Skip to main content

Zusammenfassung

Unter den verschiedenen in der Troposphäre vorkommenden anthropogenen Oxiden des Stickstoffs sind Stickstoffdioxid (NO2) und Stickstoffmonoxid (NO) aufgrund ihrer überregionalen Verbreitung, ihres Phytotoxizitätsgrades, ihrer trophischen Wirkung im niedrigen Konzentrationsbereich, ihres Beitrages zu den säurehaltigen Niederschlägen und als Präkursoren für die Bildung von Photooxidantien als die wichtigsten die Vegetation beeinflussenden Luftverunreinigungen einzustufen. Aus den verschiedenen Wirkungswegen und Wirkungsarten von Stickstoffoxiden in terrestrischen Ökosystemen folgt, daß die Erforschung und Beurteilung ihrer Wirkung als Luftschadstoff auf große Schwierigkeiten stößt. Das gilt in besonderem Maße für die Ermittlung quantitativer Zusammenhänge zwischen Immission und Wirkung (Guderian u. Tingey 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ammann M, Stalder M, Suter M (1995) Tracing uptake and assimilation of NO2 in spruce needles with N-13. J Exp Bot 46:1685–1691

    CAS  Google Scholar 

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–519

    CAS  Google Scholar 

  • Ashenden TW (1979) The effects of long-term exposures to SO2 and NO2 pollution on the growth of Dactilis glomerata L. and Poa pratensis L. Environ Poll 18:249–258

    CAS  Google Scholar 

  • Ashenden TW, Williams IAD (1980) Growth reduction in Lolium multiflorum Lam. and Phleum pratense L. as a result of SO2 and NO2 pollution. Environ Poll 21: 131–139

    CAS  Google Scholar 

  • Bender J, Weigel H-J (1994) The role of other pollutants in modyfying plant responses to ozone. In: Fuhrer J, Achtermann B (eds) Criticallevels for ozone, 246–246

    Google Scholar 

  • Bengston C, Brostrom CA, Grennfelt P, Skärby L, Troeng E (1980) Deposition of nitrogen oxides to Scots pine (Pinus sylvestris L.). In: Draplos D, Tollar A (eds) Ecological impact of acid precipitation. SNSF, Oslo, pp 154–155

    Google Scholar 

  • Bennett JH, Hill AC(1973) Inhibition of apparent photosynthesis by air pollutants. Environ Qual 2:526–530

    CAS  Google Scholar 

  • BML (Bundesministerium für Ernährung, Landwirtschaft und Forsten) (1997) Waldzustandsbericht der Bundesregierung. Bonn

    Google Scholar 

  • Bytnerowicz A, Dueck TA, Godzik S (1998) Nitrogen oxides, nitric acid vapor, and ammonia. In: Flagler RB (ed) Recognition of air pollution injury to vegetation: a pictorial atlas, Air and Waste Management Association, Pittsburgh, Pennsylvania

    Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitute NAD(P)H-nitrate reductase enzym from soybean. Plant Physiol 88:389–395

    CAS  Google Scholar 

  • Freer-Smith PH (1984) The responses of six broad leaved trees during long-term exposure to SO2 and NO2. New Phytol 97:49–61

    CAS  Google Scholar 

  • Grünhage L, Daemmgen U, Haenel HD, Jaeger HJ (1994) Response of a grassland ecosystem to air pollutants. 3. The chemical climate — vertical flux densities of gaseous specie s in the atmosphere near the ground. Environ Pollut 85:43–49

    Google Scholar 

  • Guderian R, Tingey DT (1987) Notwendigkeit und Ableitung von Grenzwerten für Stickstoffoxide. Umweltbundesamt, Berichte 1/87. Schmidt-Verlag, Berlin

    Google Scholar 

  • Guderian R, Wienhaus O (1997) Neuartige Waldschäden und Luftverunreinigungen — Analyse und Bewertung aus aktueller Sicht. FAZ/Der Wald 16:891–895

    Google Scholar 

  • Hanson PJ, Rott K, Taylor GE, Gunderson CA, Lindberg SE, Ross-Todd BM (1989) NO2 deposition to elements representative of a forest landscape. Atmos Environ 23:1783–1794

    CAS  Google Scholar 

  • Haut H van, Stratmann H (1967) Experimentelle Untersuchungen über die Wirkung von Stickstoffdioxid auf Pflanzen. Schriftenreihe der Landesanstalt für Immissions-und Bodennutzungsschutzes Landes NW 7:50–70, Essen

    Google Scholar 

  • Hesterberg R, Blatter A, Fahrni M, Rosset M, Neftel A, Eugster W, Wanner H (1996) Deposition of nitrogen-containing compounds to an extensively managed grassland in central Switzerland. Environ Pollut 91:21–34

    CAS  Google Scholar 

  • Hill AC (1971) Vegetation: a sink for atmospheric pollutantts. J Air Pollut Control Assoc 21(6):341–346

    CAS  Google Scholar 

  • Hofmann G (1995) Wald, Klima, Fremdstoffeintrag — Ökologischer Wandel mit Konsequenzen für Waldbau und Naturschutz, dargestellt am Gebiet der neuen Bundesländer Deutschlands. Angew Landschaftsökolog (Bonn) 4:165–189

    Google Scholar 

  • Hofmann G, Heinsdorf D, Krauss HH (1990) Wirkung atmogener Stickstoffeinträge auf Produktivität und Stabilität von Kiefernökosystemen. Beitr Forstwirtschaft Berlin 24(2):59–73

    Google Scholar 

  • Hur JS, Wellburn AR (1994) Effects of atmospheric NO2 on Azolla-Anabaena symbiosis. Ann Bot 73:137–141

    CAS  Google Scholar 

  • Klädtke J (1995) Untersuchungen zum Wachstum der Wälder in Europa. In: Umweltbundesamt (Hrsg) Wirkungskomplex Stickstoff und Wald. Texte 28/95: 120–130. Berlin

    Google Scholar 

  • Klepper L (1979) Nitric oxide and nitrogen dioxide emissions from herbicide treated soybean plants. Atmos Environ 13:537–542

    CAS  Google Scholar 

  • Kress LW, Skelly JM (1982) Response of several eastern forest tree species to chronic doses of ozone and nitrogen dioxide. Plant Dis 66:1149–1152

    CAS  Google Scholar 

  • Kropff MJ, Smeets WLM, Meijer EMJ, van der Zalm AJA, Baks EJ (1990) Effects of sulfur dioxide on leaf photosynthesis: the role of temperature and humidity. Physiol Plant 665–661

    Google Scholar 

  • Lane PI, Bell JNB (1984) The effects of simulated urban air pollution on grass yield: part I: description and simulation of ambient pollution. Environ Pollut Ser B 8:245–261

    CAS  Google Scholar 

  • Lea PJ, Rowlandbamford AJ, Wolfenden J (1996) The effect of air pollutants and elevated carbon dioxide on nitrogen metabolism. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley & Sons, West Sussex

    Google Scholar 

  • Lea PJ, Wolfenden J, Wellburn AR (1994) Influence of air pollutants upon nitrogen metabolism. In: Alseher RG, Wellburn AR (eds) Plant responses to the gaseous environment. Molecular, metabolic and physiological aspects. Chapman and Hall, London

    Google Scholar 

  • Lee, YN, Schwartz, SE (1981) Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure. J Phys Chem 85:840–848

    CAS  Google Scholar 

  • Lefohn AS, Davis CE, Jones CK, Tingey DT, Hogsett WE (1987) The cooccurance of potentially phytotoxic concentrations of various gaseous pollutions. Atmos Envoron 21:2435–2444

    CAS  Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18: 155–159

    CAS  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum L. foliage. J Plant PhysioI 148:258–263

    CAS  Google Scholar 

  • Marie BA, Ormrod DP (1984) Tomato plant growth with continuous exposure to sulfur dioxide and nitrogen dioxide. Environ Poll 33:257–265

    CAS  Google Scholar 

  • Matzner E, Murach D (1995) Soil changes induced by pollutant deposition and their implication for forests in Central Europe. Water Air Soil Pollut 85:63–76

    CAS  Google Scholar 

  • Murray AJS (1984) Light affects the deposition of NO2, to the flacca mutant of tomato without affecting the rate of transpiration. New Phytol 98:447–450

    CAS  Google Scholar 

  • Murray F, Monk R, Walker CD (1994) The response of shoot growth of Eucalytpus species to concentration and frequency of exposure to nitrogen oxides. Forest Ecol Manage 64:83–95

    Google Scholar 

  • Okano K, Machida T, Totsuka T (1988) Absorption of atmospheric NO2 by several herbaceous species: estimation by the 15 N dilution method. New Phytol 109:203–210

    CAS  Google Scholar 

  • Pande PC, Mansfield TA (1985) Responses of winter barley to SO2 and NO2 alone and in combination. Environ Pollut 39:281–291

    CAS  Google Scholar 

  • Pfeffer HU (1985) Immissionserhebungen in quellfernen Gebieten NordrheinWestfalens. Staub-Reinhaltung der Luft 45:287–293

    CAS  Google Scholar 

  • Pfeiffer S, Janistyn B, Iessner G, Pichorner H, Ebermann R (1994) Gaseous nitric oxide stimulates guanosine-3’,5’-cyclic monophosphate (cGMP) formation in spruce needles. Phytochem 36:259–262

    CAS  Google Scholar 

  • Qiao Z, Murray F (1997) The effect of root nitrogen supplies on the absorption of atmospheric NO2 by soybean leaves. New Phytol 136:239–243

    CAS  Google Scholar 

  • Qiao Z, Murray F (1998) The effect of NO2, on the uptake and assimilation of nitrate by soybean plants. Environ Exp Bot 10:33–40

    Google Scholar 

  • Ramge P, Badeck FW, Plochl M, Kohlmaier GH (1993) Apoplastic antioxidants as decisive elimination factors within the uptake process of nitrogen dioxide into leaf tissues. New Phytol 125:771–785

    CAS  Google Scholar 

  • Robinson DC, Wellburn AR (1983) Light-induced changes in the quenching of 9-amino-acridine fluorescence by photosynthetic membranes due to atmospheric pollutants and their products. Environ Poll (Ser A) 32:109–120

    CAS  Google Scholar 

  • Rogers HH, Campbell JC, Volk RJ (1979) Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206:333–335

    CAS  Google Scholar 

  • Rowland-Bamford AJ, Lea PJ, Wellburn AR (1989) NO2 flux into leaves of nitrate reductase-deficient barley mutants and corresponding changes in nitrate reductase activity. Environ Exp Bot 29:439–444

    CAS  Google Scholar 

  • Segschneider HJ (1995) Auswirkungen atmosphärischer Stickoxide (NOx) auf den pflanzlichen Stoffwechsel: Eine Literaturübersicht. J Appl Bot 69:60–85

    CAS  Google Scholar 

  • Shimazaki K, Yu SW, Sakaki T, Tanaka K (1992) Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol 33:267–273

    CAS  Google Scholar 

  • Shingles R, Roh MR, McCarty RE (1996) Nitrite transport in chloroplast inner envelope vesicles. 1. Direct measurements of proton-linked transport. Plant Physiol 112:1375–1381

    CAS  Google Scholar 

  • Srivastava HS (1980) Regulation of nitrate reductase activity in higher plants. Phytochem 19:725–733

    CAS  Google Scholar 

  • Srivastava HS, Ormrod DP (1984) Effects of nitrogen dioxide and nitrate nutrition on growth and nitrate assimilation in been leaves. Plant Physiol 76:5418–5423

    Google Scholar 

  • Sterba H (1996) Forest decline and growth trends in Central Europe. An review. In: Spieker H et al (eds) Growth and trends in European Forests. Springer, Berlin Heidelberg New York, pp 149–165

    Google Scholar 

  • Thoene B, Rennenberg H, Weber P (1996) Absorption of atmospheric NO2 by spruce (Picea abies) trees. 2. Parameterization of NO2 fluxes by controlled dynamic chamber experiments. New Phytol 134:257–266

    CAS  Google Scholar 

  • Tingey DT, Reinert RA, Dunning JA, Heck WW (1971) Vegetation injury from the interaction of nitrogen dioxide and sulfur dioxide. Phytopath 61:1506–1511

    CAS  Google Scholar 

  • UBA (Umweltbundesamt) (1997a) Auswertung der Waldschadensforschungsergebnisse (1982–1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. Berichte 6/97. Erich Schmidt-Verlag, Berlin

    Google Scholar 

  • UBA (Umweltbundesamt) (1997b) Daten zur Umwelt. Der Zustand der Umwelt in Deutschland. Erich Schmidt-Verlag, Berlin

    Google Scholar 

  • UBA (Umweltbundesamt) (1998) Hintergrundinformation: Sommersmog. Berlin

    Google Scholar 

  • UN ECE(United Nations Economic Commission for Europe) (1988) Critical Levels Workshop. Final Draft Report. Bad Harzburg

    Google Scholar 

  • U.S.EPA(Environmental Protection Agency) (1993) Air quality criteria for oxides of nitrogen, Vol II of III. Research Triangle Park, Ne. Office of Research and Development. EPA/600/8-911049bF

    Google Scholar 

  • Walton S, Gallagher MW, Choularton TW, Duyzer J (1997) Ozone and NO2exchan ge to fruit orchards. Atmos Environ 31:2767–2776

    CAS  Google Scholar 

  • Weber P, Rennenberg H (1996a) Dependency of nitrogen dioxide (NO2) fluxes to wheat (Triticum aestivum L) leaves from NO2 concentration, light intensity, temperature and relative humidity determined from controlled dynamic chamber experiments. Atmos Environ 30:3001–3009

    CAS  Google Scholar 

  • Weber P, Rennenberg H (1996b) Exchange of NO and NO2between wheat canopy monoliths and the atmosphere. Plant Soil 180:197–208

    CAS  Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429

    CAS  Google Scholar 

  • Wellburn AR, Higginsdon C, Robinson D, Walmsley C (1981) Biochemical explanation of more than additive inhibitory effects of low atmospheric levels of sulfur dioxide plus nitrogen dioxide upon plants. New Phytol 88:223–237

    CAS  Google Scholar 

  • Wenzel AA (1992) Expositionsversuche in open top Kammern zur Ermittlung des immissionsbedingten Gefährdungspotentials für landwirtschaftliche Kulturen in der Randzone eines Ballungsraumes. Dissertation, Universität Essen

    Google Scholar 

  • Whitmore ME, Mansfield TA(1983) Effects of long-term exposure to SO2 and NO2 on Poapratensis and other grasses. Environ Poll 31:217–235

    CAS  Google Scholar 

  • WHO (World Health Organization) (1987) Air Quality Guidelines for Europe. WHO Regional Publications, European Series 23, Copenhagen

    Google Scholar 

  • Yoneyama T, Sasakawa H (1979) Transformation of atmospheric NO2absorbed in spinach leaves. Plant Cell Physiol 20:263–266

    CAS  Google Scholar 

  • Zeevaart AJ (1974) Induction of nitrate reductase by NO2. Acta Bot Neerl 23(3):345–346

    Google Scholar 

Literatur

  • Clement JMAM (1995) Interaction of atmospheric ammonia pollution with frost tolerance of plants. A study on winter wheat and Scots pine. PhD thesis Rijksuniversiteit Groningen, The Netherlands

    Google Scholar 

  • Clement JMAM, Van Hasselt PR, Van der Eerden LJM, Dueck TA (1999) Short-term exposure to atmospheric ammonia does not affect frost hardening of needles from three-and five-year-old Scots pine trees. J Plant Physiol 154:775–780

    CAS  Google Scholar 

  • Dueck TA (1990) Effects of ammonia and sulphur dioxide on the survival and growth of Calluna vulgaris (L.) Hull seedings. Funct Ecol 4:109–116

    Google Scholar 

  • Dueck TA, Dorèl FG, Ter Horst R, Van der Eerden LJM (1990) Effects of ammonia, ammonium sulphate and sulphur dioxide on the frost sensitivity of Scots pine (Pinus sylvestris L.). Water Air Soil Pollut 54:35–49

    CAS  Google Scholar 

  • Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Faller N (1972) Schwefeldioxid, Schwefelwasserstoff, nitrose Gase und Ammoniak als ausschließliche S-bzw. N-Quellen der höheren Pflanzen. Z Pflanzenernähr Bodenk 131:120–130

    CAS  Google Scholar 

  • Fangmeier A, Hadwiger-Fangmeier A, Vander Eerden LJM, Jäger H-J (1994) Effects of atmospheric ammonia on vegetation — a review. Environ Pollut 86:43–82

    CAS  Google Scholar 

  • Farquhar GD, Firth PM, Wetselaar R, Weir B (1980) On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiol 66:710–714

    CAS  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology — a functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Husted S, Mattsson M, Schjoerring JK (1996) Ammonia compensation points in two cultivars of Hordeum vulgare L. during vegetative and generative growth. Plant Cell Environ 19:1299–1306

    Google Scholar 

  • Husted S, Schjoerring JK (1995) A computer-controlled system for studying ammonia exchange, photosynthesis and transpiration of plant canopies growing under controlled environmental conditions. Plant Cell Environ 18: 1070–1077

    Google Scholar 

  • Kesselmeier J, Merk L, Bliefernicht M, Helas G (1993) Trace gas exchange between terrestrial plants and atmosphere: carbon dioxide, carbonyl sulfide and ammonia under the rule of compensation points. In: Slanina S, Angeletti G, Beilke S (eds) Generell assessment of biogenic emissions and deposition of nitrogen compounds, sulphur compounds and oxidants in Europe. E Guyot SA, Brussels, pp 71–80

    Google Scholar 

  • Kesselmeier J, Bode K, Schjoerring JK, Conrad R (1997) Biological mechanisms involved in the exchange of trace gases. In: Slanina S (ed) Biosphere — atmosphere exchange of pollutants and trace substances. Springer, Berlin Heidelberg New York, pp 117–133

    Google Scholar 

  • König J (1896) Der Schutz gegen Flurschädigung durch gewerbliche Einwirkungen. Arb Dtsch Landwirtsch Ges 14:22

    Google Scholar 

  • Lea PJ, Rowland-Bamford AJ, Wolfenden J (1996) The effect of air pollutants and elevated carbon dioxide on nitrogen metabolism. In: Yunus M, Iqbal M (eds) Plant response to air pollution. John Wiley & Sons, Chichester, pp 319–352

    Google Scholar 

  • Lea PJ (1997) Primary nitrogen metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, pp 273–313

    Google Scholar 

  • Leegood RC (1996) Primary photosynthate production: Physiology and metabolism. In: Zamski E, Schaffer AA (eds) Photo assimilate distribution in plants and crops. Dekker, New York, pp 21–41

    Google Scholar 

  • Lockyer DR, Whitehead DC (1986) The uptake of gaseous ammonia by the leaves of Italian Ryegrass. J Exp Bot 37:919–927

    CAS  Google Scholar 

  • Mattsson M, Husted S, Schjoerring JK (1998) Influence of nitrogen nutrition and metabolism on ammonia volatilization in plants. Nutr Cyd Agroecosyst 51: 35–40

    CAS  Google Scholar 

  • Meixner FX, Bliefernicht M, Helas G, Kesselmeier J, Wyers P, Andreae MO (1997) Ammonia exchange between terrestrial plants and the atmosphere controlled by plant physiology: compensation point and CO2 exchange. In: Slanina S (ed) Biosphere — atmosphere exchange of pollutants and trace substances. Springer, Berlin Heidelberg New York,pp 445–449

    Google Scholar 

  • Morgan JA, Parton WJ (1989) Characteristics of ammonia volatilization from spring wheat. Crop Sei 29:726–731

    Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305

    CAS  Google Scholar 

  • Pérez-Soba M, Stulen I, Van der Eerden LJM(1994a) Effect of atmospheric ammonia on the nitrogen metabolism of Scots pine (Pinus sylvestris) needles. Physiol Plant 90:629–636

    Google Scholar 

  • Pérez-Soba M, Van der Eerden LJM, Stulen I (1994b) Combined effects of gaseous ammonia and sulphur dioxide on the nitrogen metabolism of the needles of Scots pine trees. Plant Physiol Biochem 32:539–546

    Google Scholar 

  • Pérez-Soba M, Van der Eerden LJM, Stulen I, Kuiper PJC (1994c) Gaseous ammonia counteracts the response of Scots pine needles to elevated atmospheric carbon dioxide. New Phytol 128:307–313

    Google Scholar 

  • Pérez-Soba M, Dueck TA, Puppi G, Kuiper PJC (1995) Interactions of elevated CO2 NH3 and O3 on mycorrhizal infection, gas exchange and N metabolism in saplings of Scots pine. Plant Soil 176:107–116

    Google Scholar 

  • Pérez-Soba M, Van der Eerden LJM (1993) Nitrogen uptake in needles of Scots pine (Pinus sylvestris L.) when exposed to gaseous ammonia and ammonium fertilizer in the soil. Plant Soil 153:231–242

    Google Scholar 

  • Pietilä M, Lahdesmaki P, Pietilainen P, Ferm A, Hytonen J, Patila A (1991) High nitrogen deposition causes changes in amino acid concentrations and protein spectra in needles of the Scots pine (Pinus sylvestris). Environ Pollut 72: 103–115

    Google Scholar 

  • Raven JA (1988) Acquisition of nitrogen by the shoots of land plants: its occurrence and implications for acid-base regulation. New Phytol 109:1–20

    CAS  Google Scholar 

  • Schjoerring JK (1991) Ammonia emissions from the foliage of growing plants. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press, San Diego, pp 267–292

    Google Scholar 

  • Schjoerring JK, Kyllingsbaek A, Mortensen JV, Byskov-Nielsen S (1993) Field investigations of ammonia exchange between barley plants and the atmosphere. I. Concentration profiles and flux densities of ammonia. Plant Cell Environ 16:161–167

    CAS  Google Scholar 

  • Schjoerring JK, Husted S, Mattson M (1998) Physiological parameters controlling plant-atmosphere ammonia exchange. Atmos Environ 32:491–498

    CAS  Google Scholar 

  • Soares A, Ming JY, Pearson J (1995) Physiological indicators and susceptibility of plants to acidifying atmospheric pollution: a multivariate approach. Environ Pollut 87:159–166

    CAS  Google Scholar 

  • Steubing L, Brunschön S, Fangmeier A (1991) Konkurrenzänderungen der Arten in der Sandheide als Indikator für immissionsbedingte Standort-Eutrophierung. VDI-Ber 901:589–605

    Google Scholar 

  • Sutton MA, Wyers GP, Meixner FX, Schjoerring JK, Kesselmeier J, Kramm G, Duyzer JH (1997) Biosphere — atmosphere exchange of ammonia. In: Slanina S (ed) Biosphere — atmosphere exchange of pollutants and trace substances. Springer, Berlin Heidelberg New York,pp 15–44

    Google Scholar 

  • Van der Eerden LJM (1982) Toxicity of ammonia to plants. Agric Environ 7: 223–235

    Google Scholar 

  • Van der Eerden LJM, Dueck TA, Berdowski JJM, Greven H, Van Dobben HF (1991) Influence of NH3 and (NH4) 2SO4 on heathland vegetation. Acta Bot Neerl 40: 281–297

    Google Scholar 

  • Van der Eerden LJM, Pérez-Soba M (1992) Physiological responses of Pinus sylvestris to atmospheric ammonia. Trees-Struct Funct 6:48–53

    Google Scholar 

  • Van Dijk HFG, Roelofs JGM (1988) Effects of excessive ammonium deposition on the nutritional status and condition of pine needles. Physiol Plant 73:494–501

    Google Scholar 

  • Van Hove LWA, Koops AJ, Aderna EH, Vredenberg WJ, Pieters GA(1987) Analysis of the uptake of atmospheric ammonia by leaves of Phaseolus vulgaris L. Atmos Environ 21:1759–1763

    Google Scholar 

  • Van Hove LWA, van Kooten O, Adema EH, Vredenberg WJ, Pieters GA (1989) Physiological effects of long term exposure to low and moderate concentrations of atmospheric NH3 on poplar trees. Plant Cell Environ 12:899–908

    Google Scholar 

  • Van Hove LWA, van Kooten O, van Wijk KJ, Vredenberg WJ, Adema EH, Pieters GA (1991) Physiological effects of long term exposure to low concentrations of SO2 and NH3 on poplar leaves. Physiol Plant 82:32–40

    Google Scholar 

  • Van Hove LWA, Bossen ME (1994) Physiological effects of five months exposure to low concentrations of O3 and NH3 on Douglas fir (Pseudotsuga menziesii). Physiol Plant 92:140–148

    Google Scholar 

  • Wollenweber B, Raven JA (l993) Nitrogen aquisition from atmospheric NH3 by Lolium perenne. Utilisation of NH3 and implications for acid-base balance. Bot Acta 106:42–51

    Google Scholar 

Literatur

  • Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–223

    CAS  Google Scholar 

  • Berdowski JJM (1993) The effect of external stress and disturbance factors on Calluna-dominated heathland vegetation. In: Aerts R, Heil GW (eds) Heathland: patterns and processes in achanging environment. Geobotany 20. Kluwer, Dordrecht, pp 85–124

    Google Scholar 

  • Berge E, Bartnicki J, Olendrzynski K, Tsyro SG (1999) Long-term trends in emissions and transboundary transport of acidifying air pollution in Europe. J Environ Manage 57:31–50

    Google Scholar 

  • Bink RJ, Bal D, Van den Berk VM, Draaijer LJ (1994) De toestand van de natur; 2. Informatie-en kenniscentrum natuur, Wageningen, Nederland, 246 pp

    Google Scholar 

  • Bobbink R (1991) Effects of nutrient enrichment in Dutch chalk grassland. J Appl Ecol 28:28–41

    Google Scholar 

  • Bobbink R, Boxman D, Fremstad E, Heil G, Houdijk A, Roelofs J (1992) Critical loads for nitrogen eutrophication of terrestrial and wetland ecosystems based upon changes in vegetation and fauna. In: Grennfelt P, Thörnelöf E (eds) Critical loads for nitrogen. Nord (Miljörapport) 41:111–159. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Bråkenhielrn S (1991) Vegetation monitoring in the PMK reference areas. Activity report of 1990. Swedish Environmental Protection Agency Report 3954 (Schwedisch mit englischer Zusammenfassung)

    Google Scholar 

  • Eichhorn J, Paar U (1992) Streß in einem stickstoffgesättigten Buchenwaldökosystem. AFZ 12:666–668

    Google Scholar 

  • Ellenberg H (1985) Veränderungen der Flora Mitteleuropas unter dem Einfluss von Düngung und Immissionen. Schweiz Z Forstwes 136:19–39

    Google Scholar 

  • Graveland J, Van der Wal R, Van Balen JH, Van Noordwijk AJ (1994) Poor reproduction in forest passerines from decline of snail abundance on acidified soils. Nature 368:446–448

    Google Scholar 

  • Guderian R (ed) (1985) Air pollution by photochemical oxidants. Formation, transport, control, and effects on plants. Ecological studies 52. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hofmann G, Heinsdorf D, Kraub HH (1990) Wirkung atmogener Stickstoffeinträge auf Produktivität und Stabilität von Kiefern-Forstökosystemen. Beiträge für die Forstwirtschaft 24:59–73

    Google Scholar 

  • Husted S, Schjoerring JK (1996) Ammonia flux between Brassica napus plants and the atmosphere in response to changes in leaf temperature, light intensity and air humidity: interactions with leaf conductance and apoplastic NH 4+ : and H+ concentrations. Plant Physiol 112:67–74

    CAS  Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    CAS  Google Scholar 

  • Lekkerkerk LJA, Heij GJ, Hootsmans MJM (1995) Ammoniak: de feiten. Report nr 300–06; Dutch Priority Programma on Acidification. RIVM, Bilthoven Nederland, pp 95

    Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305

    CAS  Google Scholar 

  • Pitcairn CER (ed) (1994) Impacts of nitrogen deposition on terrestrial ecosystems. Report of UK rev. group on Imp. of Atm. N. Dept of the Env. London, UK

    Google Scholar 

  • Schmidt W, Pfirrmann H, Brünn S (1996) Zur Ausbreitung von Calamagrostis epigejos in niedersächsischen Kiefernwäldern. Forst und Holz 51:369–372

    Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Ecological studies 81. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • UNECE (1989) Manual on methologies and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. ICP-Forests. PCC/UNEP/ECE

    Google Scholar 

  • Van der Eerden LJM, Dueck TA, Berdowski JJM, Greven H, Van Dobben HF (1991) Influence of NH3 and (NH4) 2SO4 on heathland vegetation. Acta Bot Neerl 40: 281–297

    Google Scholar 

  • Van der Eerden LJ, De Vries W, De Visser P, Van Dobben HF, Steingröver E, Dueck TA, Van Grinsven H, Mohren F, Boxman D, Roelofs J, Graveland J (1997a) Effects on forest ecosystems. In: Heij GJ, Erisman JW (eds) Acid Atmospheric deposition and its effects on Terrestrial ecosystems in The Netherlands. Elsevier, Arnsterdam, pp 83–128

    Google Scholar 

  • Van der Eerden LJ, Caporn S, Lee J (1997b) Criticallevels of nitrogen containing air pollutants on vegetation. In: WHO air quality guidelines for Europe, vol 4. Ecotox, 33 pp (in press)

    Google Scholar 

  • Williams ED (1978) Botanical composition of the Park Grass plots at Rothamsted 1856–1976. Rothamsted Experimental Station Internal Report, Harpenden

    Google Scholar 

Literatur

  • Arndt U, Flores F, Weinstein L (1995) Fluorwirkungen auf Pflanzen — Schadensdiagnose an der Vegetation Brasiliens. Ed.da Universidade/UFRGS Porto Alegre

    Google Scholar 

  • Arndt U, Michenfelder K, Nobel W (1984) Ziegelei-Rauchschäden und lufthygienischer Fortschritt — erläutert an einem praktischen Fall. Die Weinwissenschaft 39:151–164

    Google Scholar 

  • Arndt U, Nobel W, Schweizer B (1987) Bioindikatoren. Möglichkeiten, Grenzen und neue Erkenntnisse. Verlag Ulmer, Stuttgart

    Google Scholar 

  • Bennett LW, Miller GW, Yu MH, Lynn RI (1983) Production of fluoroacetate by callus tissue from leaves of Acaciageorginae. Fluoride 16:111–117

    CAS  Google Scholar 

  • Camerer A (1996) Dendroökologische Untersuchungen an immissionsgeschädigten Kiefern und deren Veränderungen nach Schließung des Emittenten. Diplomarbeit, Univ.f. Bodenkultur, Wien

    Google Scholar 

  • Carlson CE, Bousfield WE, McGregor MD (1977) The relationship of an insect infestation on Lodgepole Pine to fluorides emitted from nearby aluminum plant in Montana. Fluoride 10:14–21

    Google Scholar 

  • Chamel A, Garrec JP (1977) Penetration of fluorine through isolated pear leaf cuticles. Environ Pollut 12:307–310

    CAS  Google Scholar 

  • Däßler HG (1991) Einfluß von Luftverunreinigungen auf die Vegetation. VEB Gustav Fischer, Jena

    Google Scholar 

  • Davison AW (1983) Uptake, transport and accumulation of soil and airborne fluorides by vegetation. In: Shupe JL et al (eds) Fluorides — effects on vegetation, animals and humans. Paragon Press, Salt Lake City, Utah

    Google Scholar 

  • Doley D (1986) Plant — fluoride relationships. Inkata Press, Melbourne

    Google Scholar 

  • Edmunds GF Jr (1983) Effects of fluoride on plant — insect interactions. In: Shupe JL et al (eds) Fluorides — effects on vegetation, animals and humans. Paragon Press, Salt Lake City, Utah

    Google Scholar 

  • Eleftheriou EP, Tsekos I (1991) Fluoride effects on leaf cell ultrastructure of olive trees growing in the vicinity of the aluminium factory of Greece. Trees: Structure and function 5:83–89

    Google Scholar 

  • Ferlin P, Flühler H, Polomski J (1982) Immissionsbedingte Fluorbelastung eines Föhrenstandortes im unteren Pfynwald. Schweiz Z Forstwes 133:139–157

    Google Scholar 

  • Garrec JP, Chopin S (1983) Mise en evidence d’un dégagernent de fluor gazeux par les végétaux soumis à une pollution fluorée, Environ Pollut Ser A 30:201–210

    CAS  Google Scholar 

  • Garrec JP, Plébin R, Audin M (1981) Effects of fluorine on the levels of free sugars and amino acids in the needles of fir (Abies alba Mill.), Environ Pollut Ser A 26:281–295

    CAS  Google Scholar 

  • Glawischnig E, Halbwachs G (1987) Das Rind als Indikator für Fluorimmissionen. In: VDI Berichte 609. Bioindikation. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Greve U, Eckstein F, Scholz F, Schweingruber FH (1985) Holzbiologische Untersuchungen an Fichtenklonen unterschiedlicher Empfindlichkeit gegen eine HF-Begasung. Angew Bot 59:81–93

    Google Scholar 

  • Guderian R (197l) Ergebnisse aus Begasungsexperimenten zur Ermittlung pflanzenschädigender HF-Konzentrationen. In: VDI-Berichte 164. Fluorhaltige Luftverunreinigungen. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Guderian R, van Haut H, Stratmann H (1969) Experimentelle Untersuchungen über pflanzenschädigende Fluorwasserstoffkonzentrationen. Forschungsber d Landes NW, Westd Verlag, Köln und Opladen

    Google Scholar 

  • Halbwachs G (1970) Vergleichende Untersuchungen über die Wasserbewegung in gesunden und fluorgeschädigten Holzgewächsen. Cbl Ges Forstwesen 87:1–22

    Google Scholar 

  • Halbwachs G (1984) Organismal responses of higher plants to atmospheric pol lutants: Sulphur dioxide and fluoride. In: Treshow M (ed) Air pollution and plant life. Wiley, Chichester

    Google Scholar 

  • Halbwachs G, Kisser J (1967) Durch Rauchimmissionen bedingter Zwergwuchs bei Fichte und Birke. Cbl Ges Forstwesen 84:156–173

    Google Scholar 

  • Halbwachs G, Nemetz C (1988) Der Einfluß fluorhaltiger Immissionen auf Landund Forstwirtschaft. In: Grill D, Guttenberger H (Hrsg) Ökophysiologische Probleme durch Luftverunreinigungen, Karl-Franzens-Univ, Graz

    Google Scholar 

  • Halbwachs G, Nemetz C (1994) Untersuchungen zur unterschiedlichen Fluorakkumulation der Blattorgane von Laub-und Nadelbäumen in der Umgebung eines Fluoremittenten vor und nach dessen Schließung. In: Kuttler W, Jochimsen M (Hrsg) Immissionsökologische Forschung im Wandel der Zeit; Festschrift für Robert Guderian. Westarp-Wiss, Magdeburg

    Google Scholar 

  • Halbwachs G, Wimmer R (1987) Holzanatomische Aspekte bei der Einwirkung von Immissionen auf Bäume. In: Rossmanith HP (Hrsg) Int. Tagung Waldschäden Holzwirtschaft. Österr Agrarverlag, Wien

    Google Scholar 

  • Haut van H, Krause GHM (1982) Wirkungen von Fluorwasserstoff-Immissionen auf die Vegetation. In: LIS-NW (Hrsg) Fluorwasserstoff — Wirkungen auf Pflanzen. LIS-Ber. 25, Essen

    Google Scholar 

  • IUFRO (1979) Resolution über maximale Immissionswerte zum Schutze der Wälder. Supplement to IUFRO News 25

    Google Scholar 

  • Ivinskis M, Murray F (1984) Associations between metabolie injury and fluoride susceptibility in two species of Eucalyptus. Environ Pollut Ser A 34:207–223

    CAS  Google Scholar 

  • Jacobson JS (1992) Air pollution impacts on forest trees: effects of fluorides. Eesti-Teaduste-Akadeemia-Toimetised, Okoloogia 2:1–6,29–30

    Google Scholar 

  • Keller T (1977) Der Einfluß von Fluorimmissionen auf die Nettoassimilation von Waldbäumen. Mitt Eidg Anst Forstl Versuchswesen 53:161–198

    Google Scholar 

  • Keller T (1979) Zur Fluor-Translokation bei Waldbäumen. Mitt Eidg Anst Forstl Versuchswesen 51:337–356

    Google Scholar 

  • Klumpp A, Modesto IF, Domingos M, Klumpp G (1997) Susceptibility of various Gladiolus cultivars to fluoride pollution and their suitability for bioindication. Perq Agropec Bras, Brasilia 32:239–247

    Google Scholar 

  • Kronberger W (1981) Die Ab-und Auswaschung von Fluorid als Mechanismus zur Verringerung der Fluorakkumulation in Nadeln und Blättern. Mitt Forstl Bundesversuchsanstalt Wien 137:181–191

    CAS  Google Scholar 

  • Kronberger W (1987) Kinetics of nonionic diffusion of hydrogen fluoride in plants. I. Experimental and theoretical treatment of weak acid permeation. Phyton (Austria) 27:241–265

    CAS  Google Scholar 

  • Kronberger W (1988) Kinetics of nonionic diffusion of hydrogen fluoride in plants. 11. Model estimation on uptake, distribution, and translocation of F in higher plants. Phyton (Austria) 28:27–49

    CAS  Google Scholar 

  • Kronberger W, Halbwachs G (1974) Über eine einfache Methode zur Bestimmung des Fluorgehaltes von Pflanzen mittels ionenspezifischer Elektrode. In: Proc IX Int Tagung Luftverunreinigung und Forstwirtschaft. Mari ánské Lázne, CSSR

    Google Scholar 

  • Kronberger W, Halbwachs G (1978) Distribution of fluoride in Zea mays grown near an aluminum plant. Fluoride 11:129–135

    Google Scholar 

  • Kronberger W, Halbwachs G, Richter H (1978) Fluortranslokation in Picea abies (L.) Karsten. Angew Bot 52:149–154

    CAS  Google Scholar 

  • Kühnert M, Halbwachs G, Bellusova M, Nemetz C, Novak H, Ruppert W, Wimmer R, Zehentner H (1993) Akkumulation von Fluoriden in Waldökosystemen. Forstw Cbl 112:64–69

    Google Scholar 

  • Ledbetter CM, Mavrodineanu R, Weiss AJ (1960) Distribution studies of radioactive fluorine18 and stable fluorine19 in tomato plants. Contr Boyce Thompson Inst 20:331–348

    CAS  Google Scholar 

  • Lorenc-Plucinska G, Oleksyn J (1982) Effects of hydrogen fluoride on photosynthesis, photorespiration and dark respiration in Scotch pine (Pinus sylvestris). Fluoride 15:149–156

    CAS  Google Scholar 

  • MacLean DC, Schneider RE (1973) Fluoride accumulation by forage: continuous vs. intermittent exposures to hydrogen fluoride. J Environ Qual 2:501–503

    CAS  Google Scholar 

  • McCune DC, MacLean DC, Schneider RE (1976) Experimental approaches to the effects of airborne fluoride on plants. In: Mansfield TA (Hrsg) Effects of air pollutants on plants. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Miller GW (1993) The effect of fluoride in higher plants. Fluoride 26:3–22

    CAS  Google Scholar 

  • Miller GW, Yu MH, Pushnik JC (1983) Basic metabolie and physiologie effects of fluorides on vegetation. In: Shupe JL et al (eds) Fluorides — effects on vegetation, animals and humans. Paragon Press, Salt Lake City,Utah

    Google Scholar 

  • Mitterböck F, Führer E (1988) Wirkungen fluorbelasteter Fichtennadeln auf Nonnenraupen, Lymantria monacha. L.(Lep., Lymantriidae). J Appl Ent 105:19–27

    Google Scholar 

  • Niklfeld H (1967) Pflanzensoziologische Beobachtungen im Rauchschadensgebiet eines Aluminiumwerkes. Cbl Ges Forstwesen 84:2–6

    Google Scholar 

  • Prinz B, Brandt CJ (1980) Study on the impact of the principal atmospheric pollutants on the vegetation. Environment and Consumer Protection Service.EUR 6644 EN

    Google Scholar 

  • Prisedskii YG (1985) Effect of air pollution with hydrogen fluoride on the content of pigments in leaves of woody plants. Lesnoi-Zhurnal 1:35–38

    Google Scholar 

  • Rao KVN (1977) The uptake of fluorides by plants. In: Indian Academy of Geoseience. Proceedings Symp on Fluorosis. Hyderabad, India

    Google Scholar 

  • Reuter F, Däßler HG (1983) Der Einfluß von Fluorwasserstoff auf Kernobstgehölze, insbesondere auf die Obstart Apfel,Teil11: Der Einfluß von Fluorwasserstoff auf Wachstum und Ertrag verschiedener Apfelsorten. Arch Gartenbau, Berlin 31:333–340

    Google Scholar 

  • Romney EM, Wood RA, Wieland PAT (1969) Radioactive fluorine18 in soil and plants. Soil Sei 108:419–423

    CAS  Google Scholar 

  • Schneider M, Halbwachs G (1989) Anatomische und morphologische Untersuchungen zur Regenerationsfähigkeit einer durch Fluorimmissionen geschädigten Fichte. Eur J For Pathol 19:29–46

    Google Scholar 

  • Scholl G (1971) Die Immissionsrate von Fluor in Pflanzen als Maßstab für eine Immissionsbegrenzung. In: VDI-Berichte 164. Fluorhaltige Luftverunreinigungen. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Scholl G (1976) Vorschläge für die Begrenzung der Aufnahmerate von Fluorid in standardisierter Graskultur zum Schutz von Pflanzen und Weidetieren. Schriftenr LIBNW 37:129–132

    CAS  Google Scholar 

  • Sidhu SS (1979) Fluoride levels in air, vegetation and soil in the vieinity of a phosphorus plant. JAPCA 29:1069–1072

    CAS  Google Scholar 

  • Sidhu SS (1980) Patterns of fluoride accumulation in boreal forest species under perennial exposure to emissions from a phosphorus plant. Stud Environ Sci 8:425–432

    CAS  Google Scholar 

  • Sidhu SS, Staniforth RJ (1986) Effects of atmospheric fluorides on foliage, and cone and seed production in balsam fir,black spruce, and larch. Can J Bot 64:923–931

    Google Scholar 

  • Sierpinski Z (1984) Über den Einfluß von Luftverunreinigungen auf Schadinsekten in polnischen Nadelbaumbeständen. Forstw Cbl 103:83–92

    Google Scholar 

  • Skorkowska-Zieleniewska J (1983) In heavy tea and coffee drinkers „nutritional status“ of fluoride in relation to that of other mineral elements. Fluoride 16:20–23

    Google Scholar 

  • Soikkeli S, Paakkunainen T (1981) The effect of air pollution on the ultrastructure of the developing and current year needles of Norway spruce. Mitt Forstl Bundesversuchsanstalt Wien 137:159–164

    Google Scholar 

  • Treshow M, Pack MR (1970) Fluoride. In: Jacobson JS, Hill AC (eds) Recognition of air pollution injury to vegetation: a pictorial atlas. APCA, Pittsburgh, Pennsylvania

    Google Scholar 

  • Van der Eerden LJM (1991) Fluoride content in grass as related to atmospheric fluoride concentrations: a simplified predictive model. Agricult Ecosyst Environ 37:257–273

    Google Scholar 

  • VDI 2310 BI. 3 (1989) Maximale Immissions-Werte zum Schutze der Vegetation; Maximale Immissions-Konzentrationen für Fluorwasserstoff

    Google Scholar 

  • Weinstein LH (1977) Fluoride and plant life. J Occup Med 19:49–78

    CAS  Google Scholar 

  • Weinstein LH, Alseher-Herman R (1982) Physiological responses of plants to fluorine. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworths, London

    Google Scholar 

  • Weinstein LH, Arndt U, Davison AW (1998) Fluoride. In: Flagler RB (ed) Recognition of air pollution injury to vegetation. Air and waste management, Pittburgh, 4–1–4–27

    Google Scholar 

  • Wenzel WW (1990) Bodenbelastungen durch Fluor und Schwermetalle im Immissionsbereich der Aluminiumhütte Ranshofen und ihre Auswirkungen auf Bodenzustand und Bodenfunktionen. Diss Univ Bodenkultur, Wien

    Google Scholar 

  • Wienhaus O, Börtitz S, Reuter F (1992) Fluorimmissionen in Sachsen — Rückblick und derzeitige Situation. Staub 52:461–465

    CAS  Google Scholar 

  • Wulff A (1996) Ultrastructural, visible and chemical indications of dry and wet deposited air pollutants in conifer needles. Univ Printing Office, Kuopio

    Google Scholar 

  • Yee-Meiler D (1977) Phenole als Indikatoren metabolischer Störungen bei fluorexponierten Waldbäumen. Mitt Eidg Anst Forstl Versuchswesen 53:201229

    Google Scholar 

  • Zehentner H (1992) Untersuchungen der Humusauflagen in verschieden belasteten Waldbeständen in der Umgebung eines Fluoremittenten. Diplomarbeit Univ f Bodenkultur, Wien

    Google Scholar 

Literatur

  • Bacci E, Cerejeira MJ, Gaggi C, Chernello G, Calamari D, Vighi M (1992) Chlorinated Dioxins: Volatilization from Soils and Bioconcentration in Plant Leaves. Bull Environ Contam Toxicol 48:401–408

    CAS  Google Scholar 

  • BAGS (Behörde für Arbeit, Gesundheit und Soziales der Hansestadt Hamburg) (1993) Untersuchungen zum Transfer von Dioxinen und Furanen, 90 S

    Google Scholar 

  • Berende PLM (1990) Grondopname door melkkoeien. Institute for Livestock Feeding and Nutrition Research, internal report no 312, Lelystad

    Google Scholar 

  • Birmingham B, Gilman A, Grant D, Salminen J, Boddington M, Thorpe B, Wile I, Toft P, Armstrong V (1989) PCDD/PCDF Multimedia Exposure Analysis for the Canadian Population: detailed exposure estimation. Chemosphere 19: 637–642

    Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA(1982) Relationships between lipophilieity and root uptake and translocation of non-ionised chemicals by barley, Pestic Sci 13:495–504

    CAS  Google Scholar 

  • CLAM (1991) NRW-Meßprogramm Chloraromaten-Herkunft und Transfer. Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes NordrheinWestfalen, Düsseldorf

    Google Scholar 

  • Cocucei S, Di Gerolamo F, Verderio A, Cavallaro A, Colli G, Gorni A, Invernizzi G, Luciani L (1979) Absorption and translocation of tetrachlorodibenzo-p-dioxine by plants from polluted soil. Experientia 35:482–484

    Google Scholar 

  • Facchetti S, Balasso A, Fichtner C, Frare G, Leoni A, Mauri C, Vasconi M (1986) Studies on the absorption of TCDD by some plant speeies. Chemosphere 15: 1387–1388

    CAS  Google Scholar 

  • Fiedler H (1995) Quellen von PCDD/PCDF und Konzentrationen in der Umwelt. Organehalogen Compounds 22:7–29

    Google Scholar 

  • Fiedler H., Hutzinger O, Kaune A (1991) Polychlorierte Dibenzo-p-dioxine und Dibenzofurane (PCDD/PCDF). Organohalogen Compounds 5, Eco-Informa Press, Bayreuth

    Google Scholar 

  • Fürst P, Fürst C, Groebel W (1990) Levels of PCDDs and PCDFs in food-stuffs from the Federal Republic of Germany. Chemosphere 20:787–792

    Google Scholar 

  • Fürst P, Fürst C, Wilmers K (1992) PCDD, PCDF, PCB and organochlorine pestieides in mother’s milk-statistical evaluation of a 6 year survey. Chemosphere 25:1029–1032

    Google Scholar 

  • Hembrock-Heger A (1990) PCDD/F-levels in soils and plants of Northrhine-Westfalia. Organohalogen Compounds 1:475–478

    CAS  Google Scholar 

  • Hippelein M, Kaupp H, Dörr G, McLachlan M, Hutzinger O (1996) Baseline contamination assessment for a new resource recovery facility in Germany, part 11: atmospheric concentrations of PCDD/F. Chemosphere 32:1605–1616

    CAS  Google Scholar 

  • Horstmann M, McLachlan MS (1996) Evidence of a novel mechanism of semivolatile organic compound deposition in coniferous forests. Environ Sci Technol 30:1794–1796

    CAS  Google Scholar 

  • Horstmann M, McLachlan MS (1998) Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ 32:1799–1809

    CAS  Google Scholar 

  • Hülster A, Marschner H (1993) Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere 27:439–446

    Google Scholar 

  • Hülster A, Marschner H (1995) PCDD/PCDF-complexing compounds in zucchini. Organohalogen Compounds 24:493–496

    Google Scholar 

  • Hülster A, Müller JF, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Google Scholar 

  • Isensee AR, Jones GE (1971) Absorption and translocation of root and foliage applied 2,4-dichlorophenol, 2,7-dichlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Agric Food Chem 19:1210–1214

    CAS  Google Scholar 

  • Kaupp H (1996) Atmosphärische Eintragswege und Verhalten von polychlorierten Dibenzo-p-dioxinen und-furanen sowie polyzyklischen Aromaten in einem Maisbestand. Dissertation, Univ Bayreuth

    Google Scholar 

  • Kerler F, Schönherr J (1988) Accumulation of lipophilic ehernieals in plant cutic1es: prediction from octanol/water partition coefficients. Arch Environ Contam Toxicol 17:1–6

    CAS  Google Scholar 

  • Krause GHM (1992) Ausgasung polychlorieter Dibenzo-p-dioxine und Dibenzofurane aus kontaminierten Böden. Aus der Tätigkeit der LIS 1992. Landesanstalt für Immissionsschutz NRW, Essen, pp 69–72

    Google Scholar 

  • Krause GHM, Delschen T, Fürst P, Hein D (1993) PCDD/F in Böden, Vegetation und Kuhmilch. UWSF Z Umweltchem Ökotox 5:194–203

    CAS  Google Scholar 

  • Krause GHM, Landesumweltamt NRW, Wallneyerstr. 6, 45133 Essen, unveröffentlicht

    Google Scholar 

  • Kutz FW, Barnes DG, Bottimore DP, Greim H, Bretthauer EW (1990) The international toxicity equivalent factor (I-TEF) Method of risk assessment for complex mixtuires of dioxins and related compounds. Chemosphere 20:751–757

    CAS  Google Scholar 

  • Mackay D (1991) Multimedia environmental models. Lewis Publishers, Boca Raton

    Google Scholar 

  • McCrady JK, Maggard SP (1993) Uptake and Photo degradation of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Sorbed to Grass Foliage. Environ Sei Technol 27:-343–350

    CAS  Google Scholar 

  • McCrady JK, McFarlane C, Gander LK (1990) The transport and fate of 2,3,7,8TCDD in soybean and corno. Chemosphere 21:359–376

    CAS  Google Scholar 

  • McLachlan MS (1994) Model of the fate of hydrophobie contaminants in cows. Environ Sei Technol 28:2407–2414

    CAS  Google Scholar 

  • McLachlan MS, Horstmann M, Towara J, Pfitzenmaier F, Scholz M (1998) Untersuchung der atmosphärischen Belastung, des weiträumigen Transports und des Verbleibs von polychlorierten Dibenzodioxinen, Dibenzofuranen und coplanaren biphenylen in ausgewählten Gebieten Deutschlands. Abschlußbericht zum Forschungsvorhaben 104 02 659, Umweltbundesamt, Berlin

    Google Scholar 

  • McLachlan MS, Hutzinger O (1990) Accumulation of organochlorine compounds in agricultural food chains. Organohalogen Compounds 1:479–484

    CAS  Google Scholar 

  • McLachlan MS, Richter W (1998) Uptake and transfer of PCDD/Fs by cattle fed naturally contaminated feedstuffs and feed contaminated as a result of sewage sludge application. 1. Lactating cows. J Agric Food Chem 46:1166–1172

    CAS  Google Scholar 

  • McLachlan MS, Thoma H, Reissinger M, Hutzinger O (1990) PCDD/F in an agricultural food chain, part 1:PCDD/F mass balance of a lactating cow. Chemosphere 20:1013–1020

    CAS  Google Scholar 

  • McLachlan MS, Welsch-Pausch K, Tolls J (1995) Field validation of a model of the uptake of gaseous SOC in Lolium multiflorum (Rye Grass). Environ Sci Technol 29:1998–2004

    CAS  Google Scholar 

  • Müller JF, Hülster A, Päpke O, Ball M, Marschner H (1993) Transfer pathways of PCDD/PCDF to fruits. Chemosphere 27:195–201

    Google Scholar 

  • Ministerium für Umwelt, Raumordnung und Landwirtschaft (MURL) (1995) Luftreinhalteplanung in Nordrhein-Westfalen. Untersuchungsbericht Ostruhrgebiet, Lüftgüteüberwachung Sektor 8/Hamm, 277 S

    Google Scholar 

  • Prinz B, Krause GHM, Radermacher L (1990) Criteria for the evalution of dioxins in the environment. Chemosphere 23:1743–1761

    Google Scholar 

  • Prinz B, Krause GHM, Radermacher L (1993) Standards and guidelines for PCDD/PCDF — an integrated approach with special respect to the control of ambient air pollution. Chemosphere 27:491–500

    CAS  Google Scholar 

  • Quass J, Fehrmann M (1997) Identification of relevant industrial sources of dioxins and furans in Europe. Materialien no 43 Landesumweltamt NRW, Postbox 102363, 45023 Essen, ISSN0947-5206

    Google Scholar 

  • Radermacher L, Rudolph H (1994) Grünkohl als Bioindikator — ein Verfahren zum Nachweis von organischen Substanzen in Nahrungsmitteln. UWSF Z Umweltehern Ökotox 6(6):384–386

    Google Scholar 

  • Reischi A, Reissinger M, Thoma H, Hutzinger O (1989) Accumulation of organic air constituents by plant surfaces, part IV: plant surfaces: a sampling system for atmospheric Polychlorodibenzo-p-dioxin (PCDD) and Polychlorodibenzo-pfuran (PCDF). Chemosphere 18:561–568

    Google Scholar 

  • Riederer M (1995) Partitioning and transport of organic chemieals between the atmospheric environment and leaves. In: Trapp S, McFarlane C (eds) Plant con tarnination — modeling and simulation of organic chemical processes. Lewis, Boca Raton, pp 153–190

    Google Scholar 

  • Sacchi GA, Vigano P, Fortunati G, Cocucci SM (1986) Accumulation of 2,3,7,8-Tetrachlorodibenzo-p-dioxin from soil and nutrient solution by beans and maize plants. Experientia 42:586–588

    CAS  Google Scholar 

  • Schröder J, Welsch-Pausch K, McLachlan MS (1997) Measurement of atmospheric deposition of Polychlorinated Dibenzo-p-dioxins (PCDDs) and Dibenzofurans (PCDFs) to a Soil. Atmos Environ 31:2983–2989

    Google Scholar 

  • Schuler F, Schmid P, Schlatter C (1998) Photo degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in cuticular waxes of laurel cherry (Prunus laurocerasus). Chemosphere 36:21–34

    CAS  Google Scholar 

  • Sehmel GA (1980) Particle and gas dry deposition: a review. Atmos Environ 14: 983–1011

    Google Scholar 

  • Theelen RMC, Liem AKD, Slob W, van Wijnen JH (1993) Intake of 2,3,7,8 chlorine substituted dioxins, furans, and planar PCBs from food in the Netherlands: median and distribution. Chemosphere 27:1625–1635

    CAS  Google Scholar 

  • Trapp S, Matthies M (1994) Transfer von PCDD/F und anderen organischen Umweltchemikalien im System Boden-Pflanze-Luft. H.Ausgasung aus dem Boden und Pflanzenaufnahme. UWSFZ Umweltchem Ökotox 6:157–163

    CAS  Google Scholar 

  • Welsch-Pausch K (1999) Atmosphärische Deposition polychlorierter Dibzenzo-pdioxine und Dibenzofurane auf Futterpflanzen. Dissertation, Univ Bayreuth

    Google Scholar 

  • Welsch-Pausch K, McLachlan MS (1995) Photo degradation of PCDD/Fs on pasture grass. Organohalogen Compounds 24:509–512

    CAS  Google Scholar 

  • Welsch-Pausch K, McLachlan MS (1996) Pathways of atmospheric PCDD/F to a native grassland culture: the importance of particle-beund deposition. Organohalogen Compounds 28:72–75

    CAS  Google Scholar 

  • Welsch-Pausch K, McLachlan MS, Umlauf G (1995) Determination of the principal pathway of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh Ray Grass). Environ Sei Technol 29:1090–1098

    CAS  Google Scholar 

  • Wipf H-K, Hornberger E, Neuner N, Ranalder UB, Vetter W, Vuilleumier JP (1982) TCDD-Ievelsin soil and plant samples from the Seveso Area. In: Hutzinger O et al (eds) Chlorinated dioxins and related compounds: impact on the environment, 1st edn. Pergamon Press, New York, pp 115–126

    Google Scholar 

Literatur

  • Anderson AJ, Meyer DR, Mayer FK (1973) Heavy metal toxicities: levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust J Agricult Res 24:557–571

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders — strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytologist 106:93–111

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bahlsberg-Pahlsson A-M (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319

    Google Scholar 

  • Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    CAS  Google Scholar 

  • Barcelo J, Vasquez MD, Poschenrieder C (1988) Structural and ultrastructural disorders in cadmium-treated bush bean plants. New Phytologist 108:37–49

    CAS  Google Scholar 

  • Bazzaz FA, Carlson RW, Rolfe GL (1974) The effect of heavy metals on plants, part I: Inhibition of gas exchange in sunflower by Pb, Cd, Ni and Tl. Environ Pollut 7:241–246

    CAS  Google Scholar 

  • Beckett PHT, Davies RD (1977) Upper criticallevels of toxic elements in plants. New Phytologist 79:95–106

    CAS  Google Scholar 

  • Bell R, Evans CS, Robert ER (1988) Decreased incidence of mycorrhizal root tips associated with soil heavy metal enrichment. Plant Soil 106:143–146

    CAS  Google Scholar 

  • Bender J, Grünhage L, Jäger HJ (1989) Aufnahme und Wirkung von Schwermetallen bei Waldbäumen: Bodenkontaminationsversuche mit Cadmium, Blei und Nickel. Angew Bot 63:81–93

    CAS  Google Scholar 

  • Bergkvist B (1987) Soil solution chemistry and metal budget of spruce forest ecosystems of Sweden. Water Air Soil Pollut 33:131–154

    CAS  Google Scholar 

  • Blume HP (1992) Böden als Filter, Puffer und Transformatoren. In: Blume HP (Hrsg) Handbuch des Bodenschutzes. Ecomed Verlagsgesellschaft, Landsberg, S 99–107

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the trace elements. Academic Press, London

    Google Scholar 

  • Breckle SW (1991) Growth under stress. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 351–373

    Google Scholar 

  • Brechtel HM (1989) Stoffeinträge in Waldökosysteme — Niederschlagsdeposition im Freiland und in Waldbeständen. DVWK Mitteilungen 17:27–52

    Google Scholar 

  • Burton KW, Morgan E, Roig A (1986) Interactive effects of cadmium, copper and nickel on the growth of sitka spruce and studies of metal uptake from nutrient solution. New Phytologist 103:549–557

    CAS  Google Scholar 

  • Carlson RW, Bazzaz FA (1977) Growth reduction in American sycamore (Platanus occidentalis L.) caused by Pb-Cd interaction. Environ Pollut 12:243–253

    CAS  Google Scholar 

  • Carlson RW, Bazzaz FA, Rolfe GL (1975) The effect of heavy metals on plants, part II. Net photosynthesis and transpiration of whole com and sunflower plants treated with Pb, Cd, Ni and Tl. Environ Res 10:113–120

    CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol 68:835–839

    CAS  Google Scholar 

  • Cataldo DA, Wildung RE, Garland TR (1987) Speciation of trace inorganic contaminants in plants and bioavailability to animals: an overview. J Environ Qual 16:289–295

    CAS  Google Scholar 

  • Chang AC, Granato TL, Page AL (1992) A methodology for establishing phytotoxicity criteria for chromium, copper, nickel, and zinc in agriculturalland application of municipal sewage sludges. J Environ Qual 21:521–536

    CAS  Google Scholar 

  • Collins JC (1981) Zinc. In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol 1. Applied Science Publishers, London, pp 145–169

    Google Scholar 

  • Cummings JR, Taylor GJ (1990) Mechanisms of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm. In: Alseher RG, Cummings JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 329–356

    Google Scholar 

  • Czuba M, Ormrod DP (1974) Effects of cadmium and zinc on ozone-induced phytotoxicity in cress and lettuce. Can J Bot 52:645–649

    CAS  Google Scholar 

  • Dueck TA (1986) Impact of heavy metals and air pollutants on plants. Academisch Proefschrift, Free Univ Press, Amsterdam

    Google Scholar 

  • Eikmann T, Kloke A (1994) Ableitungskriterien für die Eikmann-Kloke-Werte. In: Kreysa G, Wiesner J, DECHEMA eV (Hrsg) Beurteilung von Schwermetallen in Böden von Ballungsgebieten: Arsen, Blei und Cadmium. DECHEMA, Frankfurt/Main, S 469–500

    Google Scholar 

  • Elstner EF, Wagner GA, Schütz W (1988) Activated oxygen in green plants in relation to stress situations. Curr Top Plant Biochem Physiol 7:159–187

    Google Scholar 

  • Ernst WHO (1972) Zink-und Cadmium-Immissionen auf Böden und Pflanzen in der Umgebung einer Zinkhütte. Ber Dtsch Bot Ges 85:295–300

    CAS  Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Fischer-Verlag, Stuttgart

    Google Scholar 

  • Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the environment, part I. Wiley and Sons, New York, pp 639–653

    Google Scholar 

  • Ernst WHO (1994) Wirkungen erhöhter Bodengehalte an Arsen, Blei und Cadmium auf Pflanzen. In: Kreysa G, Wiesner J, DECHEMA eV (Hrsg) Beurteilung von Schwermetallen in Böden von Ballungsgebieten: Arsen, Bleiund Cadmium. DECHEMA, Frankfurt am Main, S 319–355

    Google Scholar 

  • Ernst WHO (1996) Schwermetalle. In: Brunhold C, Rüegsegger A, Brändle R (Hrsg) Stress bei Pflanzen. UTB-Verlag P. Haupt, Bern, S 191–219

    Google Scholar 

  • Ernst WHO, Josse ENG (1983) Umweltbelastung durch Mineralstoffe — biologische Effekte. Fischer-Verlag, Stuttgart

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerland 41:229–248

    CAS  Google Scholar 

  • Farago ME, Mullen WA, Cole MM, Smith RF (1980) A study of Armeria maritima (Mill.) Willd. growing in a copper-impregnated bog. Environ Pollut Ser A21:225–244

    Google Scholar 

  • Fiedler HJ, Rösler HJ (1993) Spurenelemente in der Umwelt, 2.Aufl. Fischer-Verlag, Jena

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    CAS  Google Scholar 

  • Friedland AJ (1990) The movement of metals through soils and ecosystems. In: Shaw AJ (ed) Heavy metal tolerance in plants. CRC Press, Boca Raton, FL, pp 8–19

    Google Scholar 

  • Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of Zn tolerant and nontolerant ecotypes of Deschampsia caespitosa. J Plant Physiol 116:59–69

    CAS  Google Scholar 

  • Gora L, Clijsters H (1989) Effects of copper and zinc on the ethylene metabolism in Phaseolus vulgaris L. In: Clijsters H, DeProft M, Mareelle R, Van Poucke M (eds) Biochemical and physiological aspects of ethylene production in lower and higher plants. Kluwer Academic Publishers, Dordrecht, pp 219–228

    Google Scholar 

  • Greger M, Johansson M (1992) Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris L.). Physiol Plant 86:465–473

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230:674–676

    CAS  Google Scholar 

  • Grünhage L, Jäger HJ (1981) Kombinationswirkungen von SO2 und Cadmium auf Pisum sativum L.1. Ertrag, Schadstoffgehalte und Ionenhaushalt. Angew Bot 55:345–359

    Google Scholar 

  • Grünhage L, Weigel HJ, Ilge D, Jäger HJ (1985) Isolation and partial characterization of a cadmium-binding protein from Pisum sativum. J Plant Physiol 119:327–334

    Google Scholar 

  • Guderian R, Krause GHM, Kaiser H (1977) Untersuchungen zur Kombinationswirkung von Schwefeldioxid und schwermetallhaItigen Stäuben auf Pflanzen. Schriftenreihe der Landesanstalt für Immissionsschutz/Essen 40:23–30

    CAS  Google Scholar 

  • Harkov R, Clarke B, Brennan E (1979) Cadmium contamination may modify response of tomato to atmospheric ozone. J Air Pollut Control Assoc 29:1247–1249

    CAS  Google Scholar 

  • Haygarth PM, Jones KC (1992) Atmospheric deposition of metals to agricultural surfaces. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton, pp 249–276

    Google Scholar 

  • Heinrichs H, Mayer R (1980) The role of forest vegetation in the biogeochemistry cyde of heavy metals. J Environ Qual 9:111–118

    CAS  Google Scholar 

  • Heinz A, Reinhardt GA (Hrsg) (1990) Chemie und Umwelt. Vieweg-Verlag, Braunschweig

    Google Scholar 

  • Helal HM, Arisha H, Rietz E (1990) The uptake of trace elements by spinach and bean varieties of different root parameters. Plant Soil 123:229–232

    CAS  Google Scholar 

  • Helal HM, Haque SA, Ramadan A, Schnug E (1996) Salinity-heavy metal interactions as evaluated by soil extraction and plant analysis. Commun Soil Sci Plant Anal 27:1355–1361

    CAS  Google Scholar 

  • Helal HM, Schnug E, Eickriede A, Fild M (1995) Uptake of zinc by Brassica napus as affected by sulphur supply. Z Pflanzenernähr Bodenkd 158:123–124

    CAS  Google Scholar 

  • Hovmand H, Tjell JC, Mosbaek (1983) Plant uptake of airborne Cd. Environ Pollut Ser A 30:27–38

    CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist 134:75–84

    CAS  Google Scholar 

  • Jalil A, Selles F, Clarke JM (1994) Effects of cadmium on growth and the uptake of other elements by durum wheat. J Plant Nutr 17:1839–1858

    CAS  Google Scholar 

  • Kahle H, Breckle SW (1987) Wirkungen ökotoxischer Schwermetalle auf Buchenjungwuchs. Minister für Umwelt, Raumordnung und Landwirtschaft: Statuskolloquium „Luftverunreinigungen und Waldschäden“, Düsseldorf, Okt, 1986, S 84–90

    Google Scholar 

  • Keck RW (1978) Cadmium alteration of root physiology and potassium ion fluxes. Plant Physiol 62:94–96

    CAS  Google Scholar 

  • Khan DH, Duckett JG, Frankland B, Kirkham JB (1984) An X-ray microanalytical study of the distribution of Cd in roots of Zea mays 1. J Plant Physiol 115:19–28

    CAS  Google Scholar 

  • Klein H, Priebe A, Weigel HJ, Jäger HJ (1980) ökophysiologische Aspekte der Kontamination von Kulturpflanzen mit dem Schwermetall Cadmium. Verh Ges ökol VIII:481–491

    Google Scholar 

  • Klein H, Priebe A, Jäger HJ (1981) Grenzen der Belastbarkeit von Kulturpflanzen mit dem Schwermetall Cadmium. Angew Bot 55:295–308

    CAS  Google Scholar 

  • Krause GHM (1974) Zur Aufnahme von Zink und Cadmium durch oberirdische Pflanzenorgane. Dissertation, Rheinische Friedrichs-Wilhelm-Univ Bonn

    Google Scholar 

  • Krause GHM, Kaiser H (1977) Plant response to heavy metals and sulphur dioxide. Environ Pollut 12:63–71

    CAS  Google Scholar 

  • Kreysa G, Wiesner J (1994) Beurteilung von Schwermetallen in Böden von Ballungsgebieten: Arsen, Blei und Cadmium. DECHEMA eV (Hrsg), DECHEMA, Frankfurt/Main

    Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metal toxicity towards photosynthetic apparatus — direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  • Kuboi T, Noguchi A, Yazaki J (1986) Family dependent cadmium-accurnulation characteristics in higher plants. Plant Soil 92:405–415

    CAS  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1978a) The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Physiol Plant 43:231–236

    CAS  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1978b) Photosynthesis and transpiration of excised silver maple leaves exposed to cadmium and sulphur dioxide. Environ Pollut 17:259–268

    CAS  Google Scholar 

  • Lee KG, Cunningham BA, Paulsen GM, Liang GH, Moore RB (1976) Effect of cadmium on respiration rate and activity of several enzymes in soybean seedlings. Physiol Plant 36:4–6

    CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffre T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505

    CAS  Google Scholar 

  • Little P (1973) A study of heavy metal contamination of leaf surfaces. Environ Pollut 5:159–172

    CAS  Google Scholar 

  • Little P, Martin MH (1972) A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environ Pollut 3:241–254

    CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    CAS  Google Scholar 

  • Lübben S (1993) Vergleichende Untersuchungen zur Schwermetallaufnahme verschiedener Kulturpflanzen aus klärschlammgedüngten Böden und deren Prognose durch Bodenextraktion. Landbauforschung Völkenrode, Sonderheft 140

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of high er plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy metal-resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    CAS  Google Scholar 

  • Mathys W (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol Plant 40:130–136

    CAS  Google Scholar 

  • Maywald F, Weigel HJ (1997) Zur Biochemie und Molekularbiologie der Schwermetallaufnahme und-speicheru ng bei höheren Pflanzen. Landbauforschung Völkenrode 3:103–126

    Google Scholar 

  • McKenzie JM (1984) Bioavailability of trace elements in foodstuffs and beverages. In: Nriagu JO (ed) Changing metal cydes and human health. Springer-Verlag, Berlin Heidelberg New York, pp 187–198

    Google Scholar 

  • McIlveen WD, Negusanti JJ (1994) Nickel in the terrestrial environment. Sci Total Environ 148:109–138

    CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17:969–993

    Google Scholar 

  • Miller JE, Hassett JJ, Koeppe DE (1977) Interactions of lead and cadmium on metal uptake and growth of corn plants. J Environ Qual 6:18–20

    CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth Res 36:75–80

    CAS  Google Scholar 

  • Neite H, Neikes N, Wittig R (1991) Verteilung von Schwermetallen im Wurzelbereich und den Organen von Waldbodenpflanzen aus Buchenwäldern. Flora 185:325–333

    Google Scholar 

  • Nicholson FA, Jones KC, Johnston AE (1995) The significance of the retention of atmospherically deposited cadmium on plant surfaces to the cadmium content of herbage. Chemosphere 3:3043–3049

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term „heavy metal“ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B1:3–26

    Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals into the atmosphere. Nature 279:409

    CAS  Google Scholar 

  • Nriagu JO, Davidson CI (eds) (1986) Toxic metals in the atmosphere. Wiley &Sons, New York

    Google Scholar 

  • Ochiai EI (1987) General principles of biochemistry of the elements. Plenum Press, New York

    Google Scholar 

  • Ormrod DP (1977) Cadmium and nickel effects on growth and ozone sensitivity of pea. Water Air Soil Pollut 8:263–270

    CAS  Google Scholar 

  • Pacyna JM, Semb A, Hanssen JF (1984) Emission and long-range transport of trace elements in Europe. Tellus (Ser B) 36B:163–178

    CAS  Google Scholar 

  • Padeken K (1997) Schwermetallaufnahme verschiedener Pflanzenarten unter besonderer Berücksichtigung der N-und P-Ernährung. Dissertation. Fachbereich Agrarwissenschaften, Univ Göttingen

    Google Scholar 

  • Petit CM, van de Geijn SC (1978) In vivo measurement of cadmium(115m) transport and accumulation in the sterns of intact tomato plants (Lycopersicon esculenturn, Mill.). I. Long distance transport and local accumulation. Planta 138:137–143

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    CAS  Google Scholar 

  • Prasad MNV, Hagemeyer J (1999) Heavy metal stress in plants — from molecules to ecosystems. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Prüeß A (1994) Vorsorgewerte und Prüfwerte für mobile (NH4NO3-extrahierbare) Spurenelemente in Mineralböden. In: Kreysa G, Wiesner J, DECHEMA eV (Hrsg) Beurteilung von Schwermetallen in Böden von Ballungsgebieten: Arsen, Blei und Cadmium. DECHEMA, Frankfurt/Main, S 415–467

    Google Scholar 

  • Przemeck E, Haase NU (1991) On the bonding of manganese, copper and cadmium to peptides of the xylem sap of plant roots. Water Air Soil Pollut 57/58:569–577

    Google Scholar 

  • Robb J, Busch L, Rauser WE (1980) Zinc toxicity and xylem vessel alterations in white beans. Ann Bot 46:43–50

    CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    CAS  Google Scholar 

  • Römheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr 2:155–204

    Google Scholar 

  • Root RA, Miller RJ, Koeppe DE (1975) Uptake of cadmium — its toxicity and effect on the iron ratio in hydroponically grown corn. J Environ Qual 4:473–476

    CAS  Google Scholar 

  • Ros R, Morrales A, Segura J, Picazo J (1992) In vitro and in vivo effects of nickel and cadmium in the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    CAS  Google Scholar 

  • Ross SM (ed) (1994) Toxic metals in soil plant systems. Wiley & Sons, Chichester

    Google Scholar 

  • Ross SM (1994) Sources and forms of potentially toxic metals in soil-plant systems. In: Ross SM (ed) Toxic metals in soil plant systems. John Wiley &Sons, Chiehester, pp 3–26

    Google Scholar 

  • Salin ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Google Scholar 

  • Sauerbeck D (1982) Welche Schwermetallgehalte in Pflanzen dürfen nicht überschritten werden, um Wachstumsbeeinträchtigungen zu vermeiden? Landwirtsch Forsch SH 93:108–129

    Google Scholar 

  • Sauerbeck D (1985) Funktion, Güte und Belastbarkeit des Bodens aus agrikulturchemischer Sicht. Kohlhammer, Stuttgart

    Google Scholar 

  • Sauerbeck D (1991) Plant, element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water Air Soil Pollut 57/58:227–237

    Google Scholar 

  • Schlegel H, Godbold DL, Hüttermann A (1987) Whole plant aspects of heavy metal induced changes in CO2 uptake and water relations of spruce (Picea abies) seedlings. Physiol Plant 69:265–270

    CAS  Google Scholar 

  • Senden MHMN, van der Meer AJGM, Verburg TG, Wolterbeek HT (1994) Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls. J Exp Bot 45:597–606

    CAS  Google Scholar 

  • Sheoran IS, Gupta VK, Laura JS, Singh R (1991) Photosynthetic carbon fixation, translocation and metabolite levels in pigeon pea (Cajanus cajan L.) leaves exposed to excess cadmium. Indian J Exp Biol 29:857–861

    CAS  Google Scholar 

  • Singh N, Farooqui A, Pandey V, Misra J, Kulschresha K, Srivastava K, Singh SN, Yunus M, Ahmad KJ (1993) Heavy metal pollutants and plants. Appl Bot Abstr 13:41–56

    Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotinamin: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529

    CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    CAS  Google Scholar 

  • Steinnes E (1989) Cadmium in the terrestrial environment: impact of long-range atmospheric transport. Toxicol Environ Chem 19:139–145

    CAS  Google Scholar 

  • Streit B, Stumm W (1993) Chemical aspects. In: Markert B (ed) Plants as biomonitors — indicators for heavy metals in the terrestrial environment. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Tjell JC, Hovmand MF, Mosbaek H (1979) Atmospheric lead pollution of grass grown in background areas of Denmark. Nature 280:425–426

    CAS  Google Scholar 

  • Toivonen PM, Hofstra G (1979) The interaction of copper and sulphur dioxide in plant injury. Can J Plant Sci 59:475–479

    CAS  Google Scholar 

  • Turner RG (1970) The subcellular distribution of zinc and copper within the roots of metal-tolerant clones of Agrostis tenuis Sibth. New Phytologist 69:725–731

    CAS  Google Scholar 

  • Turner AP (1994) The responses of plants to heavy metals. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 153–187

    Google Scholar 

  • UBA (Hrsg) (1987) Umweltbundesamt-Entscheidungshilfen für die Prüfung in Sonderfällen nach TA Luft: Teil III. Beurteilung einer Belastung von Nahrungsund Futterpflanzen mit Cadmium, Blei, Thallium und Fluor. Schmidt-Verlag, Berlin

    Google Scholar 

  • UBA (1997) Umweltbundesamt — Daten zur Umwelt 1995/1996. Schmidt-Verlag, Berlin

    Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium and lead. Annu Rev Biochem 41:91–128

    CAS  Google Scholar 

  • Vangronsfeld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. VCH-Verlag, Weinheim, pp 149–177

    Google Scholar 

  • van Assche F, Clijsters H, Marcelle R (1979) Photosynthesis in Phaseolus vulgaris L. as influenced by supra-optimal zinc nutrition. In: Marcelle R, Clijsters H, Van Poucke M (eds) Photosynthesis and plant development. Junk Publishers, The Hague, pp 175–184

    Google Scholar 

  • van Assche F, Clijsters H (1990) Effects of metals on enzyme activities in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance of higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–193

    Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980a) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65:480–482

    CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980b) Different effects of cadmium in vitro and in vivo on enzyme activities in bean plants (Phaseolus vulgaris L.c.v. Sankt Andreas). J Plant Physiol 97:103–113

    CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980c) Der Einfluß von Schwermetallen auf Wachstum und Stoffwechsel von Buschbohnen. Angew Bot 54:195–205

    CAS  Google Scholar 

  • Weigel HJ (1985a) The effect of Cd2+ on photosynthetic reactions of mesophyll protoplasts. Physiol Plant 63:192–200

    CAS  Google Scholar 

  • Weigel HJ (1985b) Inhibition of photosynthetic reactions of isolated intact chloroplasts by cadmium. J Plant Physiol 119:179–189

    CAS  Google Scholar 

  • Weigel HJ, Ilge D, Elmadfa I, Jäger HJ (1987) Availability and toxicological effects of low levels of biologically bound cadmium. Arch Environ Contam Toxicol 16:85–93

    CAS  Google Scholar 

  • White MC, Decker AM, Chaney RL (1981) Metal complexation in xylem fluid. I. Chemical composition of tomato and soybean stern exudates. Plant Physiol 67:292–300

    CAS  Google Scholar 

  • Wilcke W, Döhler H (Hrsg) (1995) Schwermetalle in der Landwirtschaft. Kuratori um für Technik und Bauwesen in der Landwirtschaft eV (KTBL), Arbeitspapier 217

    Google Scholar 

  • Woolhouse HW (1993) Toxicity and tolerance in response of plants to metals. In: Lange OL et al (eds) Encyclopedia of plant physiology, vol 12c. Springer-Verlag, Berlin Heidelberg New York, pp 246–300

    Google Scholar 

  • Yang X, Baligar VC, Martens DC, Clark RB (1996) Cadmium effects on influx and transport of mineral nutrients in plant species. J Plant Nutr 19:643–656

    CAS  Google Scholar 

Literatur

  • AVV45 (1990) Allgemeine Verwaltungsvorschrift zu §45 Strahlenschutzverordnung: Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus kerntechnischen Anlagen oder Einrichtungen, Bundesanzeiger Nr.64a, Jahrgang 42, 31.3.1990

    Google Scholar 

  • Bunzl K (1997) Radionuklide, Kap. 6.5.2.6. In: Handbuch der Bodenkunde 3.Erg. Lfg.11/97

    Google Scholar 

  • Coughtry PJ, Thorne MC (1983) Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems, Vols. 1–6, Balkema, Rotterdam

    Google Scholar 

  • EC (1996) European Commission and the Belarus, Russian and Ukrainian Ministries on Chernobyl affairs, Emergency Matters and Health: The radiological consequences of the Chernobyl accident. Karaoglou A, Desmet G, Kelly GN, Menzel HG (eds) EUR 16544, ISBN92-827-5248-8, Brussels-Luxembourg

    Google Scholar 

  • EURATOM (1989) Verordnung (EURATOM) Nr. 2218/89 des Rates vom 18. Juli 1989 zur änderung der Verordnung Nr. 3954/87 zur Festlegung von Höchst werten an Radioaktivität in Nahrungsmitteln und Futtermitteln im Falle eines nuklearen Unfalls oder einer anderen radiologischen Notstandssituation, Amtsblatt der Eur. Gemeinschaften, Nr. L 211, 22.7.1989

    Google Scholar 

  • EURATOM (1990) Commission Regulation no 770/90 of March 1990 laying down maximum permitted levels of radioactive contamination of feedingstuffs following a nuclear accident or any case of radiological emergency, Official Journal of the European Communities No.L 83/78, 30.3.1990

    Google Scholar 

  • Gatzweiler R (1996) tLagerstätten-und produktionsbedingte Umweltauswirkungen des Uranerzbergbaus. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • Herrmann AG, Röthemeyer H (1996) Radioaktive Abfälle und Reststoffe in der Geosphäre. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • IAEA (1992) International Atomic Energy Agency — Effect of ionizing radiation on plants and animals at levels implied by current radiation protection standards. Technical reports series no 332, ISBN92-0-100992-5,Vienna

    Google Scholar 

  • ICRP38 (1983) International Commission on Radiological Protection, Radionuclide transformations — energy and intensity of emissions. Annals of the ICRP volll-13, Report 38. Pergamon Press, Oxford

    Google Scholar 

  • ICRP60 (1990) Empfehlungen der Internationalen Strahlenschutzkommission 1990. Fischer-Verlag, Stuttgart

    Google Scholar 

  • ICRU53 (1994) International Commission on Radiation Units and Measurements, Gamma-ray spectrometry in the environment, Report 53, ISBN0-913394-52-1, Bethesda, Md, USA

    Google Scholar 

  • Iacobi W, Paretzke HG (1986) Betrachtungen zur Strahlenexposition von Bäumen durch natürliche und künstliche Strahlenquellen, GSF-Bericht S 5/86, Neuherberg

    Google Scholar 

  • Kemski J, Klingel R, Siehl A (1996) Die terrestrische Strahlung durch natürlich radioaktive Elemente. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • Kemski J, Klingel R, Siehl A (1996b) Das geogene Radon-Potential. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • Lehmann R (1996) Strahlenbelastung durch natürliche Radionuklide in Baumaterialien, fossilen Brennstoffen und Düngemittel. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • Michel R (1999) Long-lived radionuclides as tracers in terrestrial and extraterrestrial matter. Radiochim Acta 87:47–73

    CAS  Google Scholar 

  • Porstendörfer J (1996) Zur Dynamik von Radon und Folgeprodukten in der freien Atmosphäre und Raumluft. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • Rühle H (1996) Radioaktivität in verschiedenen Wasservorkommen. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst &Sohn, Berlin

    Google Scholar 

  • Siehl A (1996) Grundlagen und geowissenschaftliehe Aspekte der Umweltradioaktivität. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

  • Sparrow AH, Underbrink AG, Sparrow RC (1967) Chromosomes and cellular radiosensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy-nine different organisms. Radiat Res 32:915–945

    CAS  Google Scholar 

  • SSK (1996) Strahlenschutzkommission: Zehn Jahre nach Tschernobyl, eine Bilanz. Bayer A, Kaul A, Reiners C (Hrsg). Fischer-Verlag, Stuttgart

    Google Scholar 

  • SSK (1998) Radon-Statusgespräch 1998, Berichte der Strahlenschutzkommission des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Heft 17, Fischer-Verlag, Stuttgart

    Google Scholar 

  • Stacey FD (1992) Physics of the earth, Brookfield, Kenmore

    Google Scholar 

  • UNSCEAR (1993) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risks of Ionizing Radiation: Report to the General Assembly, New York, ISBN92-1-142200-0

    Google Scholar 

  • UNSCEAR (1996) United Nations Scientific Committee on the Effects of Atomic Radiation: Report to the General Assembly with scientific annex, Effects of radiation on the environment, New York

    Google Scholar 

  • UNSCEAR (1999) United Nations Scientific Committee on the Effect of Atomic Radiation: Exposures from natural radiation sources, Report 80110, Vienna

    Google Scholar 

  • Whicker FW, Schultz V (1982) Radioecology: nuclear energy and the environment, vol II. CRCPress, Boca Raton

    Google Scholar 

  • Wirth E (1996) Die Kontamination der Umwelt mit künstlichen Radionukliden und die daraus resultierende Strahlenexposition des Menschen. In: Siehl A (Hrsg) Umweltradioaktivität. Ernst & Sohn, Berlin

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guderian, R. et al. (2001). Wirkungen von Immissionen auf Pflanzen und Biozönosen. In: Guderian, R. (eds) Handbuch der Umweltveränderungen und Ökotoxikologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56413-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56413-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63108-5

  • Online ISBN: 978-3-642-56413-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics