Skip to main content

Molecular Biology

  • Chapter
  • 172 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The initial event in the generation of all central nervous system (CNS) tumors is the transformation of a normal cell into a cancer cell. The biological processes associated with this development eventually lead to the survival of cancer cells and to the formation of a solid tumor. Steps involved in this tumorigenic process include the cell¡¯s escape from the immune system surveillance (i.e., antitumor response), aberrant proliferation and multiplication, tumor cell invasion, and angiogenesis. Over the past decade, much has been learned about the basic genetic events and the molecular biology underlying the development of CNS cancers.This review attempts to describe the molecular biology of CNS tumors, highlighting potential targets for therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal M L, Agarwal A, Taylor W R and Stark G R (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A 92: 8493¨C8497

    PubMed  CAS  Google Scholar 

  • Apodaca G, Rutka J T, Bouhana K, Berens M E, Giblin J R, Rosenblum M L, McKerrow J H and Banda M J (1990) Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res 50: 2322¨C2329

    PubMed  CAS  Google Scholar 

  • Aruffo A, Stamenkovic I, Melnick M, Underhill C B and Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61: 1303¨C1313

    PubMed  CAS  Google Scholar 

  • Ashkenazi A and Dixit V M (1998) Death receptors: signaling and modulation. Science 281: 1305¨C1308

    PubMed  CAS  Google Scholar 

  • Ashley D M, Faiola B, Nair S, Hale L P, Bigner D D and Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186: 1177¨C1182

    PubMed  CAS  Google Scholar 

  • Barker F G, Chen P, Furman F, Aldape K D, Edwards M S and Israel M A (1997) P16 deletion and mutation analysis in human brain tumors. J Neurooncol 31: 17¨C23

    PubMed  CAS  Google Scholar 

  • Bertolotto A, Magrassi M L, Orsi L, Sitia C and Schiffer D (1986) Glycosaminoglycan changes in human gliomas. A biochemical study. J Neurooncol 4: 43¨C48

    PubMed  CAS  Google Scholar 

  • Beutler B and van Huffel C (1994) Unraveling function in the TNF ligand and receptor families [comment]. Science 264: 667¨C668

    PubMed  CAS  Google Scholar 

  • Bhondeley M K, Mehra R D, Mehra N K, Mohapatra A K, Tandon P N, Roy S and Bijlani V (1988) Imbalances in T cell subpopulations in human gliomas. J Neurosurg 68:589¨C593

    PubMed  CAS  Google Scholar 

  • Bourdon M A and Ruoslahti E (1989) Tenascin mediates cell attachment through an RGD-dependent receptor. J Cell Biol 108: 1149¨C1155

    PubMed  CAS  Google Scholar 

  • Cheng S Y, Huang H J, Nagane M, Ji X D, Wang D, Shih C C,Arap W, Huang C M and Cavenee W K (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci U S A 93: 8502¨C8507

    PubMed  CAS  Google Scholar 

  • Chicoine M R and Silbergeld D L (1995) Assessment of brain tumor cell motility in vivo and in vitro. J Neurosurg 82:615¨C622

    PubMed  CAS  Google Scholar 

  • Chinnaiyan A M, Tepper C G, Seldin M F, O¡¯Rourke K, Kischkel F C, Hellbardt S, Krammer P H, Peter M E and Dixit V M (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptorinduced apoptosis. J Biol Chem 271: 4961¨C4965

    PubMed  CAS  Google Scholar 

  • Cohen S, Ushiro H, Stoscheck C and Chinkers M (1982) A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257: 1523¨C1531

    PubMed  CAS  Google Scholar 

  • Costello J F, Berger M S, Huang H S and Cavenee W K (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56:2405¨C2410

    PubMed  CAS  Google Scholar 

  • Delpech B, Maingonnat C, Girard N, Chauzy C, Maunoury R, Olivier A, Tayot J and Creissard P (1993) Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. Eur J Cancer 7: 1012¨C1017

    Google Scholar 

  • Dirks P B, Hubbard S L, Murakami M and Rutka J T (1997) Cyclin and cyclin-dependent kinase expression in human astrocytoma cell lines. J Neuropathol Exp Neurol 56: 291¨C300

    PubMed  CAS  Google Scholar 

  • El-Deiry W S, Harper J W, O¡¯Connor P M, Velculescu V E, Canman C E, Jackman J, Pietenpol J A, Burrell M, Hill D E, Wang Y and et al. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169¨C1174

    PubMed  CAS  Google Scholar 

  • Ennis B W and Matrisian L M (1994) Matrix degrading metalloproteinases. J Neurooncol 18: 105¨C109

    PubMed  CAS  Google Scholar 

  • Finkel E (1999) Does cancer therapy trigger cell suicide? [news]. Science 286: 2256¨C8

    PubMed  CAS  Google Scholar 

  • Fraser A, McCarthy N and Evan G I (1996) Biochemistry of cell death. Curr Opin Neurobiol 6: 71¨C80

    PubMed  CAS  Google Scholar 

  • Fueyo J, Gomez-Manzano C, Yung W K and Kyritsis A P (1998) The functional role of tumor suppressor genes in gliomas: clues for future therapeutic strategies. Neurology 51: 1250¨C1255

    PubMed  CAS  Google Scholar 

  • Fulci G and Van Meir E G (1999) p53 and the CNS: tumors and developmental abnormalities. Mol Neurobiol 19: 61¨C77

    PubMed  CAS  Google Scholar 

  • Giese A, Laube B, Zapf S, Mangold U and Westphal M (1998) Glioma cell adhesion and migration on human brain sections.Anticancer Res 18: 2435¨C2447

    PubMed  CAS  Google Scholar 

  • Giese A, Loo M A, Rief M D, Tran N and Berens M E (1995) Substrates for astrocytoma invasion. Neurosurgery 37:294¨C301; discussion 301¨C302

    PubMed  CAS  Google Scholar 

  • Giese A and Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39: 235¨C50; discussion 250¨C252

    PubMed  CAS  Google Scholar 

  • Gladson C L and Cheresh D A (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88: 1924¨C1932

    PubMed  CAS  Google Scholar 

  • Gomez-Manzano C, Fueyo J, Kyritsis A P, Steck P A, Roth J A, McDonnell T J, Steck K D, Levin V A and Yung W K (1996) Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 56: 694¨C699

    PubMed  CAS  Google Scholar 

  • Gordon L B, Nolan S C, Cserr H F, Knopf P M and Harling- Berg C J (1997) Growth of P511 mastocytoma cells in BALB/c mouse brain elicits CTL response without tumor elimination: a new tumor model for regional central nervous system immunity. J Immunol 159: 2399¨C2408

    PubMed  CAS  Google Scholar 

  • Gross J L, Behrens D L, Mullins D E, Kornblith P L and Dexter D L (1988) Plasminogen activator and inhibitor activity in human glioma cells and modulation by sodium butyrate. Cancer Res 48: 291¨C296

    PubMed  CAS  Google Scholar 

  • Guan J L and Shalloway D (1992) Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358: 690¨C692

    PubMed  CAS  Google Scholar 

  • Guerin C and Laterra J (1997) Regulation of angiogenesis in malignant gliomas. Exs 79: 47¨C64

    PubMed  CAS  Google Scholar 

  • Gutmann D H, Giordano M J, Fishback A S and Guha A (1997) Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 49: 267¨C270

    PubMed  CAS  Google Scholar 

  • Gutmann D H, Sherman L, Seftor L, Haipek C, Hoang Lu K and Hendrix M (1999) Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility,adhesionand spreading. Hum Mol Genet 8: 267¨C275

    PubMed  CAS  Google Scholar 

  • Halaka A N, Bunning R A, Bird C C, Gibson M and Reynolds J J (1983) Production of collagenase and inhibitor (TIMP) by intracranial tumors and dura in vitro. J Neurosurg 59:461¨C466

    PubMed  CAS  Google Scholar 

  • Hanahan D and Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.Cell 86: 353¨C364

    PubMed  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A and Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296¨C299

    PubMed  CAS  Google Scholar 

  • He J, Olson J J and James C D (1995) Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55: 4833¨C4836

    PubMed  CAS  Google Scholar 

  • Hermanson M, Funa K, Koopmann J, Maintz D, Waha A, Westermark B, Heldin C H, Wiestler O D, Louis D N, von Deimling A and Nister M (1996) Association of loss of heterozygosity on chromosome 17p with high plateletderived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 56: 164¨C171

    PubMed  CAS  Google Scholar 

  • Higuchi M, Ohnishi T, Arita N, Hiraga S and Hayakawa T (1993) Expression of tenascin in human gliomas: its relation to histological malignancy, tumor dedifferentiation and angiogenesis. Acta Neuropathol 85: 481¨C487

    PubMed  CAS  Google Scholar 

  • Hsu S C, Volpert O V, Steck P A, Mikkelsen T, Polverini P J, Rao S, Chou P and Bouck N P (1996) Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56: 5684¨C5691

    PubMed  CAS  Google Scholar 

  • Hynes R O (1987) Integrins: a family of cell surface receptors. Cell 48: 549¨C554

    PubMed  CAS  Google Scholar 

  • Ichimura K, Schmidt E E, Goike H M and Collins V P (1996) Human glioblastomas with no alterations of the CDKN2 A (p16INK4 A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065¨C1072

    PubMed  CAS  Google Scholar 

  • Joki T, Kikuchi T, Akasaki Y, Saitoh S, Abe T and Ohno T (1999) Induction of effective antitumor immunity in a mouse brain tumor model using B7¨C1 (CD80) and intercellular adhesive molecule 1 (ICAM-1; CD54) transfection and recombinant interleukin 12. Int J Cancer 82: 714¨C720

    PubMed  CAS  Google Scholar 

  • Kastan M B, Onyekwere O, Sidransky D, Vogelstein B and Craig R W (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304¨C6311

    PubMed  CAS  Google Scholar 

  • Ko L J and Prives C (1996) p53: puzzle and paradigm. Genes Dev 10: 1054¨C1072

    PubMed  CAS  Google Scholar 

  • Koff A, Ohtsuki M, Polyak K, Roberts J M and Massague J (1993) Negative regulation of G1 in mammalian cells: inhibition of cyclin E- dependent kinase by TGF-beta. Science 260: 536¨C539

    PubMed  CAS  Google Scholar 

  • Korkolopoulou P, Christodoulou P, Kouzelis K, Hadjiyannakis M, Priftis A, Stamoulis G, Seretis A and Thomas-Tsagli E (1997) MDM 2 and p53 expression in gliomas: a multivariate survival analysis including proliferation markers and epidermal growth factor receptor. Br J Cancer 75: 1269¨C1278

    PubMed  CAS  Google Scholar 

  • Kubbutat M H, Jones S N and Vousden K H (1997) Regulation of p53 stability by Mdm2. Nature 387: 299¨C303

    PubMed  CAS  Google Scholar 

  • Kuppner M C, Van Meir E, Gauthier T, Hamou M F and de Tribolet N (1992) Differential expression of the CD44 molecule in human brain tumours. Int J Cancer 50: 572¨C577

    PubMed  CAS  Google Scholar 

  • Levine A J (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323¨C331

    PubMed  CAS  Google Scholar 

  • Li H, Lochmuller H, Yong V W, Karpati G and Nalbantoglu J (1997a) Adenovirus-mediated wild-type p53 gene transfer and overexpression induces apoptosis of human glioma cells independent of endogenous p53 status. J Neuropathol Exp Neurol 56: 872--878

    CAS  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner S H, Giovanella B C, Ittmann M, Tycko B, Hibshoosh H, Wigler M H and Parsons R (1997b) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [see comments]. Science 275: 1943¨C1947

    CAS  Google Scholar 

  • Liau L M, Black K L, Prins R M, Sykes S N, DiPatre P L, Cloughesy T F, Becker D P and Bronstein J M (1999) Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg 90: 1115¨C1124

    PubMed  CAS  Google Scholar 

  • Liesi P, Dahl D and Vaheri A (1983) Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96: 920¨C924

    PubMed  CAS  Google Scholar 

  • Liotta L A (1986) Tumor invasion and metastases¨Crole of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res 46: 1¨C7

    PubMed  CAS  Google Scholar 

  • Lukashev M E and Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8:437¨C441

    PubMed  CAS  Google Scholar 

  • Maltzman W and Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689¨C1694

    PubMed  CAS  Google Scholar 

  • Merchant R E, Baldwin N G, Rice C D and Bear H D (1997) Adoptive immunotherapy of malignant glioma using tumor-sensitized T lymphocytes. Neurol Res 19: 145¨C152

    PubMed  CAS  Google Scholar 

  • Michieli P, Chedid M, Lin D, Pierce J H, Mercer W E and Givol D (1994) Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391¨C3395

    PubMed  CAS  Google Scholar 

  • Miyashita T and Reed J C (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293¨C299

    PubMed  CAS  Google Scholar 

  • Nagane M, Coufal F, Lin H, Bogler O, Cavenee W K and Huang H J (1996) A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079¨C5086

    PubMed  CAS  Google Scholar 

  • Nakano A, Tani E, Miyazaki K, Furuyama J and Matsumoto T (1993) Expressions of matrilysin and stromelysin in human glioma cells. Biochem Biophys Res Commun 192:999¨C1003

    PubMed  CAS  Google Scholar 

  • Nishikawa R, Ji X D, Harmon R C, Lazar C S, Gill G N, Cavenee W K and Huang H J (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity.Proc Natl Acad Sci U S A 91: 7727¨C7731

    PubMed  CAS  Google Scholar 

  • Nozaki M, Tada M, Matsumoto R, Sawamura Y, Abe H and Iggo R D (1998) Rare occurrence of inactivating p53 gene mutations in primary non-astrocytic tumors of the central nervous system: reappraisal by yeast functional assay. Acta Neuropathol (Berl) 95: 291¨C296

    CAS  Google Scholar 

  • Oltvai Z N, Milliman C L and Korsmeyer S J (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609¨C619

    PubMed  CAS  Google Scholar 

  • Owen-Schaub L B, Zhang W, Cusack J C, Angelo L S, Santee S M, Fujiwara T, Roth J A, Deisseroth A B, Zhang W W,Kruzel E and et al. (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression.Mol Cell Biol 15: 3032¨C3040

    PubMed  CAS  Google Scholar 

  • Patsouris E, Davaki P, Kapranos N, Davaris P and Papageorgiou K (1996) A study of apoptosis in brain tumors by in situ end-labeling method. Clin Neuropathol 15: 337¨C341

    PubMed  CAS  Google Scholar 

  • Perrin G, Schnuriger V, Quiquerez A L, Saas P, Pannetier C, de Tribolet N, Tiercy J M, Aubry J P, Dietrich P Y and Walker P R (1999) Astrocytoma infiltrating lymphocytes include major T cell clonal expansions confined to the CD8 subset. Int Immunol 11: 1337¨C1350

    PubMed  CAS  Google Scholar 

  • Plate K H and Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339¨C347

    PubMed  CAS  Google Scholar 

  • Prigent S A, Nagane M, Lin H, Huvar I, Boss G R, Feramisco J R, Cavenee W K and Huang H S (1996) Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras- Shc-Grb2 pathway. J Biol Chem 271:25639¨C25645

    PubMed  CAS  Google Scholar 

  • Rempel S A (1998) Molecular biology of central nervous system tumors. Curr Opin Oncol 10: 179¨C185

    PubMed  CAS  Google Scholar 

  • Rempel S A, Ge S and Gutierrez J A (1999) SPARC: a potential diagnostic marker of invasive meningiomas. Clin Cancer Res 5: 237¨C241

    PubMed  CAS  Google Scholar 

  • Rempel S A, Rosenblum M L, Mikkelsen T, Yan P S, Ellis K D, Golembieski W A, Sameni M, Rozhin J, Ziegler G and Sloane B F (1994) Cathepsin B expression and localization in glioma progression and invasion. Cancer Res 54: 6027¨C6031

    PubMed  CAS  Google Scholar 

  • Reyes-Mugica M, Rieger-Christ K, Ohgaki H, Ekstrand B C, Helie M, Kleinman G, Yahanda A, Fearon E R, Kleihues P and Reale M A (1997) Loss of DCC expression and glioma progression. Cancer Res 57: 382¨C386

    PubMed  CAS  Google Scholar 

  • Romanic A M and Madri J A (1994) Extracellular matrixdegrading proteinases in the nervous system. Brain Pathol 4: 145¨C156

    PubMed  CAS  Google Scholar 

  • Sage E H (1997) Terms of attachment: SPARC and tumorigenesis [news]. Nat Med 3: 144¨C146

    PubMed  CAS  Google Scholar 

  • Sato K, Schauble B, Kleihues P and Ohgaki H (1996) Infrequent alterations of the p15, p16, CDK4 and cyclin D1 genes in non-astrocytic human brain tumors. Int J Cancer 66: 305¨C308

    PubMed  CAS  Google Scholar 

  • Sawaya R, Ramo O J, Shi M L and Mandybur G (1991) Biological significance of tissue plasminogen activator content in brain tumors. J Neurosurg 74: 480¨C486

    PubMed  CAS  Google Scholar 

  • Schlessinger J (1988) Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13: 443¨C447

    PubMed  CAS  Google Scholar 

  • Schmidt E E, Ichimura K, Messerle K R, Goike H M and Collins V P (1997) Infrequent methylation of CDKN2 A(MTS1/p16) and rare mutation of both CDKN2 A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer 75: 2¨C8

    PubMed  CAS  Google Scholar 

  • Schmidt E E, Ichimura K, Reifenberger G and Collins V P (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54: 6321¨C6324

    PubMed  CAS  Google Scholar 

  • Serrano M, Hannon G J and Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 [see comments]. Nature 366: 704¨C707

    PubMed  CAS  Google Scholar 

  • Sherman L, Sleeman J, Herrlich P and Ponta H (1994) Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6:726¨C733

    PubMed  CAS  Google Scholar 

  • Shu H K, Kim M M, Chen P, Furman F, Julin C M and Israel M A (1998) The intrinsic radioresistance of glioblastomaderived cell lines is associated with a failure of p53 to induce p21(BAX) expression. Proc Natl Acad Sci USA 95:14453¨C14458

    PubMed  CAS  Google Scholar 

  • Stuart E T, Haffner R, Oren M and Gruss P (1995a) Loss of p53 function through PAX-mediated transcriptional repression.Embo J 14: 5638¨C5645

    CAS  Google Scholar 

  • Stuart E T, Kioussi C, Aguzzi A and Gruss P (1995b) PAX5 expression correlates with increasing malignancy in human astrocytomas. Clin Cancer Res 1: 207¨C214

    CAS  Google Scholar 

  • Tachibana O, Nakazawa H, Lampe J, Watanabe K, Kleihues P and Ohgaki H (1995) Expression of Fas/APO-1 during the progression of astrocytomas. Cancer Res 55: 5528¨C5530

    PubMed  CAS  Google Scholar 

  • Tada M, Iggo R D, Waridel F, Nozaki M, Matsumoto R, Sawamura Y, Shinohe Y, Ikeda J and Abe H (1997) Reappraisal of p53 mutations in human malignant astrocytic neoplasms by p53 functional assay: comparison with conventional structural analyses. Mol Carcinog 18: 171¨C176

    PubMed  CAS  Google Scholar 

  • Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shirai S and Nose T (1996) Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res 56: 2185¨C2190

    PubMed  CAS  Google Scholar 

  • Tsurushima H, Liu S Q, Tsuboi K, Yoshii Y, Nose T and Ohno T (1996) Induction of human autologous cytotoxic T lymphocytes against minced tissues of glioblastoma multiforme. J Neurosurg 84: 258¨C263

    PubMed  CAS  Google Scholar 

  • Tsuzuki T, Tsunoda S, Sakaki T, Konishi N, Hiasa Y and Nakamura M (1996) Alterations of retinoblastoma, p53, p16(CDKN2), and p15 genes in human astrocytomas. Cancer 78: 287¨C293

    PubMed  CAS  Google Scholar 

  • Ueki K, Ono Y, Henson J W, Efird J T, von Deimling A and Louis D N (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56: 150¨C153

    PubMed  CAS  Google Scholar 

  • Ullrich A and Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203¨C212

    PubMed  CAS  Google Scholar 

  • Van Meir E (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential to solid tumours [letter]. Neurosurgery 39: 878¨C879

    PubMed  CAS  Google Scholar 

  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P and Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217¨C223; discussion 23¨C4

    PubMed  CAS  Google Scholar 

  • Weller M, Frei K, Groscurth P, Krammer P H, Yonekawa Y and Fontana A (1994) Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest 94:954¨C964

    PubMed  CAS  Google Scholar 

  • Weller M, Malipiero U, Rensing-Ehl A, Barr P J and Fontana A (1995) Fas/APO-1 gene transfer for human malignant glioma. Cancer Res 55: 2936¨C2944

    PubMed  CAS  Google Scholar 

  • White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10: 1¨C15

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Nishida T, Miyajima N, Kawai S, Ooi T and Toyoshima K (1983) The erbB gene of avian erythroblastosis virus is a member of the src gene family. Cell 35: 71¨C78

    PubMed  CAS  Google Scholar 

  • Yamasaki T, Akiyama Y, Fukuda M, Kimura Y, Moritake K,Kikuchi H, Ljunggren H G, Karre K and Klein G (1996) Natural resistance against tumors grafted into the brain in association with histocompatibility-class-I-antigen expression.Int J Cancer 67: 365¨C771

    PubMed  CAS  Google Scholar 

  • Yount G L, Haas-Kogan D A, Vidair C A, Haas M, Dewey W C and Israel M A (1996) Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res 56: 500¨C506

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Class, R. (2003). Molecular Biology. In: Petrovich, Z., Brady, L.W., Apuzzo, M.L.J., Bamberg, M. (eds) Combined Modality Therapy of Central Nervous System Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56411-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56411-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00627-5

  • Online ISBN: 978-3-642-56411-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics