andes based on a 25000 years pollen record from deepsea sediment core Tri 163–31B. Quat Res 42:222–225

    Google Scholar 

  • Hoganson JW, Ashworth AC (1992) Fossil beetle evidence for climatic change 18000-10000 years BP in South-Central Chile. Quat Res 37:101–116

    Google Scholar 

  • Hong S-M, Candelone J-P, Petterson CC, Boutron CF (1996) History of ancient copper smelting pollution during Roman and Medieval times recorded in Greenland ice. Science 272:246–249

    CAS  Google Scholar 

  • Hooghiemstra H, Ran ETH (1994) Late and Middle Pleistocene climatic change and forest development in Colombia: Pollen record Funza II (2–158 m core interval). Palaeogeogr Palaeoclimat Palaeoecol 109:211–246

    Google Scholar 

  • Hope G, Tulip J (1994) A long vegetation history from lowland Irian — Jaya, Indonesia. Palaeogeogr Palaeoclimat Palaeoecol 109:385–246

    Google Scholar 

  • Horn SP (1993) Postglacial vegetation and fire history in the Chirripó Páramo of Costa Rica. Quat Res 40:107–116

    Google Scholar 

  • Horvat I (1959) Die Pflanzenwelt Südosteuropas als Ausdruck der erd-und vegetationsgeschichtlichen Vorgänge. Acta Soc Bot Pol 28:381–408 (poln Zusammenfassung)

    Google Scholar 

  • Hüser K, Blümel WD, Eitel B (1998) Landschafts-und Klimageschichte des südwestlichen Afrika. Geogr Rundsch 238-244

    Google Scholar 

  • Humphrey JD, Ferring CR (1994) Stable isotopic evidence for Latest Pleistocene and Holocene climatic change in North-Central Texas. Quat Res 41:200–213

    Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe, 0–13 000 years ago, 667pp. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Jversen J (1941) Landnam i Danmarks stenalder. En pollenanalytisk undersøgelse over det første landbrugs indvirkning paa vegetationsudviklingen. Danmarks Geol Undersøg, II. raekke, Nr 66:68s

    Google Scholar 

  • Jackson ST, Whitehead DR (1993) Pollen and macrofossils from Wisconsinan interstadial sediments in northeastern Georgia. Quat Res 39:99–106

    Google Scholar 

  • Jahns S (1996) Vegetation history and climate changes in West Equatorial Africa during the Late Pleistocene and Holocene, based on a marine pollen diagram from the Congo fan. Veget Hist Archaeobot 5:207–213

    Google Scholar 

  • Jahns S, Hüls M, Sarnthein M (1998) Vegetation and climate history of West Equatorial Africa based on a marine pollen record off Liberia (site GIK 16776) covering the last 400 000 years. Rev Palaeobot PalynoI102:277–288

    Google Scholar 

  • Jatajkin LM (1964) Umgelagerter Pollen und die Anwendung der Korrelationsanalyse für seine Erkennung. Sistematika i metody izučenija iskopaemych pyl’cy i spor, pp 169–176. Moskva

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W et al (1992) Irregular glacial-interstadials recorded in a new Greenland ice core. Nature 359:311–313

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup NS, Hammer CU, Andersen U, Andersen KK, Hvidberg CS, Dahl-Jensen D, Steffensen JP, Shoji H, Sveinbjörns-dóttir AE, White J, Jouzel J, Fisher D (1997) The δ18O record along the Greenland Ice Core Project deep ice core and the problem of the poss ible Eemian climatic instability. J Geophys Res 102, no.C12:26,397–26,410

    Google Scholar 

  • Johnson TC, Scholz CA, Talbot MR, Kelts K, Ricketts RD, Ngobi G, Beuning K, Ssemmanda I, McGill JW (1996) Late Pleistocene desiccation of Lake Victoria and rapid evolution of Cichlid fishes. Science 273:1091–1093

    CAS  Google Scholar 

  • Jolly D, Bonnefille R, Roux M (1994) Numerical interpretation of a high resolution Holocene pollen record from Burundi. Paleogeogr Palaeoclimat Palaeoecol 109:357–370

    Google Scholar 

  • Kac NJa, Kac SV, i Skobeeva EI (1977) Atlas rastitel’nych ostatkov v torfach. Atlas der Pflanzenreste in Torfen, 371 S. Nedra, Moskva (russ)

    Google Scholar 

  • Kars WA van der, Dam MAC (1995) A 135 OOO-year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeogr Palaeoclimat Palaeoecol 117:55–72

    Google Scholar 

  • Katzenberger O, Grün R (1985) ESR dating of circumarctic molluscs. Nucl Track 10:885–890

    CAS  Google Scholar 

  • Kellogg TB, Duplessy JC, Shackleton NJ (1978) Planktonic foraminiferal and oxygen isotopic stratigraphy and palaeoclimatology of Norwegian Sea deep-sea cores. Boreas 7:61–73

    Google Scholar 

  • Kemp RA, Derbyshire E, Meng XM, Chen FH, Pan BT (1995) Pedosedimentary reconstructions of a thick loess-palaeosol sequence near Lanzhou in north-central China. Quat Res 43:30–45

    Google Scholar 

  • Kempter H (1996) Der Verlauf des anthropogenen Elementeintrages in Regenwassermoore des westlichen Mitteleuropas während des jüngeren Holozäns. Paläoklimaforschung/ Palaeoclimate Res 26:309. Fischer, Stuttgart

    Google Scholar 

  • Kershaw AP (1994) Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeogr Palaeoclimat Palaeocol 109:399–412

    Google Scholar 

  • Knudsen KL (1992) Along marine Eemian — Weichselian shelf record in North Denmark, Scandinavia. In: Kukla GJ, Went E (eds) Start of a glacial. Proc Mallorca NATO ARW, NATO ASI Series I 3, vol 13. Springer, Berlin Heidelberg New York, pp 157–171

    Google Scholar 

  • Koenigswald W von (Hrsg) (1988) Zur Paläoklimatologie des Letzten Interglazials im Nordteil der Oberrheinebene. Paläoklimaforschung 4:327. Fischer, Stuttgart

    Google Scholar 

  • Körner C (1995) Towards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming. Plant Cell Environ 18:1101–1110

    Google Scholar 

  • Korhola A, Alm J, Tolonen K, Turunen J, Junger H (1996) Three-dimensional reconstructions of carbon accumulation and CH4 emission during nine millennia in a raised mire. J Quat Sci 11:161–165

    Google Scholar 

  • Kowalski K (1986) Die Tierwelt des Eiszeitalters. Erträge der Forschung 239, 147 S. Wiss Buchgesellschaft, Darmstadt

    Google Scholar 

  • Lauer W (1998) Paläoklima in Afrika: Rekonstruktion der Vegetation für die Zeit um 18000 v. h. (Teilprojekt Frankenberg / Anhuf / Lauer). Jahrbuch 1997, Akad d Wiss u d Lit Mainz 171

    Google Scholar 

  • Ledru M-P (1993) Late Quaternary environmental and climatic changes in Central Brazil. Quat Res 39:90–98

    Google Scholar 

  • Levy PE, Moncrieff JB, Masshedder JM, Jarvis PG, Scott SL, Brouwer J (1997) CO2 fluxes at leaf and canopy scale in millet, fallow and tiger bush vegetation at the HAPEX-Sahel southern super-site. J Hydrol 188/189:612–632

    Google Scholar 

  • Leyden BW, Brenner M, Hodell DA, Curtis JH (1994) Orbital and internal forcing of climate on the Yucatan Pensinsula for the past ca. 36 ka. Palaeogeogr Palaeoclimat Palaeoecol 109:193–210

    Google Scholar 

  • Li HN, Yao WS, Wang JD (1995) The magnetic susceptibility curve of Weinan loess section and its significance in environment and age in the last 220 ka. Scientia Geol Sinica Suppl 1:31–42

    CAS  Google Scholar 

  • Liu KB, Sun SC, Jiang XH (1992) Environmental change in the Yangtze River delta since 12000years BP. Quat Res 38:32–45

    Google Scholar 

  • Liu TS (ed) (1991) Loess, environmental and global change, 288pp. Science Press, Beijing

    Google Scholar 

  • Loehle C (1995) Anomalous responses of plants to CO2 enrichment. Oikos 73:181–187

    Google Scholar 

  • Lorius C (1990) A record of climatic and environmental changes. In: Bradley RS (ed) Global changes of the past. UCAR/Office for Interdisciplinary Earth Studies, Boulder, Colorado, pp 261–194

    Google Scholar 

  • Ložek U (1964) Quartärmollusken der Tschechoslowakei. Rozpravy Ústredn. Ústavu Geolog 31:374S

    Google Scholar 

  • Maher BA, Thompson R (1995) Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quat Res 44:383–391

    Google Scholar 

  • Makahonenko M, Gaillard M-J, Tobolski K (1998) Modern pollen/land-use relationships in ancient-cultural landscapes of north-western Poland, with an emphasis on mowing, grazing, and crop cultivation. Paläoklimaforschung/Palaeoclimate Res 27:85–101

    Google Scholar 

  • Mangerud J, Bolstad M, Eigersma A, Helliksen D, Landvik JY, Lønne I, Lycke AK, Salvigsen O, Sandahl T, Svendsen JJ (1992) The last glacial maximum on Spitsbergen, Svalbard. Quat Res 38:1–31

    Google Scholar 

  • Marean CW (1992) Implications of Late Quaternary mammalian fauna from Lukenya Hill (South-Central Kenya) for paleoenvironmental change and faunal extinctions. Quat Res 37:239–255

    Google Scholar 

  • Martin L, Fournier M, Mourguiart P, Sifeddine A, Turcq B, Absy ML, Flexer JM (1993) Southern oscillation signal in South American paleoclimatic data of the last 7000years. Quat Res 39:338–346

    Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300000-year chronostratigraphy. Quat Res 27:1–29

    CAS  Google Scholar 

  • Maruszczak H (1980) Stratigraphy and chronology of the Vistulian loesses in Poland. Quat Stud Poland 2:57–76

    Google Scholar 

  • Maslin M (1996) Intra-Eemian cold event. Terra Nova 8:395

    Google Scholar 

  • Maslin M, Sarnthein M, Knaack JJ (1996) Subtropical Eastern Atlantic climate during the Eemian. Naturwissenschaften 83:122–126

    CAS  Google Scholar 

  • Menke B (1981) Vegetation, Klima und Verwitterung im Eem-Interglazial und Weichsel-Frühglazial Schieswig-Hoisteins. Verh Naturwiss Ver Hamburg NF 24:123–132

    Google Scholar 

  • Meyers PA, Takemura K, Horie S (1993) Reinterpretation of Late Quaternary sediment chronology of Lake Biwa, Japan, from correlation with marine glacialinterglacial cycles. Quat Res 39:154–162

    Google Scholar 

  • Moosavi SC, Crill PM, Pullman ER, Funk DW, Peterson KM (1996) Controls on CH4 flux from an Alaskan boreal wetland. Global Biogeochem Cycles 10:287–296

    CAS  Google Scholar 

  • Morozova TD (1981) Razvitie počvennogo pokrova Evropy v pozdnem plejstocene. Die Entwicklung der Böden Europas im späten Pleistozän, 282 S Nauka, Moskva (russ)

    Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Delgado JA (1996) CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscapes and nitrogen addition. Global Biogeochem Cycles 10:387–399

    CAS  Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW, Ojima OS, Schimel DS, Heinemeyer O (1997) CH4 and N2O fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change. Global Biogeochem Cycles 11:29–42

    CAS  Google Scholar 

  • Müller H (1974) Pollenanalytische Untersuchungen und Jahresschichtenzählung an der Eem-zeitlichen Kieselgur von Bispingen/Luhe. Geol Jahrb Reihe A H 21:149–169

    Google Scholar 

  • Negrini RM, Davis JO (1992) Dating Late Pleistocene pluvial events and tephras by correlating paleomagnetic secular variation records from the western Great Basin. Quat Res 38:46–59

    Google Scholar 

  • Nejštadt MI (1971) Mirovoj prirodnyj fenomen — zaboločennost’ zapadno-sibirskoj ravniny. (Ein globales Naturphänomen — die Vermoorung der Westsibirischen Tiefebene). Izv Akad Nauk SSSR, Ser Geol 1971:21–34 (russisch)

    Google Scholar 

  • Nejštadt MI, Firsov LV, Orlova LA, Panychev VA (1974) Some peculiarities of Holocene processes in Western Siberia. Geoforum 17:77–83

    Google Scholar 

  • Newby PE, Webb T III (1994) Radiocarbon-dated pollen and sediment records from near the Boylston Street fishweir site in Boston, Massachusetts. Quat Res 41:214–224

    Google Scholar 

  • Newnham R, Ogden J, Mildenhall D (1993) A vegetation history of the far north of New Zealand during the Late Otira (last) glaciation. Quat Res 39:361–372

    Google Scholar 

  • Nykänen H, Alm J, Lång K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357

    Google Scholar 

  • Oechel WC, Vorlitis GL, Hastings SJ, Bochkarev SA (1995) Change in Arctic CO2 flux over two decades: effects of climate change at Barrow, Alaska. Ecol Applicat 5:846–855

    Google Scholar 

  • Oeschger H (1980) In der Natur gespeicherte Geschichte von Umweltvorgängen. In: Oeschger H, Messerli B, Svilar M (Hrsg) Das Klima, Analysen und Modelle, Geschichte und Zukunft, S 209–236, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oeschger H (1995) Klimavergangenheit — Klimazukunft. Wissenschaft in der globalen Herausforderung. Verhandl Ges Dtsch Naturforsch Ärzte 118:127–146

    Google Scholar 

  • Oeschger H, Arquit A (1990) Resolving abrupt and high-frequency global changes in the ice-core record. In: Bradley RS (ed) Global changes of the past, UCAR/Office for Interdisciplinary Earth Studies. Boulder, Colorado, pp 175–200

    Google Scholar 

  • Oppo DW, Horowitz M, Lehman SJ (1997) Marine core evidence for reduced deep water production during Termination II followed by a relatively stable substage 5e (Eemian). Paleoceanography 12:51–63

    Google Scholar 

  • O’Sullivan PE (1973) Contemporary pollen studies in a native Scots pine ecosystem. Oikos 24:143–150

    Google Scholar 

  • O’Sullivan PE, Riley DH (1974) Multivariate numerical analysis of surface pollen spectra from a native Scots pine forest. Pollen et Spores 16:239–264

    Google Scholar 

  • Pachur H-J, Hoelzmann P (1991) Paleoclimatic implications of Late Quaternary lacustrine sediments in Western Nubia, Sudan. Quat Res 36:257–276

    Google Scholar 

  • Pachur H-J, Kröpelin S, Hoelzmann P, Gosehin M, Altmann N (1990) Late Quaternary fluvio-lacustrine environments of western Nubia. Berlin Geowiss Abh A 120:203–260

    Google Scholar 

  • Pachur H-J, Wünnemann B, Zhang HC (1995) Lake evolution in the Tenggri Desert, northwestern China, during the last 40000 years. Quat Res 44:176–180

    Google Scholar 

  • Petit J-R, Briat M, Royer A (1981) Ice age aerosol content from East Antarctic Ice core samples and past wind strength. Nature 293:391–394

    CAS  Google Scholar 

  • Pflaurnann U (1986) Sea-surface temperatures during the last 750000 years in the eastern Equatorial Atlantic: Planktonic foraminiferal record of „Meteor“cores 13519:13521, and 16415. „Meteor“-Forschungsergebnisse, Reihe C, Nr 40:137–161

    Google Scholar 

  • Ram M, Koenig G (1997) Continuous dust concentration profile of pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core: dust, stadials, interstadials and the Eemian. J Geophys Res 102, no.C12, 26, 641–26, 648

    Google Scholar 

  • Rampino MR, Self S (1993) Climate-volcanism feedback and the Toba eruption of ca. 74000 years ago. Quat Res 40:269–280

    Google Scholar 

  • Renfrew JM (1973) Palaeoethnobotany. The prehistoric food plants of the Near East and Europe, 248pp. Methuen, London

    Google Scholar 

  • Rivkin RB, Legendre L, Deibel D, Tremblay J-E, Klein B, Crocker K, Roy S, Silverberg N, Lovejoy C, Mesple F, Romero N, Anderson MR, Matthews P, Savenkoff C, Vezina A, Therriault J-C, Wesson J, Berube C, Ingram RG (1996) Vertieal flux of biogenie carbon in the ocean: is there food web control? Science 272:1163–1166

    CAS  Google Scholar 

  • Robock A (1996) Stratospheric control of climate. Science 272:972–973

    CAS  Google Scholar 

  • Rodbell DT (1993) Subdivision of Late Pleistocene moraines in the Cordillera Blanca, Peru, based on rock-weathering features, soils, and radiocarbon dates. Quat Res 39:133–143

    Google Scholar 

  • Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophie pine fen. Oecologia 110:414–422

    Google Scholar 

  • Sarnthein M, Tiedemann (1990) Younger Dryas-style cooling events at glacial terminations I-VI at ODP site 658: associated benthic δ13C anomalies constrain meltwater hypo thesis. Paleoceanography 56:1041–1055

    Google Scholar 

  • Sarnthein M, Pflaumarm U, Vogelsang R, Spielhagen R, Niebler S, Gersonde R (1998) Der Atlantik im Letzten Glazialen Maximum. Stand der neuen Synthese „CLIMAP 2000“. Klimaforschungsprogramm des BMBF 1994–1997, 3 S. GKSS, Geesthacht

    Google Scholar 

  • Schönfeld J, Kudrass H-R (1993) Hemipelagic sediment accumulation rates in the South China Sea related to Late Quaternary sea-level changes. Quat Res 40:368–379

    Google Scholar 

  • Schrag DP, Hampt G, Murray DW (1996) Pore fluid constraints on the temperature and oxygen-isotopie composition of the glacial ocean. Science 272:1930–1932

    CAS  Google Scholar 

  • Schulze E-D (1995) Wieviel zusätzlichen Kohlenstoff kann die Vegetation der Erde binden? Wissenschaft in der globalen Herausforderung. Verh Ges Dtsch Naturforscher Ärzte 118:251–266

    Google Scholar 

  • Schwartz SE, Andreae MO (1996) Uncertainty in climate change caused by aerosols. Science 272:1121–1122

    CAS  Google Scholar 

  • Seidenkrantz MS (1993) Benthic foraminiferal and stable isotope evidence for a „Younger Dryas-style“ cold spell at the Saalian-Eemian transition, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 102:103–120

    Google Scholar 

  • Shackleton NJ, Duplessy J-C, Arnold M, Maurice P, Hall MA, Cartridge J (1988) Radiocarbon age of last glacial Pacific deep water. Nature 335:708–711

    Google Scholar 

  • Shaw GE (1989) Aerosol transport from sources to ice sheets. Phys Chem Earth Sci Res Rep 1989:13–27. Wiley, Chichester

    Google Scholar 

  • Shi N, Dupont LM, Beug H-J, Schneider R (1998) Vegetation and climate changes during the last 21 000years in SW Africa based on a marine pollen record. Veget Hist Archaeobot 7:127–140

    Google Scholar 

  • Shotyk W (1996) Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environm Rev 4:149–183

    CAS  Google Scholar 

  • Siegenthaler U (1990) Glacial-interglacial atmospheric CO2 variations. In: Bradley RS (ed) Global changes of the past. UCAR/Office for Interdisciplinary Earth Studies, Boulder, Colorado, pp 245–260

    Google Scholar 

  • Sirocko F (1996) Past and present subtropical summer monsoons. Science 274:937–938

    CAS  Google Scholar 

  • Sirocko F, Garbe-Schönberg D, Mdntyre A, Molfino B (1996) Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272:526–529

    CAS  Google Scholar 

  • Smith AG (1962) Threshold and inertia in British Late Quaternary paleoecology. Pollen et Spores, 4:378–379

    Google Scholar 

  • Socorro Lozano-Garcia M del, Ortega-Guerrero B (1994) Palynological and magnetic susceptibility records of Lake Chalco, Central Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 109:177–191

    Google Scholar 

  • Souchez R, Lemmens M, Chapellaz J (1995) Flow-induced mixing in the GRIP basal ice deduced from the CO2 and CH4 records. Geophys Res Lett 22:41–44

    Google Scholar 

  • Spurk M, Friedrich M, Hofmann J, Remmele S, Frenzel B, Leuschner HH, Kromer B (1998) Revisions and extension of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40:1107–1116

    Google Scholar 

  • Staudt M, Bertin N, Hansen U, Seufert G, Ciccioli P, Foster P, Frenzel B, Fugit J-L (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ 31(SI):145–156

    CAS  Google Scholar 

  • Steffensen JP, Clausen HB, Hammer CU, Legrand M, DeAngelis M (1997) The chemical composition of cold events within the Eemian section of the Greenland Ice Core Project ice core from Summit, Greenland. J Geophys Res 102 no.C12:26,747–26,754

    Google Scholar 

  • Steig EJ, Grootes PM, Stuiver M (1994) Seasoal precipitation timing and ice core records. Science 266:1835–1886

    Google Scholar 

  • Steudler PA, Melillo JM, Feigl BJ, Neill C, Piccolo MC, Cerri CC (1996) Consequence of forest-to-pasture conversion on CH4-fluxes in the Brazilian Amazon Basin. J Geophys Res 101,no.013:18,547–18,554

    Google Scholar 

  • Streif H-J (1991) Zum Ausmaß und Ablauf eustatischer Meeresspiegelschwankungen im südlichen Nordseegebiet seit Beginn des Letzten Interglazials. Paläoklimaforschung 1:231–249

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14Cdata base and revised CALIB3.014C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Suchorukova SS (1998) Opornyj razrez morskich otloženij i kolebanija klimata Kazancevskogo (eemskogo) mežlednikov’ja. Reference section of marine deposits and climatic fluctuations in the Kazantsevo (Eemian) interglacial (Northern Siberia). Geologija i geofizika 39(1):74–85, russ

    Google Scholar 

  • Sylvestre F, Servant M, Servant-Vildary S, Causse C, Fournier M, Ybert J-P (1999) Lake-level chronology on the southern Bolivian Altiplano (18δ−23δS) during Late-Glacial times and the early Holocene. Quat Res 51:54–66

    Google Scholar 

  • Szabo NJ, Kolesar PT, Riggs AC, Winograd IJ, Ludwig KR (1994) Paleoclimatic inferences from a 120000-yr calcite record of water-table fluctuation an Browns Room of Devils Hole, Nevada. Quat Res 41:59–69

    Google Scholar 

  • Thorsteinsson, Th, Kipfstuhl J, Eicken H, Johnsen SJ, Fuhrer K (1995) Crystal size variations in Eemian-age ice from the GRIP ice core, Central Greenland. Earth. Planet Sci Lett 131:381–394

    CAS  Google Scholar 

  • Thunell R, Anderson D, Gellar D, Miao QM (1994) Sea-surface temperature estimates for the tropical western Pacific during the last glaciation and their implications for the Pacific warm pool. Quat Res 41:225–264

    Google Scholar 

  • Turon J-L (1984) Direct land/sea correlations in the last interglacial complex. Nature 309:676–676

    Google Scholar 

  • Tushingham AM, Peltier WR (1993) Implications of the radiocarbon timescale for ice-sheet chronology and sea-level change. Quat Res 39:125–129

    Google Scholar 

  • Voelker AHL, Sarnthein M, Grootes PM, Erlenkeuser H, Laj C, Mazaud A, Nadeau M-J, Schleicher, M. (1998) Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: implications for radiocarbon calibration beyond 25 Ka B.P. Radiocarbon 20:517–534

    Google Scholar 

  • Waddington JM, Roulet NT (1996) Atmosphere-wetland carbon exchange: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochem Cycles 10:233–245

    CAS  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants ind boereal peatlands. J of Geophys Res 101 No. D17:22,775–22,785

    Google Scholar 

  • Walter H, Breckle S-W (1991) Ökologie der Erde, 1, Grundlagen, 2.Aufl, 238 S. UTB Große Reihe, Fischer, Stuttgart

    Google Scholar 

  • Warner BG, Clymo RS, Tolonen K (1993) Implications of peat accumulation at Point Escuminac, New Brunswick. Quat Res 39:245–248

    Google Scholar 

  • Washington WM, Meehl GA (1996) High-Jatitude climate change in a global coupled ocean-atmosphere-sea ice model with increased atmospheric CO2. J Geophys Res 101, noD8:12.795–12.801

    Google Scholar 

  • Watson AJ (1997) Volcanic iron, CO2, ocean productivity and climate. Nature 385:587–588

    CAS  Google Scholar 

  • Watts WA, Hansen BCS (1994) Pre-Holocene and Holocene pollen records of vegetation history from the Florida Peninsula and their climatic implications. Palaeogeogr Palaeoclimat Palaeoecol 109:163–176

    Google Scholar 

  • Wefer G, Berger WH, Siedler G, Webb DJ (eds) (1996) The South Atlantic. Springer, Berlin Heidelberg New York, 644pp

    Google Scholar 

  • Weißmüller W (1997) Eine Korrelation der δ18O-Ereignisse des grönlandischen Festlandeises mit den Interstadialen des atlantischen und des kontinentalen Europa im Zeitraum von 45 bis 14 Ka. Quartär 47/48:89–111

    Google Scholar 

  • Westendorf W, Henfling E (1998) Paläohydrologische Daten des Nils nach pharaonisch-ägyptischen Quellen des 4. bis 1. Jahrtausends v. Chr. Klimaforschungsprogramm BMBF 1994–1997, Berichte aus den einzelnen Projekten, 5 S, GKSS, Geesthacht

    Google Scholar 

  • Whalen SC, Reeburgh WS (1996) Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol Biochem 28:1271–1281

    CAS  Google Scholar 

  • Windheuser H, Brunnacker K (1978) Zeitstellung und Tephrostratigraphie des quartären Osteifel-Vulkanismus. Geol Jb Hessen 106:261–271

    Google Scholar 

  • Woillard GM, Mook WG (1982) Carbon-14 dates at Grande Pile: correlation of land and sea chronologies. Science 215:159–161

    CAS  Google Scholar 

  • Xiao JL, Porter SC, An ZS, Kumai H, Yoshikawa S (1995) Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130000years. Quat Res 43:22–29

    Google Scholar 

  • Yechieli Y, Magaritz M, Levy Y, Weber U, Kafri U, Woelfli W, Bonani G (1993) Late Quaternary geological history of the Dead Sea area, Israel. Quat Res 39:59–67

    Google Scholar 

  • Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quat Sci Rev 15:451–469

    Google Scholar 

  • Zhao XT, Sun XP, Zh YL, Huang XQ (1984) Paleogeographic evolution of the Beijing plain during the past 30 000 years. Scientia Sinica B27:1183–1196

    Google Scholar 

  • Zolitschka B (1990) Spätquartäre jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Paläolimnologische Untersuchungen als Beitrag zur spätund postglazialen Klima-und Besiedlungsgeschichte. Documenta Naturae 60:226S, Münchenau]W. Cramer

    Google Scholar 

Literatur

  • Alcamo J (Hrsg) (l994) IMAGE 2.0: integrated modeling of global climate change. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Beerling DJ, Chaloner WG, Hundey B, Pearson JA, Tooley MJ (1993) Stomatal density responds to the glacial cycle of environmental change. Proc R Soc Lond [Biol] 251:133–138

    Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799

    CAS  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Google Scholar 

  • Bondeau A, Kicklighter DW, Kaduk J, participants of the „Potsdam NPP Model Intercomparison“ (1999) Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. GI Change Biol 5 [SuppI1]:35–45

    Google Scholar 

  • Botkin DB, Janak JF, Wallis JR (l972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–873

    Google Scholar 

  • Box EO (1981) Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Junk Publishers, The Hague

    Google Scholar 

  • Braswell BH, Schimel DS, Linder E, Moore B III (1997) The response of global terrestria1 ecosystems to interannual temperature variability. Science 278: 870–872

    CAS  Google Scholar 

  • Bugmann H (1996a) Functional types of trees in temperate and boreal forests — classification and testing. J Veg Sci 7:359–370

    Google Scholar 

  • Bugmann HKM (1996b) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074

    Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    CAS  Google Scholar 

  • Claussen M (1994) On coupling global biome models with climate models. Clim Res 4:203–221

    Google Scholar 

  • Claussen M (1996) Variability of global biome patterns as a function of initial and boundary conditions in a climate model. Clim Dyn 12:371–379

    Google Scholar 

  • Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. GI Change Biol 4:549–560

    Google Scholar 

  • Clements FE (l916) Plant succession: an analysis of the development of vegetation. Carnegie Inst Publ 242, Washington DC

    Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B, III, Churkina G, Nemry B, Ruimy A, Schloss AL, participants of the „Potsdam NPP Model Intercomparison“ (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Gl Change Biol 5 [Suppl 1]:1–15

    Google Scholar 

  • Cramer W, Kohlmaier GH (1997) Modelle zur Simulation von Struktur und Dynamik der terrestrischen Biosphäre. In: Müller F (Hrsg) Handbuch der Umweltwissenschaften. Ecomed Verlag

    Google Scholar 

  • Eltahir EAB, Bras RL (1994) Sensitivity of regional climate to deforestation in the Amazon basin. Adv Wat Res 17

    Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystems complexes. Clim Change 7:29–43

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  Google Scholar 

  • Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. GI Change Biol 4:561–580

    Google Scholar 

  • Friend AD, Stevens AK, Knox RG, Cannell MGR(1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Modelling 95:249–287

    CAS  Google Scholar 

  • Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M(1998) Simulation of modern and glacial climates with a coupled global climate model. Nature 391:350–356

    Google Scholar 

  • Haxeltine A, Prentice IC (1996a) BIOME3: an equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. GI Biogeoch Cycl 10:693–709

    CAS  Google Scholar 

  • Haxeltine A, Prentice IC (1996b) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561

    Google Scholar 

  • Holdridge LR (1947) Life zone ecology. Tropical Science Center. San José, Costa Rica

    Google Scholar 

  • Houghton JT, Callander BA, Varney SK (Hrsg) (1992) Climate change 1992 — the supplementary report to the IPCC Scientific Assessment. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (Hrsg) (1990) Climate change — the IPCC Scientific Assessment. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (Hrsg) (1996) Climate change 1995 — the science of climate change. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Johns TC, Carnell RE, Crossley JF, Gregory JM, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Clim Dyn 13:103–134

    Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–148

    CAS  Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, Van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670

    CAS  Google Scholar 

  • Kindermann J, Badeck F-W, Würth G, Kohlmaier GH (1996) Interannual variation of carbon exchange fluxes in terrestrial ecosystems. GI Biogeoch Cycl 10: 737–746

    CAS  Google Scholar 

  • Kukla G, Karl TR (1993) Nighttime warming and the Greenhouse effect. Environ Sci TechnoI 27:1468–1474

    CAS  Google Scholar 

  • Kullman L (1995) Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Ecology 76:2490–2502

    Google Scholar 

  • Lean J, Rowntree PR (1993) AGCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Q J Roy Meteor Soc 119:509–530

    Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. International Institute for Applied Systems Analysis (IIASA)

    Google Scholar 

  • Lovelock JE (1979) Gaia: a new look at the earth. Oxford Univ Press, Oxford

    Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    CAS  Google Scholar 

  • Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D, Vourlitis G (1994) Transient nature of CO2 fertilization in Arctic tundra. Nature 371:500–504

    CAS  Google Scholar 

  • Peng CH, Guiot J, Vancampo E, Cheddadi R (1995) Temporal and spatial variations of terrestrial biomes and carbon storage since 13 000 Yr Bp in Europe — reconstruction from pollen data and statistical models. Water Air Soil Pollution 82:375–390

    CAS  Google Scholar 

  • Pickett STA, White PS (eds) (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1993a) A simulation model for the transient effects of climate change on forest landscapes. Ecol Modelling 65:51–70

    Google Scholar 

  • Prentice IC, Sykes MT, Lautenschlager M, Harrison SP, Denissenko O, Bartlein PJ (1993b) Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. GI Ecol Biogeogr Lett 3:67–76

    Google Scholar 

  • Raunkiær C (1907) Planterigets livsformer. Gyldendalske Boghandel & Nordisk Forlag, Copenhagen/Kristiania

    Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Kirk E, Lunkeit F, Esch M, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Max-Planck-Institut für Meteorologie

    Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New PhytoI 139:395–436

    Google Scholar 

  • Scholz F (1993) Anforderungen an die forstliche Forschung aufgrund der prognostizierten Klimaänderungen. Allg Forstz 1993:592–595

    Google Scholar 

  • Sernander R (1936) Granskär och Fiby urskog, en studie över stormluckornas och marbuskarnas betydelse iden svenska granskogens regeneration (The primitive forests of Granskär and Fiby). Acta Phytogeogr Suec 8:1–232

    Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics: the ecological implications of forest succession models. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Solomon AM, Leemans R (1997) Boreal forest carbon stocks and wood supply: past, present and future responses to changing climate, agriculture and species availability. Agric For Met 84:137–151

    Google Scholar 

  • Stock M, Toth F (Hrsg) (1996) Mögliche Auswirkungen von Klimaänderungen auf das Land Brandenburg — Pilotstudie. Potsdam Institut für Klimafolgenforschung, Potsdam

    Google Scholar 

  • Tegart WJM, Sheldon GW, Griffiths DC (eds) (1990) Climate change — the IPCC impact assessment. Australian Government Publishing Service, Canberra, Australia

    Google Scholar 

  • Tenhunen JD, Kabat P (eds) (1999) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, Chichester

    Google Scholar 

  • Walter H, Breckle S-W (1983) Ökologie der Erde, Bd 1: Ökologische Grundlagen in globaler Sicht. Fischer Verlag, Stuttgart

    Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH (1996) Climate change 1995:impacts, adaptations, and mitigation. Summary for policymakers. Contribution of working group II to the 2nd assessment report. Intergovernmental Panel on Climate Change (IPCC)

    Google Scholar 

  • Wechsung G, Wechsung F, Wall GW, Adamsen FJ, Kimball BA, Pinter PJ, Lamorte RL, Garcia RL, Kartschall T (1999) The effects of free-air CO2 enrichment and soil water availability on spatial and seasonal patterns of wheat growth. GI Change BioI 5:519–530

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

Literatur

  • Adamse P, Britz SJ (1992) Spectral quality of two fluorescent UV sources during long-term use. Photochem Photobiol 56:641–644

    Google Scholar 

  • Ambasht NK (1998) Ozone depletion and UV-B radiation enhanchement impacts. In: Ambasht RS (ed) Modern trends in ecology and environment. Backhuys Publishers, Leiden, The Netherlands, pp 307–317

    Google Scholar 

  • Antonelli F, Grifoni D, Sabatini F, Zipoli G (1997) Morphological and physiological responses of bean plants to supplemental UV radiation in a Mediterranean climate. Plant EcoI 128:127–136

    Google Scholar 

  • Arakawa O, Hori Y, Ogata R (1985) Relative effectiveness and interaction of UV-B and blue light in anthocyanin synthesis of apple Malus pumila cultivar Jonathan fruit. Physiol Plant 64:323–327

    CAS  Google Scholar 

  • Baker N, Nogués S, Allen DJ (1997) Photosynthesis and Photoinhibition. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology Seminar Series 64. Cambridge Univ Press, Cambridge, pp 233–246

    Google Scholar 

  • Ballaré CL, Barnes PW, Flint SD (1995) Inhibition of hypocotyl elongation by UV-B radiation in de-etiolating tomato seedlings. I. The photoreceptor. Physiol Plant 93:584–592

    Google Scholar 

  • Barnes PW, Jordan PW, Gold WG, Flint SD, Caldwell MM(1988) Competition, morphology and canopy structure in wheat (Tricium aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-Bradiation. Funct Ecol 2:319–330

    Google Scholar 

  • Barnes PW, Ballaré CL, Caldwell MM (1996) Photomorphogenie effects of UV-B radiation on Plants: Consequences for light competition. J Plant Physiol 146: 15–20

    Google Scholar 

  • Beggs CL, Wellmann E (1985) Analysis of light-controlled anthocyanin formation in coleoptiles of Zea mays L.: the role of UV-B,blue, red and far-red light. Photochem Photobiol 41:481–486

    CAS  Google Scholar 

  • Bharti AK, Khuruna JP (1997) Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB Protection Mechanisms. Photochem Photobiol 65:765–776

    CAS  Google Scholar 

  • Björn LO (1996) Effects of ozone depletion and increased UV-B on terrestrial ecosystems. Int J Environ Stud 51:217–243

    Google Scholar 

  • Björn LO, Callaghan T, Gehrke C, Gunnarsson T, Holmgren B, Johanson U, Snogerup S, Sonesson M, Sterner O, Yu S-G (1997a) Effects on subarctic vegetation of enhanced UVB radiation. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 233–246

    Google Scholar 

  • Björn LO, Callaghan TV, Johnsen I, Lee JA, Manetas Y (1997b) The effects of UV-B radiation on European heathland species. Plant Ecol 128:252–264

    Google Scholar 

  • Blumthaler M (1993) Solar UV measurements. In: Tevini M (ed) UV-B radiation and ozone depletion, effects on humans, animals, plants, micro-organisms and materials. Lewis Publishers, Boca Raton, USA, pp 71–94

    Google Scholar 

  • Bogenrieder A, Doute Y(1982) The effects of UV on photosynthesis and growth in dependence of mineral nutrition (Lactuca sativa L. and Rumex alpinus L.). In: Bauer H et al (eds) Biological effects of UV-B radiation. Gesellschaft für Strahlen-und Umweltforschung mbH, Munich, pp 164–169

    Google Scholar 

  • Bojkov RD, Fioletov VE, Diaz SB (1995) The relationship between solar UV irradiance and total ozone from observations over southern Argentina. Geophys Res Lett 22:1249–1252

    CAS  Google Scholar 

  • Booker FL, Fiscus EL, Philbeck RB, Heagle AS, Miller JE, Heck WW (1992) A supplemental ultraviolet-B radiation system for open-top field chambers. J Environ Qual 21:56–61

    Google Scholar 

  • Bornman JF (1989) Target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobiol B Biol 4:145–158

    CAS  Google Scholar 

  • Bornman JF, Teramura AH (1993) Effects of ultraviolet-B radiation on terrestrial plants. In: Young AR et al (eds) Environmental UV-photobiology, Plenum Press, New York, pp 427–471

    Google Scholar 

  • Bornman JF, Sundby-Emanuelsson C (1995) Response of plants to UV-B radiation: some biochemical and physiological effects. In: Smirnoff N (ed) Environment and plant metabolism, flexibility and acclimation. BIOS 245–263

    Google Scholar 

  • Bornman JF, Reuber S, Cen Y-P, Weissenböck G (1997) Ultraviolet radiation as a stress factor and the role of protective pigments. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 157–170

    Google Scholar 

  • Braun J, Tevini M (1993) Regulation of UV-protective pigment synthesis in the epidermal layer of rye seedlings (Secale cereale L. cv Kustro). Photochem Photobiol 57: 318–323

    CAS  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100

    CAS  Google Scholar 

  • Britt AB (1997) Genetic analysis of DNA repair in plants. In: Lumsden PJ (ed) Plant and UVB:responses to environmental change. Society for Experimental Biology seminar series 64. Cambrige Univ Press, Cambridge, pp 77–94

    Google Scholar 

  • Britt AB, Chen JJ, Wykoff D, Mitchell D (1993) A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidone (6-4) dimers. Science 261:1571–1574

    CAS  Google Scholar 

  • Caldwell MM (1971) Solar UV irradiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology VI. Academic Press, New York, pp 131–268

    Google Scholar 

  • Caldwell MM (1997) Alterations in competitive balance. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 305–315

    Google Scholar 

  • Caldwell MM, Flint SD (1994) Solar ultraviolet radiation and ozone layer changes: implications for crop plants. In: Boote K et al (eds) Physiology and determination of crop yield. Madison, Wi, pp 487–507

    Google Scholar 

  • Caldwell MM, Gold WG, Harris G, Ashurst CW (1983) A modulated lamp system for solar UV-B (280-320 nm) supplementation studies in the field. Photochem Photobiol 37:479–485

    CAS  Google Scholar 

  • Caldwell MM, Camp LB, Warner CW, Flint SD (1986) Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reaction, solar ultraviolet radiation and plant life. Springer-Verlag, Berlin Heidelberg New York, pp 87–111

    Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4:363–366

    CAS  Google Scholar 

  • Caldwell MM, Flint SD, Searles PS (1994) Spectral balance and UV-B sensitivity of soybean: a field experiment. Plant Cell Environ 17:267–276

    Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Björn LO, Kulandaivelu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Caldwell MM, Björn LO; Bornmann JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1999) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Photochem Photobiol B Biol 46:40–52

    Google Scholar 

  • Chen JJ, Mitchell DL, Britt AB (1994) A light-dependent pathway for the elimination of UV-induced pyrimidine (6-4) pyrimidone photoproducts of Arabidopsis. Plant Cell 6:1311–1317

    CAS  Google Scholar 

  • Coohill TP (1989) Ultraviolet action spectra (280-380 nm) and solar effectiveness spectra for higher plants. Photochem Photobiol 50:451–457

    CAS  Google Scholar 

  • Corlett JE, Stephen J, Jones HG, Woodfin R, Mepsted R, Paul ND (1997) Assessing the impact of UV-B radiation on the growth and yield of field crops. In: Lumsden PJ (ed) Plants and UV-B: response to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 195–212

    Google Scholar 

  • Dai Q, Peng S, Chavez AQ, Vergara BS (1994) Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ Exp Bot 34:433–442

    Google Scholar 

  • Dai Q, Peng S, Chavez AQ, Vergara BS (1995) Effect of enhanced ultraviolet-B radiation on growth and production of rice under greenhouse and field conditions. In: Peng S et al (eds) Climate change and rice. Springer, Berlin Heidelberg New York, pp 189–198

    Google Scholar 

  • Day TA, Rice WJ, Howells BW (1994) Ultraviolet epidermal transmittance and absorption spectra in foliage. Physiol Plant 92:207–218

    CAS  Google Scholar 

  • Dillenburg LR, Sullivan JH, Teramura AH (1995) Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar styraciflua (Hamamelidaceae) — effects of UV-B radiation. Am J Bot 82:878–885

    CAS  Google Scholar 

  • Fioletov VE, Evans WFJ (1997) The influence of ozone and other factors on surface radiation. In: Wardie Di et al (eds) Ozone Science: a Canadian perspective on the changing ozone layer: Environment University of Toronto Press, Canada, pp 73–91

    Google Scholar 

  • Frederick J E, Soulen PF, Diaz SB, Smolskaia I, Booth CR, Lucas T, Neuschuler D (1993) Solar ultraviolet irradiance observed from Southern Argentina: September 1990 to March 1991. J Geophys Res 98:8891–8897

    Google Scholar 

  • Gehrke C (1998) Effects of enhanced ultraviolet-B radiation on subarctic ecosysterns. Dissertation, University Lund, Sweden

    Google Scholar 

  • Gehrke C, Johanson U, Callaghan T, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic. Oikos 72:213–222

    Google Scholar 

  • Gehrke C, Johanson U, Gwynn-Jones D, Björn LO, Callaghan TV, Lee JA (1996) Effects of enhanced ultraviolet-B radiation on terrestrial subarctic ecosystems and implications for interactions with increased atmospheric CO2 Ecol Bull 45:192–203

    CAS  Google Scholar 

  • Green R, Fluhr R (1995) UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7:203–212

    CAS  Google Scholar 

  • Hada M, Buchholz G, Hashimoto T, Nikaido O, Wellmann E (1999) Photoregulation of DNA Photolyases in Broom Sorghum Seedlings. Photochem Photobiol 69: 681–685

    CAS  Google Scholar 

  • Hateher PE, Paul ND (1994) The effects of elevated UV-Bradiation on herbivory of pea by Autographa gamma. Entomol Exp Appl 71:227–233

    Google Scholar 

  • Herman JR, Bhartia PK, Ziemke J, Ahmad Z, Larko D (1996) UV-Bradiation increases (1979–1992) from decreases in total ozone. Geophys Res Lett 23:2117–2120

    CAS  Google Scholar 

  • Hideg E, Vass I (1996) UV-B induced free radical production in plant leaves and in isolated thylakoid membranes. Plant Sci 115:251–260

    CAS  Google Scholar 

  • Hidema J, Kumagai T, Sutherland JC, Sutherland BM(1997) Ultraviolet B-sensitive rice cultivar deficient in cydobutyl pyrimidine dimer repair. Plant Physiol 113:39–44

    CAS  Google Scholar 

  • Holmes MG (1997) Action spectra for UV-B effects on plants: monochromatic and polychromatic approaches for analysing plant responses. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 31–52

    Google Scholar 

  • Iwanzik W, Tevini M, Dohnt G, Voss M, Weiss W, Gröber P, Renger G (1983) Action of UV-B radiation on photosynthetic primary reactions in spinach chloroplasts. Physiol Plant 58:401–407

    CAS  Google Scholar 

  • Jansen MAK, Babu TS, Heller D, Gaba V, Mattoo AK, Edelmann M (1996) Ultraviolet-B-Effects on Spirodela oligorrhiza: induction of different protection mechanisms. Plant Sci 115:217–223

    CAS  Google Scholar 

  • Johanson U, Gehrke C, Björn LO, Callaghan TV (1995a) The effects of enhanced UV-B radiation on the Growth of Dwarf Shrubs in a Sub-Arctic Heathland. Funct Eco19:713–719

    Google Scholar 

  • Johanson U, Gehrke C, Björn LO, Callaghan TV, Sonesson M (1995b) The effects of enhanced UV-B radiation on a subarctic heath ecosystem. Ambio 24:106–111

    Google Scholar 

  • Jones LW, Kok B (1966) Photo inhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41:1037–1043

    CAS  Google Scholar 

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:98–163

    Google Scholar 

  • Jordan BR, James PE, Strid A, Anthony RG(1994) The effect of supplementary UVB radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-Binduced changes in gene expression are gene-spceific and dependent upon tissue development. Plant Cell Environ 17:45–54

    CAS  Google Scholar 

  • Jungblut TP (1996) Wirkung von UV-B Strahlung und Ozon auf den Sekundärstoffwechsel der Kiefer (Pinus sylvestris L.). Doktorarbeit. Fakultät für Biologie, LMU München

    Google Scholar 

  • Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034

    CAS  Google Scholar 

  • Killick HJ, Warden SJ (1991) Ultraviolet penetration of pine trees and insect virus survival. Entomophaga 36:87–94

    Google Scholar 

  • Köpke P (1998) UV-Strahlung an der Erdoberfläche. In: Guderian R (Hrsg) Handbuch der Ökotoxikologie, Bd 1. Springer, Berlin Heidelberg New York (in Druck)

    Google Scholar 

  • Krupa SV, Kickert RN (1993) The greenhouse-effect: the impacts of carbon-dioxide (CO2), ultraviolet-B (UV-B) radiation and ozone (O3) on vegetation (crops). Vegetatio 104/105:223–238

    Google Scholar 

  • Lercari B, Sodi F, di Paola ML (1990) Photomorphogenic responses to UV radiation: involvement of phytochrome and UV photoreceptors in the control of hypocotyl elongation in Lycopersicon esculentum. Physiol Plant 79:668–672

    CAS  Google Scholar 

  • Li J, Ou-Lee T-M, Raba R, Amundson RG, Last RL (1993) Arabisdopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    CAS  Google Scholar 

  • Mackerness SA-H, Jordan BR, Thomas B (1997) UV-B effects on the expression of genes encoding proteins involved in photosynthesis. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 113–134

    Google Scholar 

  • Madronich S, McKenzie RL, Caldwell MM, Björn LO (1995) Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24:143–152

    Google Scholar 

  • Manetas Y, Petropoulou Y, Stamatikis K, Nikolopoulos D, Levizou E, Psaras G, Karabournitos G (1997) Beneficial effects of enhanced UV-B radiation under field conditions: improvement of needle water relations and survival capacity of Pinus pinea L.seedlings during the dry Mediterranean summer. In: Rozema J et al (eds) UV Band biosphere. Kluwer Academic Publishers, Belgium, pp 100–108

    Google Scholar 

  • Manning WJ, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), Ozone (O3), and Ultraviolet-B (UVB) radiation on plant diseases. Environ Pollut 88:219–245

    CAS  Google Scholar 

  • Mark U, Tevini M (1996) Combination effects of UV-B radiation and temperature on sunflower (Helianthus annuus L., cv Polstar) and maize (Zea mays L., cv. Zenit 2000) seedlings. Plant Physiol 148:49–56

    CAS  Google Scholar 

  • Mark U, Tevini M (1997) Effects of elevated Ultraviolet-B-radiation, temperature and CO2 on growth and function of sunflower and maize seedlings. Plant Ecol 128:224–234

    Google Scholar 

  • Mayer B, Seckmeyer G, Kyling A (1997) Systematic long-term comparison of spectral UV measurements and UVSPEC modelling results. J Geophys Res 102: 8755–8767

    CAS  Google Scholar 

  • McCloud ES, Berenbaum MR (1994) Stratospheric ozone depletion and plant-insect interactions: effects of UVB radiation on foliage quality of Citrus jambhiri for Trichoplusia ni. J Chem Ecol 20:525–539

    CAS  Google Scholar 

  • McLeod AR (1997) Outdoor supplementation systems for studies of the effects of increased UV-Bradiation. Plant Ecol 128:78–92

    Google Scholar 

  • McLeod AR, Newsharn KK (1997) Impacts of elevated UV-B on forest ecosystems. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 247–282

    Google Scholar 

  • Middleton EM, Teramura AH (1993) Potential errors in the use of cellulose diacetate and mylar filters in UVB radiation studies. Photochem Photobiol 57: 744–751

    CAS  Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone. Nature 249:810–812

    CAS  Google Scholar 

  • Moody SA, Coop DJS, Paul ND (1997) Effects of elevated UV-B radiation and elevated CO2 on heathland communities. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 283–304

    Google Scholar 

  • Müller R, Crutzen PJ, Grooß J-U, Brühl C, Russel III JM, Gernandt H, McKenna DS, Tuck AF (1997) Severe chemical ozone loss in the Arctic during the winter of 1995-1996. Nature 389:709–711

    Google Scholar 

  • Murali NS, Teramura AH (1985) Effects of ultraviolet-B irradiance on soybean. VI. Influence of phosphorous nutrition on growth and flavonoid content. Physiol Plant 63:413–416

    CAS  Google Scholar 

  • Murali NS, Teramura AH, Randall SK (1988) Response differences between two soybean cultivars with contrasting UV-B radiation sensitivities. Photochem Photobiol 48:653–657

    CAS  Google Scholar 

  • Murphy TM, Vu H (1996) Photoinactivation of superoxide synthases of plasma membrane from rose (Rosa damascena Mill.) Cells. Photochem Photobiol 64:106–109

    CAS  Google Scholar 

  • Newsham KK, McLeod AR, Greenslade PD, Emmett BA(1996) Appropriate controls in outdoor UV-Bsupplementation experiments. Global Change Biol 2:319–324

    Google Scholar 

  • Newsham KK, McLeod AR, Roberts JD, Greenslade PD, Emmett BA (1997) Direct effects of UV-B radiation on the decomposition of Quercus robur leaf litter. Oikos 79:592–602

    Google Scholar 

  • Nouchi I, Kobayashi K (1995) Effects of ultraviolet-B radiation on growth of rice plants in the field. In: Peng S et al (eds) Climate change and rice. Springer, Berlin Heidelberg New York, pp 169–179

    Google Scholar 

  • Olszyk D, Dai Q, Teng P, Leung H, Luo Y, Peng S (1996) UV-B effects on crops: response of the irrigated rice ecosystem. Plant Physiol 148:26–34

    CAS  Google Scholar 

  • Ormrod DP, Landry LG, Conklin PL (1995) Short-term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants. Physiol Plant 93:602–610

    CAS  Google Scholar 

  • Orth AB, Teramura AH, Sisler HD (1990) Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus. Am J Bot 77:1188–1192

    Google Scholar 

  • Panagopoulos I, Bornman JF, Björn LO (1992) Response of sugar beet plants to ultraviolet-Bradiation and Cercospora spot disease. Physiol Plant 84:140–145

    CAS  Google Scholar 

  • Pang Q, Hays JB (1991) UV-B-inducible and temperature-sensitive photoreactivation of cydobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol 95:536–543

    CAS  Google Scholar 

  • Paul ND (1997) Interactions between tropic levels. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 317–339

    Google Scholar 

  • Petropoulou Y, Kyparissis A, Nikolopoulos D, Manetas Y (1995) Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions. Physiol Plant 94:37–44

    CAS  Google Scholar 

  • Pfündel EE, Pan RS, Dilley RA (1992) Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol 98:1372–1380

    Google Scholar 

  • Premkumar A, Kulandaivelu G (1996) Influence of ultraviolet-B enhanced solar radiation on growth and photosynthesis of potassium deficient cowpea seedlings. Photosynthetica 32:521–528

    CAS  Google Scholar 

  • Press MC, Callaghan TV, Lee JA (1998) How will european arctic ecosystems respond to projected global environmental change? Ambio 27:306–311

    Google Scholar 

  • Quaite FE, Sutherland BM, Sutherland JC (1992) Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358:576–578

    CAS  Google Scholar 

  • Quaite FE, Takayanagi S, Ruffini J, Sutherland JC, Sutherland BM (1994) DNA damage levels determine cydobutane pyrimidine dimer repair mechanisms in alfalfa seedlings. Plant Cell 6:1635–1641

    CAS  Google Scholar 

  • Rao MV, Ormrod DP (1995) Ozone exposure decreases UV-Bsensitivity in a UVB sensitive flavonoid mutant of Arabidopsis. Photochem Photobiol 61:71–78

    CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    CAS  Google Scholar 

  • Rau W, Hofmann H (1996) Sensitivity to UV-B of plants growing in different altitudes in the Alps. Plant Physiol 148:21–25

    CAS  Google Scholar 

  • Rau W, Hofmann A, Huber-Willer U, Mitzke-Schnabel U, Schrott E (1988) Die Wirkung von UV-B auf photoregulierte Entwicklungsvorgänge bei Pflanzen. Gesellschaft für Strahlen-und Umweltforschung mbH, München, Abschlußbericht

    Google Scholar 

  • Renger G, Eckert HJ, Fromme R, Grüber P, Volker M, Hohmveit S (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol 49:97–105

    CAS  Google Scholar 

  • Ros J (1995) Synergism and/or antagonism of enhanced (reduced) UV-B radiation and variable nitrogen supply (normal, reduced and enhanced) in crop plants. In: Bauer H, Nolan C (eds) European symposium on effects of environmental UV radiation. Commission of the European Communities (Brussels) and the GSF(Munich), pp 245–252

    Google Scholar 

  • Ros J, Tevini M (1995) Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. J Plant Physiol 146:295–302

    CAS  Google Scholar 

  • Ros J (1990) Zur Wirkung von UV-Strahlung auf das Streckungswachstum von Sonnenblumenkeimlingen (Helianthus annuus L.). Karls Beitr Entw Ökophysiol 8:1–157

    Google Scholar 

  • Rotem J, Wooding B, Ayler DE (1985) The role of radiation, especially ultraviolet, in the mortality of fungal spores. Phytopathology 75:510–514

    Google Scholar 

  • Rozema J, Tosserams M, Magendans E (1995) Impact of enhanced solar UV-B radiation on plants from terrestrial ecosystems. In: Zwerver S et al (eds) Climate change research: evaluation and policy implications. Elsevier, Amsterdam, pp 997–1004

    Google Scholar 

  • Rozema J, van de Staaij J, Björn LO, Caldwell M (1997a) UV-B as an environmental factor in plant life: stress and regulation. Tree 12:22–28

    CAS  Google Scholar 

  • Rozema J, van de Staaij JWM, Tosserams M (1997b) Effects of UV-B radiation on plants from agro-and natural ecosystems. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 213–232

    Google Scholar 

  • Rozema J, Tosserams M, Nelissen HJM, van Heerwaarden L, Broekman RA, Flierman N (1997c) Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species Calamagrostis epigeios. Plant Ecol 128:284–294

    Google Scholar 

  • Runeekles V, Krupa SV (1994) The impact of UV-B radiation and ozone on terrestrial vegetation. Environ Pollut 83:191–213

    Google Scholar 

  • Rüegsegger A (1997) UV-B Strahlung. In: Brunhold C et al (Hrsg) Stress bei Pflanzen. UTB, Bern, S 103–118

    Google Scholar 

  • Saile-Mark M, Tevini M (1997) Effects of solar UV-B radiation on growth, flowering and yield of Central and Southern European bush bean cultivars (Phaseolus vulgaris L.). Plant Ecol 128:114–125

    Google Scholar 

  • Sasaki T, Honda Y(1985) Control of certain diseases of greenhouse vegetables with ultraviolet absorbing films. Plant Dis 69:530–533

    Google Scholar 

  • Searles PS, Caldwell MM, Winter K(1995) The response of five tropical dicotyledon species to solar UV-B radiation. Am J Bot 82:445–453

    Google Scholar 

  • Seckmeyer G, McKenzie RL(1992) Increased ultraviolet radiation in New Zealand (45°S) relative to Germany (48°N). Nature 359:135–137

    Google Scholar 

  • Seckmeyer G, Mayer B, Erb R, Bernhard G (1994) UV-Bin Germany higher in 1993 than in 1992. Geophys Res Lett 21:577–580

    CAS  Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA71:3363–3366

    Google Scholar 

  • Singh A (1994) Effects of enhanced UV-B radiation on higher plants. Trop Ecol 35:321–347

    Google Scholar 

  • Staaij van de JWM (1994) Enhanced solar ultraviolet-B radiation: consequences for plant growth. Doctoral Thesis Vrije University Febodruk, Enschede, Amsterdam

    Google Scholar 

  • Staaij van de JWM, Lenssen GM, Stroetenga M, Rozema J (1993) The combined effects of elevated CO2 levels and UV-B radiation on growth characteristics of Elymus athericus (=E. pycnanathus). Vegetatio 104/105:433–439

    Google Scholar 

  • Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNAfrom the induction of ultraviolet radiation damage. Plant Physiol 105:881–889

    CAS  Google Scholar 

  • Staxen I, Bornman JF (1994) A morphological and cytological study of Petunia hybrida exposed to UV-B radiation. Physiol Plant 91:735–740

    Google Scholar 

  • Steinmetz V, Wellmann E (1986) The role of solar UV-B in growth regulation of cress (Lepidium sativum L.) seedling. Photochem Photobiol 43:189–193

    Google Scholar 

  • Steinmüller D (1986) Zur Wirkung ultravioletter Strahlung (UV-B) auf die Struktur von Blattoberflächen und zu Wirkungsmechanismen bei der Akkumulation und Biosynthese der Kutikularlipide einiger Nutzpflanzen. Karls Beitr Entw Ökophysiol 6:1–174

    Google Scholar 

  • Steinmüller D, Tevini M (1985) Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta 164:557–564

    Google Scholar 

  • Steward JD, Hoddinott J (1993) Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in Pinus banksiana. Physiol Plant 88:493–500

    Google Scholar 

  • Strid A, Chow WS, Anderson JM (1994) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489

    CAS  Google Scholar 

  • Sullivan JH (1997) Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems. Plant Ecology 128:194–206

    Google Scholar 

  • Sullivan JH, Teramura AH (1989) The effects of ultraviolet-B radiation on loblolly pine. 1. Growth, photosynthesis and pigment production in greenhouse-grown seedlings. Physiol Plant 77:202–207

    CAS  Google Scholar 

  • Sullivan JH, Teramura AH (1992) The effects of ultraviolet-B radiation on loblolly pine 2. Growth offield-grown seedlings. Trees 6:115–120

    Google Scholar 

  • Sullivan JH, Teramura AH (1994) The effect of UV-B radiation on loblolly pine. Interaction with CO2 enhancement. Plant Cell Environ 17:311–317

    Google Scholar 

  • Sullivan JH, Teramura AH, Dillenburg LR (1994) Growth and photosynthetic responses of field-grown sweetgum (Liquidambar styraciflua; Hamamelidaceae) seedlings to UV-Bradiation. Am J Bot 81:826–832

    CAS  Google Scholar 

  • Sutherland BM(1996) Action spectroscopy in complex organisms — potentials and pitfalls in predicting the impact of increased environmental UVB. J Photochem Photobiol B Biol 31:29–34

    Google Scholar 

  • Sutherland BM, Takayanagi S, Sullivan JH, Sutherland JC (1996) Plant responses to changing environmental stress: cyclobutyl pyrimidine dimer repair in soybean leaves. Photochem Photobiol 64:464–468

    CAS  Google Scholar 

  • Takayanagi S, Trunk JG, Sutherland C, Sutherland BM (1994) Alfalfa seedlings grown outdoors are more resistant to UV-induced DNA damage than plants grown in a UV-free environmental chamber. Photochem Photobiol 60:363–367

    CAS  Google Scholar 

  • Takeuchi Y, Kubo H, Kasahara H, Sakaki T (1996) Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UVB. J Plant Physiol 147:589–592

    CAS  Google Scholar 

  • Taylor RM, Nikaido O, Jordan BR, Rosamond J, Bray CM, Tobin AK (I996) Ultraviolet-B-induced Lesions and their removal in wheat (Triticum aestivum L.) leaves. Plant Cell Environ 19:171–181

    Google Scholar 

  • Taylor RM, Tobin AK, Bray CM (1997) DNA damage and repair in plants. In: Lumsden PJ (ed) Plant and UVB: responses to environmental change. Society for Experimental Biology seminar series 64. Cambridge Univ Press, Cambridge, pp 54–76

    Google Scholar 

  • Teramura AH, Ziska LH (I996) Ultraviolet-B Radiation and Photosynthesis. In: Baker R (ed) Photosynthesis and the environment. Advances in photosynthesis, vol 5. Kluwer Academic Publishers, Dordrecht, pp 435–450

    Google Scholar 

  • Teramura AH, Sullivan JH, Lydon J (1990a) Effects of UV-B radiation on soybean yield and seed quality: a 6-year field study. Physiol Plant 80:5–11

    Google Scholar 

  • Teramura AH, Sullivan JH, Ziska LH (1990b) Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiol 94:470–475

    CAS  Google Scholar 

  • Teramura AH, Ziska LH, Sztein AE (1991) Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol Plant 83:373–380

    CAS  Google Scholar 

  • Tevini M (1993) Effects of enhanced UV-B radiation on terrestrial plants. In: Tevini M(ed) UV-B radiation and ozone depletion, effects on humans, animals, plants, microorganisms and materials. Lewis Publishers, Boca Raton, pp 125–153

    Google Scholar 

  • Tevini M (1994) UV-B Effects on terrestrial plants and aquatic organisms. Progress in botany, vol 55. Springer-Verlag, Berlin Heidelberg New York, pp 174–190

    Google Scholar 

  • Tevini M (1996) Erhöhte UV-B-Strahlung: Ein Risiko für Nutzpflanzen? Biol unserer Zeit 4:246–254

    Google Scholar 

  • Tevini M, Häder D-P (1985) Allgemeine Photobiologie. Georg Thieme Verlag Stuttgart, New York

    Google Scholar 

  • Tevini M, Iwanzik W, Thoma U (1983) Effects of enhanced UV-B radiation on germination, seedling growth, leaf anatomy and pigments of some crop plants. J Plant Physiol 110:435–448

    Google Scholar 

  • Tevini M, Mark U, Saile M (1990) Plant experiments in growth chambers illuminated with natural sunlight. In: Payer H D, Pfirrmann T, Mathy P (ed) Environmental research with plants in closed chambers. Air pollution research report 26. Commission of the European Communities, Brussels, Belgium, pp 240–251

    Google Scholar 

  • Tevini M, Braun J, Fieser G(1991) The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem Photobiol 53:329–333

    CAS  Google Scholar 

  • Thalmaier M, Bauw G, Thiel S, Döhring T, Langebartels C, Sandermann H Jr (1996) Ozone and ultraviolet-B effects on the defence-related proteins ß-1,3-Glucanase and Chitinase in tobacco. Plant Physiol 148:222–228

    Google Scholar 

  • Thiel S, Döhring T, Köfferlein M, Kosak A, Martin P, Seidlitz H (1996) A phytotron for plant stress research: how far can artificial lighting compare to natural sunlight? J Plant Physiol 148:456–463

    CAS  Google Scholar 

  • Tosserams M, Rozema J (I995) Effects of UV-B radiation on growth and physiology of the dune grassland species Calamogrostics-Epigeios. Environ Pollut 89:209–214

    Google Scholar 

  • Vogelmann TC, Martin G, Chen G, Buttry D (I991) Fiber optic microprobes and measurement of the light microenvironment within plant tissues. Adv Bot Res 18:231–270

    Google Scholar 

  • Willekens H, Van Camp W, Van Montagu M, Inzé D, Langebartels C, Sandermann H (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol 106:1007–1014

    CAS  Google Scholar 

  • Wilson MI, Greenberg BM (1993) Specificity and photomorphogenic nature of ultraviolet-B induced cotyledon curling in Brassica napus L. Plant Physiol 102:671–677

    CAS  Google Scholar 

  • Zerefos CS, Bais AF, Meleti C, Ziomas IC (1995) A note on the recent increase of solar UV-B radiation over northern middle latitudes. Geophys Res Lett 22:1245–1247

    Google Scholar 

  • Zerefos CS, Balis DS, Bais AF, Gillotay D, Simon PC, Mayer B, Seckmeyer G (1997) Variability of UV-B at four stations in Europe. Geophys Res Lett 24 11:1363–1366

    Google Scholar 

  • Ziska LH, Teramura AH (1992) CO2 enhancement effect of growth and photosynthesis in rice (Oryza sativa). Modification by increased ultraviolet-B radiation. Plant Physiol 99:473–481

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frenzel, B., Cramer, W., Tevini, M. (2001). Änderungen in der Atmosphäre in ihren Auswirkungen auf die Vegetation. In: Guderian, R. (eds) Handbuch der Umweltveränderungen und Ökotoxikologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56413-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56413-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63108-5

  • Online ISBN: 978-3-642-56413-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics