Advertisement

Vielmodenfasern

  • W. Freude

Zusammenfassung

Für Übertragungsstrecken im 100-m-Nahbereich, bei denen keine hohe Teilnehmerbündelung erreicht wird, oder für die Signalübertragung innerhalb elektronischer Geräte werden die Herstellungs-, Installations- und Wartungskosten besonders wichtig. Daher verwendet man dort preiswerte Quarzglas- oder Kunststoff-Lichtwellenleiter mit so großen Querschnittsabmessungen, daß die notwendigen Verbindungselemente aus Kunststoffteilen hergestellt werden können, Kap. 8. Als Lichtquellen lassen sich großflächige Lumineszenzdioden verwenden. In Fasern dieser Art propagieren zahlreiche Moden, deren Laufzeitunterschiede die Übertragungsbandbreite begrenzen, Kap. 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Abramowitz, M.; Stegun, I.A. (Herausg.): Handbook of mathematical functions, 9. Aufl. New York: Dover Publications 1970Google Scholar
  2. [2]
    Accordi, P.; Basola, c.P.; Bava, G.P.; Chiaretti, G.; Montrosset, I.: Coupling efficiency evaluation of multimode fiber devices using GRIN rod lenses. Appl. Opt. 29(1990) 37–46Google Scholar
  3. [3]
    Adams, M.J..: An introduction to optical waveguides. Chichester: John Wiley & Sons 1981Google Scholar
  4. [4]
    Aida, I.; Boreman, G.D.: On-axis and off-axis propagation of Gaussian beams in graded index media. Appl. Opt. 29 (1990) 2944–2950Google Scholar
  5. [5]
    Arnaud, I.A.: Beam and fiber optics. New York: Academic Press 1976Google Scholar
  6. [6]
    Artiglia, M.; Coppa, G.; Di Vita, P.; Kalinowski, H.J.; Potenza, M.: Bending loss characterization in single-mode fibres. Proc.13th Europ. Conf. Opt. Commun. Helsinki (ECOC 1987) 437–443Google Scholar
  7. [7]
    Barnoski, M.K.: Fiber couplers, in: Semiconductor devices for optical communication (herausgegeben von H. Kressel). Berlin: Springer Verlag 1980Google Scholar
  8. [8]
    Barrell, K.F.; Pask, C.: Optical fibre excitation by lenses. Optica Acta 26 (1979) 91–108Google Scholar
  9. [9]
    Bartelt, O.; Lohmann, A. W.; Freude, W.; Grau, G.K.: Mode analysis of optical fibres using computer-generated matched filters. Electron. Lett. 19 (1983) 247–249. Satzfehlerberichtigung: Electron. Lett. 19 (1983) 560. Weiterer Satzfehler: Nenner von (3), statt 2πa lies 2πa 2 Google Scholar
  10. [10]
    Bennett, M.J.: Dispersion characteristics of monomode optical-fibre systems. Proc. IEE 130 (1983) 309–314Google Scholar
  11. [11]
    Berdagué, S.; Facq, P.: Mode division multiplexing in optical fibers. Appl. Opt. 21 (1982) 1950–1955Google Scholar
  12. [12]
    Bockstaele, R.; Sys, C.; Blodelle, I.; Dhoedt, R; Moerman, I.; Van Daele, P.; Demeester, P.; Baets, R.: Resonant cavity LED’s optimized for coupling to polymer optical fibers. IEEE Photon. Technol. Lett. 11 (1999) 158–160Google Scholar
  13. [13]
    Born, M.; Wolf, E.: Principles of optics, 6. Aufl. Oxford: Pergamon Press 1980Google Scholar
  14. [14]
    Brown, G.D.: Chromatic dispersion measurements in graded-index multimode optical fibers. J. Lightwave Technol. 12 (1994) 1907–1909Google Scholar
  15. [15]
    Chandra, R.; Thyagarajan, K.; Ghatak, A.K.: Mode excitation by tilted and offset Gaussian beams in W-type fibers. Appl. Opt. 17 (1978) 2842–2847Google Scholar
  16. [16]
    Cohen, L.G.; Mammel, W.L.; Lumish, S.: Dispersion and spectra in single-mode fibers. IEEE J. Quantum Electron. QE-18 (1982) 230–233Google Scholar
  17. [17]
    Di Vita, P.; Rossi, U.: Theory of power coupling between multimode fibres. Opt. Quantum Electron. 10 (1978) 107–117Google Scholar
  18. [18]
    Düser, M.; Bayvel, P.: 2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique. Electron. Lett. 36 (2000) 57–58Google Scholar
  19. [19]
    Ebeling, K.J.: Integrierte Optoelektronik, 2. Aufl. Berlin: Springer Verlag 1992Google Scholar
  20. [20]
    Van Etten, W.: The ergodicity of laser light in connection with optical fibre transmission. Opt. & Quantum Electron. 13 (1981) 519–521Google Scholar
  21. [21]
    Van Etten, W.; Lambo, W.; Simons, P.: Loss in multimode fiber connections with a gap. Appl. Optics 24 (1985) 970–976Google Scholar
  22. [22]
    Facq, P.; Fournet, P.; Arnaud, I.: Observation of tubular modes in multimode graded-index optical fibres. Electron. Lett. 16 (1980) 648–650Google Scholar
  23. [23]
    Facq, P.; De Fornel, F.; Jean, F.: Tunable single-mode excitation in multimode fibres. Electron. Lett. 20 (1984) 613–614Google Scholar
  24. [24]
    Felsen, L.R: Evanescent waves. J. Opt. Soc. Am. 66 (1976) 751–760Google Scholar
  25. [25]
    Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. Berlin: VEB Deutscher Verlag der Wissenschaften 1971zbMATHGoogle Scholar
  26. [26]
    Freude, W.: Messung der Faserdispersion mit Lichtimpulsen geringer spektraler Breite. Diskussionssitzung der Informationstechnischen Gesellschaft ITG (früher NTG) „Meßtechnik an optischen Nachrichtenübertragungssystemen “. Ottilienberg-Karlsruhe: Vortrag 1978Google Scholar
  27. [27]
    Freude, W.: Far-field profiling of multimode optical fibres. Electron. Leu. 17 (1981) 385–387Google Scholar
  28. [28]
    Freude, W.: Impulse dispersion in a multimode optical fiber from its far-field radiation pattern. Appl. Opt. 23 (1984) 4209–4211Google Scholar
  29. [29]
    Freude, W.: Analyse von Lichtwellenleitern aus dem Nah-und Fernfeld. Universität Karlsruhe: Habilitationsschrift 1986Google Scholar
  30. [30]
    Freude, W.; Fritzsche, C.; Grau, G.; Lu, Shan-da: Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides. J. Lightwave Technol. LT-4 (1986) 64–72. Satzfehlerberichtigung: LT-4 (1986) 694. Weitere Satzfehler: In (1), statt NennerGoogle Scholar
  31. [31]
    Freude, W.; Grau, G.K.; Liebler, W.; Wilppermann, B: Computer-generated holograms with error compensation. Appl. Opt. 27 (1988) 138–146Google Scholar
  32. [32]
    Gambling, W.A.; Payne, D.N.; Matsumura, H.: Mode excitation in a multimode optical-fibre waveguide. Electron. Lett. 9 (1973) 412–414. Nachdruck in: Electron. Lett. 25 (1989) S13-S15Google Scholar
  33. [33]
    Garito, A.F.; Wang, J.; Gao, R.: Effects of random perturbations in plastic optical fibers. Science 281 (1998) 962–967Google Scholar
  34. [34]
    Carrett, I.; Todd, C.J.: Review. Components and systems for long-wavelength monomode fibre transmission. Opt. & Quantum Electron. 14 (1982) 95–143Google Scholar
  35. [35]
    Geckeler, S.: Gruppenlaufzeitdifferenzen in Lichtwellenleitern mit Gradientenprofil. Frequenz 32 (1978) 68–75Google Scholar
  36. [36]
    Geckeler, S.: Dispersion in optical fibers: new aspects. Appl. Opt. 17 (1978) 1023–1029Google Scholar
  37. [37]
    Geckeler, S.: Compensation of profile dispersion in graded-index optical fibres. Electron. Lett. 15 (1979) 682–683Google Scholar
  38. [38]
    Geckeler, S.: Pulse broadening in optical fibers with mode mixing. Appl. Opt. 18 (1979) 2192–2198Google Scholar
  39. [39]
    Ghatak, A.: Optics, 2. Aufl. Delhi: Tata McGraw-Hill 1992Google Scholar
  40. [40]
    Ghatak, A.: Introduction to quantum mechanics. Delhi: Macmillan India 1996Google Scholar
  41. [41]
    Gloge, D.; Marcatili, E.A.J.: Impulse response of fibers with ring-shaped parabolic index distribution. BellSyst. Techn.J. 52 (1973) 1161–1168Google Scholar
  42. [42]
    Gloge, D.; Marcatili, E.A.J.: Multimode theory of graded-core fibers. Bell Syst. Techn. J. 52 (1973) 1563–1578Google Scholar
  43. [43]
    Gloge, D.: Propagation effects in optical fibers. IEEE Trans. Microw. Theory Tech. MTT-23 (1975) 106–120Google Scholar
  44. [44]
    Gloge, D.; Ogawa, K.; Cohen, L. G.: Baseband characteristics of long-wavelength L.E.D. systems. Electron. Lett. 16 (1980) 366–367Google Scholar
  45. [45]
    Goldberg, S.: Die Wahrscheinlichkeit, 2. Aufl. Brauschweig: Vieweg-Verlag 1969Google Scholar
  46. [46]
    Goldstein, H.: Classical mechanics, 2. Aufl. Reading: Addison-Wesley 1980zbMATHGoogle Scholar
  47. [47]
    Golub, M.A.; Karpeev, S. V.; Krivoshlykov, S.G.; Prokhorov, A.M.; Sisakyan, I.N.; Soifer, V.A.: Experimental studies of spatial filters which separate transverse modes of optical fields. Kvantovaya Elektron. Moscow 10 (1983) 1700–1701Google Scholar
  48. [48]
    Golub, M.A.; Karpeev, S. v.; Krivoshlykov, S.G.; Prokhorov, A.M.; Sisakyan, I.N.; Soifer, V.A.: An experimental study into the power distribution over transverse modes in a fiber-optic wave-guide with the use of spatial filters. Kvantovaya Elektron. Moscow 11 (1984) 1869–1871Google Scholar
  49. [49]
    Gottwald, K.: Das Verbinden von Glasfasern, in: Optische Telekommunikationssysteme, Band 1: Physik und Technik (Herausg. W. Haist). Gelsenkirchen-Buer: Damm-Verlag 1989Google Scholar
  50. [50]
    Grau, G.K.: Quantenelektronik. Braunschweig: Vieweg 1978Google Scholar
  51. [51]
    Grau, G.; Leminger, O.G.; Sauter, E.G.: Mode excitation in parabolic index fibres by Gaussian beams. Arch. Elektron. & Ubertragungstech. 34 (1980) 259–265Google Scholar
  52. [52]
    Grau, G.K.; Leminger, O.G.: Relations between near-field and far-field intensities, radiance, and modal power distribution of multimode graded-index fibers. Appl. Opt. 20 (1981) 457–459Google Scholar
  53. [53]
    Grau, G.; Freude, W.: Optische Nachrichtentechnik, 3. Aufl. Berlin: Springer Verlag 1991. Seit 1997 vergriffen. Berichtigter Nachdruck iiber W.E E-mail: W.Freude@etec.uni-karlsruhe.deGoogle Scholar
  54. [54]
    Haas, Z.; Santoro, M.A.: A mode-filtering scheme for improvement of the bandwith-distance product in multimode fiber systems. J. Lightwave Technol. 11 (1993) 1125–1131Google Scholar
  55. [55]
    Hackert, M.J.: Explanation of launch condition choice for GRIN multimode fiber attenuation and bandwidth measurements. J. Lightwave Technol. 10 (1992) 125–129Google Scholar
  56. [56]
    Hartog, A.H.; Adams, M.J.: On the accuracy of the WKB approximation in optical dielectric waveguides. Opt. & Quantum Electron. 9 (1977) 223–232Google Scholar
  57. [57]
    Hillerich, B.: Efficiency and alignment tolerances of LED to single-mode fibre coupling-theory and experiment. Opt. & Quantum Electron. 19 (1987) 209–222Google Scholar
  58. [58]
    Hornung, S.; Doran, N.J.; Allan, R.: Monomode fiber microbending loss measurements and their interpretation. Opt. &Quantum Electron. 14 (1982) 359–362Google Scholar
  59. [59]
    Imai, M.; Hara, E.H.: Excitation of the fundamental and lower-order modes of optical fiber waveguides with Gaussian beams. 1: Tilted beams. Appl. Opt. 13 (1974) 1893–1899Google Scholar
  60. [60]
    Imai, M.; Hara, E.H.: Excitation of the fundamental and lower-order modes of optical fiber waveguides with Gaussian beams. 2: Offset beams. Appl. Opt. 14 (1975) 169–173Google Scholar
  61. [61]
    International Union of Pure and Applied Physics: Symbole, Einheiten und Nomenklatur in der Physik. Dt.Ausg. von Symbols, Units and Nomenclature in Physics. Document U.I.P.20 (1978). Weinheim: Physik Verlag 1981Google Scholar
  62. [62]
    Jean, F.; Facq, P.; De Fornel, F.: Coupling efficiency in selective excitation of tubular modes into gradedindex multimode fibres. Electron. Lett. 22 (1986) 11–13Google Scholar
  63. [63]
    Kapany, N.S.; Burke, J.J..; Sawatari, T.: Fiber optics. XIII. Mode detection and discrimination in optical waveguides and resonators. J. Opt. Soc. Am. 60 (1970) 1350–1358Google Scholar
  64. [64]
    Karstensen, H.; Drögemiiller, K.: Loss analysis of laser diode to single-mode fiber couplers with glass spheres or silicon plano-convex lenses. J. Lightwave Technol. 8 (1990) 739–747Google Scholar
  65. [65]
    Kitayama, K.-L; Ohashi, M.; Seikai, S.: Mode conversion at splices in multimode graded-index fibers. IEEE J. Quantum Electron. QE-16 (1980) 971–978Google Scholar
  66. [66]
    Kitayama, K.-I.; Seikai, S.; Uchida, N.: Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber. IEEE J. Quantum Electron. QE-16 (1980) 356–362Google Scholar
  67. [67]
    Krivoshlykov, S.G.; Sauter, E.G.: Mode coupling between two waveguides with offset, tilt and gap using quantum theoretical methods. J. Phys. A: Math. Gen. 20 (1987) 3805–3823MathSciNetGoogle Scholar
  68. [68]
    Kutz, J.N.; Cox, J.A.; Smith, D.: Mode mixing and power diffusion in multimode fibers. J. Lightwave Technol. 16 (1998) 1195–1202Google Scholar
  69. [69]
    Leminger, O.G.; Grau, G.K.: Near-field intensity and modal power distribution in multimode gradedindex fibres. Electron. Lett. 16 (1980) 678–679Google Scholar
  70. [70]
    Linares, J.; Gomez-Reino, C: Optical propagator in a graded-index medium with a hyperbolic secant refractive-index profile. Appl. Opt. 33 (1994) 3427–3431Google Scholar
  71. [7l]
    Loke, M.-Y.; McMullin, J.N.: Simulation and measurement of radiation loss at multimode fiber macrobends. J. Lightwave Technol. 8 (1990) 1250–1256Google Scholar
  72. [72]
    Marcatili, E.A.J.: Modal dispersion in optical fibers with arbitrary numerical aperture and profile dispersion. Bell Syst. Techn. J. 56 (1977) 49–63Google Scholar
  73. [73]
    Marchand, E. W,; Nishihara, H. (Herausg.): Feature papers on graded-index optics. Appl. Opt. 29 (1990) 3991–4110Google Scholar
  74. [74]
    Marcuse, D.: Light transmission optics. New York: Van Nostrand Reinhold 1972Google Scholar
  75. [75]
    Marcuse, D.: Theory of dielectric optical waveguides. New York: Academic Press 1974Google Scholar
  76. [76]
    Marcuse, D.: Coupled power equations for lossy fibers. Appl. Opt. 17 (1978) 3232–3237Google Scholar
  77. [77]
    Marcuse, D.; Presby, H.M.: Effects of profile deformations on fiber bandwidth. Appl. Opt. 18 (1979) 3758–3763. Erratum: Marcuse, D.: Calculation of bandwidth from index profiles of optical fibers: correction. AppL. Opt. 19 (1980) 188–189Google Scholar
  78. [78]
    Marcuse, D.: Pulse distortion in single-mode fibers. Appl. Opt. 19 (1980) 1653–1660Google Scholar
  79. [79]
    Mattheus, A.: Faserverbindungen, in: Optische Telekommunikationssysteme (Herausg. H. Hultzsch). Gelsenkirchen: Damm-Verlag 1996Google Scholar
  80. [81]
    McMullin, I.N.; Freeman, I.E.: On the shape of bent fiber. J. Lightwave Technol. 8 (1990) 1091–1096Google Scholar
  81. [81]
    Miller, C.M.; Mettler, S.C: A loss model for parabolic-profile fiber splices. Bell Syst. Techn. J. 57 (1978) 3167–3180Google Scholar
  82. [82]
    Miyagi, M.; Kawakami, S.; Ohashi, M.; Nishida, S.: Measurement of mode conversion coefficients and mode dependent losses in a multimode fiber. Appl. Opt. 17 (1978) 3238–3244Google Scholar
  83. [83]
    Morse, P.M.; Feshbach, H.: Methods of theoretical physics, Band 1 and 2. New York: McGraw-Hill 1953Google Scholar
  84. [84]
    Nagano, K.; Kawakami, S.: Mode conversion coefficients in graded-index fibers with various fibercoating schemes: measurements. Appl. Opt. 21 (1982) 542–546Google Scholar
  85. [85]
    Naqwi, A.; Durst, F.: Focusing of diode laser beams: a simple mathematical model. Appl. Opt. 29 (1990) 1780–1785Google Scholar
  86. [86]
    Neumann, E.-G.: Single-mode fibers. Berlin: Springer Verlag 1988Google Scholar
  87. [87]
    Ohashi, M.; Kitayama, K.-I.; Seikai, S.: Mode coupling effects in a graded-index fiber cable. Appl. Opt. 20 (1981) 2433–2438Google Scholar
  88. [88]
    Olshansky, R.: Mode coupling effects in graded-index optical fibers. Appl. Opt. 14 (1975) 935–945Google Scholar
  89. [89]
    Olshansky, R.: Multipleα index profiles. Appl. Opt. 18 (1979) 683–689Google Scholar
  90. [90]
    Olshansky, R.: Propagation in glass optical waveguides. Rev. Mod. Phys. 51 (1979) 341–367Google Scholar
  91. [91]
    Papen, G.; Murphy, G.M.: Modal noise in multimode fibers under restricted launch conditions. J. Lightwave Technol. 17 (1999) 817–822Google Scholar
  92. [92]
    Park, E.-H.; Kim, M.-J.; Kwon, Y.-S.: Microlens for efficient coupling between LED and optical fiber. IEEE Photon. Technol. Lett. 11 (1999) 439–441Google Scholar
  93. [93]
    Petermann, K.: Fundamental mode microbending loss in graded-index and W fibres. Opt. & Quantum Electron. 9 (1977) 167–175Google Scholar
  94. [94]
    Petermann, K.: Uncertainties of the leaky mode correction for near-square-law optical fibres. Electron. Lett. 13 (1977) 513–514Google Scholar
  95. [95]
    Petermann, K.: Modes in active waveguides with inhomogeneous gain profiles as applied to injection lasers. Arch. Elektron. & Übertragungstech. 32 (1978) 313–320Google Scholar
  96. [96]
    Petermann, K.: A generalized condition for the delay equalization in multimode optical fibres. Proc. 4th Europ. Conf. Opt. Commun. Genova (ECOC 1978) 281–287Google Scholar
  97. [97]
    Petermann, K.: Nonlinear distortions and noise in optical communication systems due to fiber connectors. IEEE J. Quantum Electron. QE-16 (1980) 761–770Google Scholar
  98. [98]
    Petermann, K.; Kuhne, R.: Upper and lower limits for the microbending loss in arbitrary single-mode fibers. J. Lightwave Technol. LT-4 (1986) 2–7Google Scholar
  99. [99]
    Petermann, K.: Laser diode modulation and noise. Dordrecht: Kluwer Academics Publishers 1988Google Scholar
  100. [100]
    Raddatz, L.; White, I.H.: Overcoming the modal bandwidth limitation of multimode fiber by using passband modulation. IEEE Photon. Technol. Lett. 11 (1999) 266–268Google Scholar
  101. [101]
    Rodhe, P.M.: A matrix transfer function for an optical fibre based on coupled power theory. Opt. & Quantum Electron. 13 (1981) 175–178. Erratum: 13 (1981) 352Google Scholar
  102. [102]
    Safaadi-Jazi, A.; Suppanitchakij, V.: A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems. IEEE J. Quantum Electron. 33 (1997) 2159–2166Google Scholar
  103. [103]
    Saijonmaa, J.; Sharma, A.B.; Halme, S.J.: Optimal excitation of multimode graded-index fibres in D.M.D. and D.M.A. measurements. Electron. Lett. 16 (1980) 690–692Google Scholar
  104. [104]
    Saijonmaa, J.; Sharma, A.B.; Halme, S.J.: Selective excitation of parabolic index optical fibers by Gaussian beams. Appl. Opt. 19 (1980) 2442–2452Google Scholar
  105. [105]
    Sauter, E.G.; Grau, G.K.: Excitation of steady-state power distribution in parabolic-index fibres by Gaussian TEM100-beam. Electron. Lett. 16 (1980) 748–749Google Scholar
  106. [106]
    Snyder, A. W.: Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide. IEEE Trans. Microwave Theory Tech. MTT-17 (1969) 1130–1138Google Scholar
  107. [107]
    Snyder, A. W.; Love, J.D.: Optical waveguide theory. London: Chapman and Hall 1983Google Scholar
  108. [108]
    Streifer, W.; Kurtz, C.K.: Scalar analysis of radially inhomogeneous guiding media. J. Opt. Soc. Am. 57 (1967) 779–786Google Scholar
  109. [109]
    Uematsu, Y.; Ozeki, T.: Efficient power coupling between a MH LED and a multimode fiber with a tapered launcher. Techn. Dig. Internat. Conf. Integrated Optics and Opt. Commun. Tokyo (1977) 371Google Scholar
  110. [110]
    Unger, H.-G.: Planar optical waveguides and fibres. Oxford: Clarendon Press 1977Google Scholar
  111. [111]
    Unger, H.-G.: Optische Nachrichtentechnik, Teil I und II, 2. Aufl. Heidelberg: Dr. Alfred Hüthig 1990 und 1992Google Scholar
  112. [112]
    Webster, M.; Raddatz, L.; White, I.H.; Cunningham, D.G.: A statistical analysis of conditioned launch for Gigabit Ethernet links using multimode fiber. J. Lightwave Technol. 17 (1999) 1532–1541Google Scholar
  113. [113]
    Weierholt, A.: Modal dispersion of optical fibres with a composite a-profile graded-index core. Electron. Lett. 15 (1979) 733–734Google Scholar
  114. [114]
    White, W.R.; Düser, M.; Reed, W.A.; Onishi, T.: Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber. IEEE Photon. Technol. Lett. 11 (1999) 997–999Google Scholar
  115. [115]
    Yang, S.; Hjelme, D.R.; Januar, I.P.; Vayshenker, I.P.; Mickelson, A.R.: Transfer function approach to the experimental determination of mode transfer matrices. Appl. Opt. 29 (1990) 3166–3175Google Scholar
  116. [116]
    Yevick, D.; Stoltz, B.: Near-field distributions in selectively excited elliptical optical fibres. Electron. Lett. 16 (1980) 210–211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • W. Freude

There are no affiliations available

Personalised recommendations