Skip to main content

Herstellungsverfahren von Lichtwellenleitern

  • Chapter
Optische Kommunikationstechnik

Zusammenfassung

Die Herstellung von Lichtwellenleitern (LWL) aus Glas wurde in den 70er und 80er Jahren erforscht und bis zur Produktionsreife entwickelt. Der wesentliche technologische Durchbruch wurde in dieser Zeit mit der Verbesserung des Dampfabscheide-Prozesses erreicht. Er erlaubt es, hochreines Glas mit großer Präzision herzustellen, sowohl hinsichtlich seiner molekularen Zusammensetzung als auch seiner geometrischen Eigenschaften. Seither wurden weltweit mehr als 200 Millionen Kilometer Lichtwellenleiter aus Glas für die Telekommunikation installiert.

Allgemeine Literatur

[A] Li, Tingye (Hrsg.) (1985), Optical Fiber Communications, Vol 1: Fiber Fabrication, Academic Press, Inc., Orlando. — [B] Murata, H. (1996), Handbook of Optical Fibers and Cables, Marcel Dekker, Inc., New York 1996. — [C] Scherer, G. W., Schultz, P. C. (1983), Glass: Science and Technology, Vol. 1, Glass Forming Systems,Academic Press, Inc., Kap. 2, 49-103. — [D] I Mahlke, G., Gössing, P. (1998), Lichtwellenleiterkabel, Publicis MCD Verlag Erlangen. — [E] Scholte, H. (1988), Glas, Springer-Verlag Berlin. — [F] Miller, S. E. (Hrsg.) (1980), Proc. of IEEE 68, (10), Special Issue On: Optical Fiber Communications, 1173–1360. — [G] Griffioen, W. (1994), Optical Fiber Mechanical Reliability, Dissertation an der Eindhoven University of Technology, Leidschendam, ISBN 90-386-0494-7. — [H] Britannica Online (www.eb.com). “Industrial Glass: Glass formation”. — [I] Neumann, E.-G. (1988), Single-Mode Fibers, Springer-Verlag Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Vandewoestine, R. V. und Morrow, A. J. 1986, Developments in Optical Waveguide Fabrication by the Outside Vapor Deposition Process, J. Lightwave Techn. LT-4, 1020–1025

    Article  Google Scholar 

  2. Keck, D. R, Schultz, P. C. (1973), US Patent 3711262, Jan. 16

    Google Scholar 

  3. Keck, D. R, Schultz, P. C., Zimar, F. (1973), US Patent 3737292, June 5

    Google Scholar 

  4. Keck, D. R, Schultz, P. C., Zimar, F. (1974), US Patent Re 28029, June 4

    Google Scholar 

  5. Schultz, P. C. (1979), Vapor Phase Materials and Processes for Glass Optical Waveguides, in: Fiber Optics: Advances in Research and Development, Hrsg.: B. Bendow, S. Mitra, Plenum Press, N. Y., 3–31

    Chapter  Google Scholar 

  6. Blankenship, M. G., und Deneka, C. W. (1982), The Outside Vapor Deposition Method of Fabricating Optical Waveguide Fibers, IEEE Journ. of Quantum Electronics, Vol. QE-18, No. 10, 1418–1423

    Article  Google Scholar 

  7. Scherer, G. W. (1977), Sintering of Low-Density Glasses, J. Am. Ceram. Society 60, 236–246

    Article  Google Scholar 

  8. Scherer, G. W. (1979), Sintering Inhomogeneous Glasses: Application to Optical Waveguides, J. NonCryst. Solids 34, 239–256

    Article  Google Scholar 

  9. Izawa, T., Kobayashi, S., Sudo, S., und Hanawa, F. (1977), Continuous Fabrication of High Silica Fiber Preform, Int. Conf. Integrated Opt. Opt. Fiber Communi. (IOOC), Tokyo, Japan, 375–378

    Google Scholar 

  10. Niizeki, N. (1981), Recent Progress in Glass Fibers for Optical Communication, J. Appl. Phys. 20 (8), 1347–1360

    Article  Google Scholar 

  11. F. P. Kapron, D. R Keck, und R. D. Maurer (1970), Appl. Phys. Lett. 17, 423–425

    Article  Google Scholar 

  12. Küppers, D., Lydtin, H. (1977), The Preparation of Optical Waveguides by Means of CVD-techniques, 6th Int. Conf. Chem. Vapor Dep. Proc., 461–476

    Google Scholar 

  13. Glodis, P. F., Gridley, C. F., Flegal, W. M., Klein, A. A., Jablonowski, D. P., Kalish, D., Sorby, A., Damsgaard, H., Knudsen, G., Schaper, H., Treber, N., Fabian, H., Schultz, P. C. (1994), The Application of Synthetic Silica Tubing for Large Preform Manufacture using MCVD, Int. Wire and Cable Symp. 1994, S. 105–113

    Google Scholar 

  14. van Bergen, A. H., und Breuls, T. (1992), Large, all synthetic, PCVD Preform Manufacturing, EFOC/LAN Conf. Proc., 220–224

    Google Scholar 

  15. van Bergen, A. H., und Breuls, T. (1998), PCVD: The Ultimate Technology for Production of High Bandwidth Multimode Fibres, Int. Wire and Cable Symp. 1998, 66–71

    Google Scholar 

  16. Carratt, M., Walker, S. (1994), MCVD-Plasma Process for Manufacturing Single-mode Optical Fibers for Terrestrial Applications, Electrical Communication, 1. Q. 1994, 11–14

    Google Scholar 

  17. Kar, G. (1985), Optical Waveguides: Fabrication and Drawing Standards, Photonics Spectra, Dec. 1985

    Google Scholar 

  18. Glaesemann, G. S. und Walter, D.J. (1991), Method for Obtaining Long-length Strength Distributions for Reliability Prediction, Opt. Eng. 30, 746

    Article  Google Scholar 

  19. Glaesemann, G. S., Gulati, S. T. und Helfinstine, J. D. (1988), Effect of Strain and Surface Composition on Young’s Modulus of Optical Fibers, 11. OFC, TUGS, 26

    Google Scholar 

  20. Baker, L. K. und Glaesemann, G. S. (1998), Break Source Analysis: Alternative Mirror Measurement Methods, IWCS Conf. Proc., 933–937

    Google Scholar 

  21. IEC draft, Technical Report on the Power-Law Theory of Optical Fibre Reliability, IEC SC86 A WG 1, to be published

    Google Scholar 

  22. Mitsunaga, Y., et al. (1982), Failure Prediction for Long-length Optical Fiber based on Proof Testing, J. Appl. Phys. 53, 4847

    Article  Google Scholar 

  23. Paul, A., und Glaesemann, G. S. (1997), An Appraisal of Mechanical Reliability Predictions for Optical Fibers based on Break Rates, IWCS Conf. Proc., 896–901

    Google Scholar 

  24. Hanson, T., und Glaesemann, G. S. (1997), Incorporating Multi-region Crack Growth into Mechanical Reliability Predictions for Optical Fibers, J. Mat. Sci. 32, 5305–5311

    Article  Google Scholar 

  25. Garvey, P. T., Hanson, T. A., Estep, M. G., und Glaesemann, G. S. (1997), Mechanical Reliability Predictions: An Attempt at Measuring the Initial Strength of Draw-abraded Optical Fiber using High Stressing Rates, IWCS Proc., 883–888

    Google Scholar 

  26. Volotinen, T., Breuls, T., Evanno, N., Kemeter, K., Kurkjian, C., Regio, P., Semjonov, S., Svensson, T., Glaesemann, G. S. (1998), Mechanical Behavior and B-value of an Abraded Optical Fiber, IWCS Conf. Proc., 881–890.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kemeter, K. (2002). Herstellungsverfahren von Lichtwellenleitern. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics