Skip to main content

Fasermeßtechnik und Fasercharakterisierung

  • Chapter
Optische Kommunikationstechnik
  • 529 Accesses

Zusammenfassung

Mit dem Voranschreiten der Komponentenentwicklung für die Optische Nachrichtentechnik — bereits dargestellt in vorangehenden und ergänzt in nachfolgenden Kapiteln — gehen Fortschritte in den zugehörigen Meß- und Prüfverfahren einher. Auf dem Feld der Optischen Nachrichtentechnik, wie überall in den Ingenieurswissenschaften, hängen Innovationen nicht zuletzt von der Fähigkeit ab, präzise Messungen an den Entwicklungsobjekten durchführen zu können. In dem vorliegenden Kapitel über Fasermeßtechnik und Fasercharakterisierung werden Methoden behandelt zur Feststellung von Strukturdaten, zur Bestimmung von Eigenschaften der ausbrei tungsfähigen Wellenfelder und zur Charakterisierung von Fasern als Übertragungsmedium. Ferner werden Meßmethoden für faseroptische Komponenten diskutiert. Diese Methoden sind von Bedeutung sowohl zur Kontrolle der Herstellungsprozesse wie auch zur Bereitstellung von Daten für den Faser-Nutzer. An mehreren Stellen dieses Kapitels wird Bezug genommen auf einschlägige Empfehlungen von Normungsgremien, insbesondere auf ITU-Vorschriften über Messungen an Einmodenfasern (ITU-T G.650) und an Vielmodenfasern (ITU-T G.651).

Allgemeine Literatur

Marcuse, D.: Principles of optical fiber measurements. Academic Press, 1981 — Neumann, E.-G.: Single-mode fibers. Kapitel 13; Springer, 1988 — Unger, H.-G.: Optische Nachrichtentechnik TeiL II. Kapitel 14; Hüthig, 1992 — Derickson, D. (Hrsg.): Fiber Optic test and measurement. Prentice Hall, 1998

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Stewart, W.J.: A new technique for measuring the refractive index profile of graded optical fibers. In: International Conference on Integrated Optics and Optical fiber communication (IOOC), Tokyo, 1977. paper C2-2

    Google Scholar 

  2. White, K.I.: Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles. In: Opt. and Quantum Electron. 11 (1979), S. 185–196

    Article  Google Scholar 

  3. Marcuse, D.: Principles of optical fiber measurements. Academic Press, 1981

    Google Scholar 

  4. Eickhoff, W.; Weidel, E.: Measuring method for the refractive index profile of optical glass fibers. In: Opt. and Quantum Electron. (1975), S. 109–113

    Google Scholar 

  5. Sladen, F.M.E.; Payne, D.N.; Adams, M.J.: Determination of optical fiber refractive index profiles by a near-field scanning technique. In: Appl Phys. Lett. 28 (1976), S. 255–258

    Article  Google Scholar 

  6. Saunders, M.J.; Gardner, W.E.: Nondestructive interferometric measurement of the delta and alpha of clad optical fibers. In: Appl. Opt. 16 (1977), S. 2368–2371

    Article  Google Scholar 

  7. Brinkmeyer, E.: Refractive-Index profile determination of optical fibers from the diffraction pattern. In: Appl. Opt. 16 (1977), S. 2802–2803

    Article  Google Scholar 

  8. Presby, H.M.: Rapid automatic index profiling of whole fiber samples. In: Bell Syst. Tech. J. 58 (1979), S. 883

    Article  Google Scholar 

  9. Kim, K.S. et al.: Measurement of the nonlinear index of silica-core and dispersion-shifted fibers. In: Opt. Lett. 19 (1994). S. 257–259

    Article  Google Scholar 

  10. Stolen, R.H. et al.: Measurement of the nonlinear refractive index of long dispersion-shifted fibers by selfphase modulation at 1.55 μm. In: J. Lightwave Techn. (1998), S. 1006–1012

    Google Scholar 

  11. Pringent, L.; Hamide, J.P.: Measurement of fiber nonlinear Kerr coefficient by four-wave mixing. In: IEEE Photon. Technol. Lett. (1993), S. 1092–1095

    Google Scholar 

  12. Srivastava, R.; Franzen, J.P.: Single-mode fiber characterization/National Bureau of Standards Report. 1985. -Forschungsbericht

    Google Scholar 

  13. Franzen, D.L.; Srivastava, R.: Determining the effective cutoff wavelength of single-mode fibers: an interlaboratory comparison. In: J. Lightwave Techn. (1985), S. 1073–1077

    Google Scholar 

  14. Renner, H.: Reliability of the bending technique for measuring the effective cut-off wevelength in depressed-c1addin fibres. In: International Journal of Optoelectronics 7 (1992), S. 425–428

    Google Scholar 

  15. Murakami, Y.; Kawana, A., Tsuchiya, H.: Cutoff wavelength measurements of single-mode optical fibers. In: Appl. Opt. 18 (1979), S. 1101–1105

    Article  Google Scholar 

  16. Millar, C.A.: Direct method of determining equivalent-step-index profiles for monomode fibers. In: Electron. Lett. 17 (1981), S. 458–460

    Article  Google Scholar 

  17. Streckert, J.: New method for measuring the spot size of single mode fibers. In: Opt. Lett. 5 (1980), S. 505–506

    Article  Google Scholar 

  18. Brinkmeyer, E.; Heckmann, S.: Cutoff wavelength determination in single-mode fibers by mode interference. In: Opt. Lett. 9 (1984), S. 28–30

    Article  Google Scholar 

  19. Brinkmeyer, E.: Profile-independent representation of near-and far-field charakteristics of single-mode fibers and its use for the determination of fiber parameters. In: Proc. of the 5th European Conference on Optical Communication (ECOC), 1979

    Google Scholar 

  20. Neumann, E.-G.: Single-mode fibers. Berlin: Springer, 1988

    Book  Google Scholar 

  21. Anderson, W. T. et al.: Mode-field diameter measurements for single-mode fibers with non-Gaussian field profiles. In: J. Lightwave Techn. 5 (1987), S. 211–217

    Article  Google Scholar 

  22. Pask, C.: Physical interpretation of Petermann’s strange spot size for single-mode fibers. In: Electron. Lett. 20 (1984),S. 144–145

    Article  Google Scholar 

  23. Samson, P.J.: Far-field techniques for the characterization of single-mode fibers. In: Opt. and Quantum Electron. 18 (1986), S. 5–22

    Article  Google Scholar 

  24. Saravanos, S.; Lowe, R.S.: New approach for determining non-Gaussian mode fields of single-mode fibers from measurements in the far-field. In: Electron. Lett. 21 (1985), S. 898–899

    Article  Google Scholar 

  25. Takada, K.; Noda, J.; Ulrich, R.: Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force. In: Appl. Opt. 24 (1985), S. 4387–4391

    Article  Google Scholar 

  26. Eckhardt, R.; Ulrich, R.: Mode-beating spectroscopy in an few-mode optical guide. In: Appl. Phys. Lett. 63 (1993),S. 284–286

    Article  Google Scholar 

  27. Barnoski, M.K.; Jensen, S.M.: Fiber waveguides; a novel technique for investigating attenuation characteristics. In: Appl. Opt. 15 (1976), S. 2112–2115

    Article  Google Scholar 

  28. Gold, M.P.: Design of long-range single-mode OTDR. In: J. Lightwave Techn. 3 (1985), S. 39–46

    Article  Google Scholar 

  29. Neumann, E.G.: Analysis of the backscattering method for testing optical fiber cables. In: AEO 34 (1980), S. 157–160

    Google Scholar 

  30. Brinkmeyer, E.: Analysis of the backscattering method for single-mode optical fibers. In: J. Opt. Soc. Am. 70 (1980), S. 1010–1012

    Article  Google Scholar 

  31. Marcuse, D.: Loss analysis of single-mode fiber splices. In: Bell Syst. Tech. J. 56 (1977), S. 703–718

    Article  Google Scholar 

  32. Brinkmeyer, E.: Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements. In: Opt. Lett. 6 (1981), S. 575–577

    Article  Google Scholar 

  33. Mollenauer, L.F.; Mamyshev, P.V.; Neubelt, M.J.: Method for facile and accurate measurement of optical fiber dispersion maps. In: Opt. Lett. 21 (1996), S. 1724–1726

    Article  Google Scholar 

  34. Brinkmeyer, E.; Streckert, J.: Reduction of polarization sensitivity in optical domain refiectometers for single-mode fibers. In: J. Lightwave Techn. 4 (1986), S. 513–515

    Article  Google Scholar 

  35. Ghafoori-Shiraz, H.; Okoshi, T.: Fault location in optical fibers using optical frequency domain refiectometry. In: J. Lightwave Techn. 3 (1986), S. 316–322

    Article  Google Scholar 

  36. Nazarathy, M. et al.: Real-time long range complementary correlation optical domain refiectometer. In: J. Lightwave Techn. 7 (1989), S. 24–37

    Article  Google Scholar 

  37. Healey, P.; Malyon, D.J.: OTDR in single mode fibre at 1.5 μm using heterodyne detection. In: Electron. Lett. 18 (1982), S. 862–863

    Article  Google Scholar 

  38. Rybach, J.; Heckmann, S.; Fuchs, M.; Brinkmeyer, E.: Heterodyne-OTDR: The long-wavelength long range solution: In: Proc. Intern. Wire and Cable Symp., 1987, S. 77–84

    Google Scholar 

  39. Costa, B. et al.: Phase shift technique for measurement of chromatic dispersion in optical fibers using LED’s. In: IEEE J. Quantum Electron. 18 (1982), S. 1509–1515

    Article  Google Scholar 

  40. Costa, B.; Puelo, M.; Vezzoni, E.: High dynamic chromatic dispersion measurement in single-mode fibers. In: Proc. of the 10th European Conference on Optical Communication (ECOC), 1984, S. 72–73

    Google Scholar 

  41. Cohen, L.G.: Comparision of single-mode fiber dispersion measurement techniques. In: J. Lightwave Techn. 3 (1985), S. 958–966

    Article  Google Scholar 

  42. Christensen, B. et al.: Simple dispersion measurement technique with high resolution. In: Electron. Lett. 29 (1993), S. 132–133

    Article  Google Scholar 

  43. Thevenaz, L.; Pellaux, J.; von der Weid, J.P.: All-fiber interferometer for chromatic dispersion measurements. In: J. Lightwave Techn. 5 (1988), S. 1–7

    Article  Google Scholar 

  44. Sansonetti, P.: Modal dispersion in single-mode fibers: simple approximation issued from Mode spot size spectral behaviour. In: Electron. Lett. 18 (1982), S. 647–648

    Article  Google Scholar 

  45. Buckland, E.L.; Nishimura, M.: Measurement of wavelength variation of mode radius using far-field pattern method. In: Electron. Lett. 21 (1985), S. 1149–1151

    Article  Google Scholar 

  46. Nakajima, K.; Ohashi, M.; Tateda, M.: Chromatic dispersion distribution measurement along a single-mode optical fiber. In: J. Lightwave Techn. 7 (1998), S. 1095–1101

    Google Scholar 

  47. Heffner, B.L.: Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. In: IEEE Photon. Technol. Lett. 4 (1992), S. 1066–1068

    Article  Google Scholar 

  48. Poole, C.D.; Favin, D.L.: Polarization-mode dispersion measurements based on transmission spectra through a polarizer. In: J. Lightwave Techn. 12 (1994), S. 917–929

    Article  Google Scholar 

  49. Gisin, N.; von der Weid, J.P.; Pellaux, J.P.: Polarization mode dispersion of short and long single-mode fibers. In: J. Lightwave Techn. 9 (1991), S. 821–827

    Article  Google Scholar 

  50. McGoldrick, E. et al.: Optical characterization of arsenic-doped silica-on-silicon waveguides using femtosecond optical time-domain reflectometry techniques. In: Opt. Lett. 15 (1990), S. 1354–1356

    Article  Google Scholar 

  51. Youngquist, R. C.; Carr, S.; Davies, D.E.N.: Optical coherence domain reflectometry: a new optical evaluation technique. In: Opt. Lett. 12 (1987), S. 158–160

    Article  Google Scholar 

  52. Danielson, B.L.; Whittemberg, C.D.: Guided wave reflectometry with micrometer resolution. In: Appl. Opt. 26 (1987), S. 2836–2842

    Article  Google Scholar 

  53. Takada, K. et al.: High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fiber source and erbium doped power amplifier. In: Electron. Lett. 29 (1993), S. 365–367

    Article  Google Scholar 

  54. Kohlhaas, A.; Frömchen, C.; Brinkmeyer, E.: High-resolution OCDR for testing integrated-optical waveguides. In: J. Lightwave Techn. 9 (1991), S. 1493–1502

    Article  Google Scholar 

  55. Sorin, W.V.; Baney, D.M.: Measurement of Rayleigh backscattering at 1.55 μm with 32 μm spatial resolution. In: IEEE Photon. Technol. Lett. 4 (1992), S. 374–376

    Article  Google Scholar 

  56. Glombitza, U.; Brinkmeyer, E.: Coherent frequency-domain reflectometry for characterization of singlemode integrated-optical waveguides. In: J. Lightwave Techn. 8 (1993), S. 1377–1384

    Article  Google Scholar 

  57. Mussi, G. et al.: 152.5 dB sensitivity high dynamic range optical frequency-domain reflectometry. In: Electron. Lett. 32 (1996), S. 926–927

    Article  Google Scholar 

  58. Iizuka, K.; Fujii, S.: A fault locator for integrated optics. In: 8th Optical Fiber Sensor’s Conference, Monterey, 1992

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brinkmeyer, E. (2002). Fasermeßtechnik und Fasercharakterisierung. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics