Advertisement

Einmodenfasern

  • H. Renner
  • R. Ulrich
  • J.-P. Elbers
  • Ch. Glingener

Zusammenfassung

Einmodenfasern unterscheiden sich von Vielmodenfasern darin, daß sie lediglich den Grundmodus führen. Da somit die Impulsverbreiterung durch Modendispersion (Kap. 5) entfällt, sind mit ihnen wesentlich längere Übertragungstrecken bzw. höhere Übertragungsraten erreichbar. In modernen optischen Kommunikationssystemen kommen im wesentlichen nur noch Einmodenfasern zur Anwendung. In diesem Kapitel werden die Übertragungseigenschaften von Einmodenfasern beschrieben. Besondere Schwerpunkte sind die Modenausbreitung, chromatische Dispersion und Impulsübertragung, Verluste, Grenzfrequenzen, Doppelbrechung und Polarisationsmodendispersion sowie nichtlineare Effekte in optischen Fasern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    D. Marcuse. Light Transmission Optics. Van Nostrand, New York, 1982Google Scholar
  2. [2]
    A. W. Snyder and J.D. Love. Optical Waveguide Theory. Chapman and Hall, London, 1983Google Scholar
  3. [3]
    E. Snitzer. Cylindrical Dielectric waveguide modes. J. Opt. Soc. Am., 51: 491–498, 1961MathSciNetGoogle Scholar
  4. [4]
    A. Hondros and P. Debye. Electromagnetic waves in dielectric waveguides. Ann. Phys., 32:465–476, 1910zbMATHGoogle Scholar
  5. [5]
    C. Yeh. Elliptical dielectric waveguides. J. Appl. Phys., 33:3235–3242, 1962zbMATHGoogle Scholar
  6. [6]
    A.K. Ghatak. Leaky modes in optical waveguides. Opt. Quantum. Electron., 17: 311–321, 1985Google Scholar
  7. [7]
    M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions. Dover, New York, 1965Google Scholar
  8. [8]
    X.H. Zheng, W.M. Henry and A. W. Snyder. Polarization characteristics of the fundamental mode of optical fibers. J. Lightwave Technol., 6: 1300–1305, 1988Google Scholar
  9. [9]
    A.W. Snyder and W.R. Young. Modes of optical waveguides. J. Opt. Soc. Am., 68: 297–309, 1978.Google Scholar
  10. [10]
    H.D. Rudolph and E.G. Neumann. Approximations for the eigenvalues of the fundamental mode of a step index glass fiber waveguide. Nachrichtentechn. Z., 29: 328–329, 1976Google Scholar
  11. [11]
    D. Gloge. Weakly guiding fibers. Appl. Opt., 10: 2252–2258, 1971Google Scholar
  12. [12]
    G. Grau and W. Freude. Optische Nachrichtentechnik. Springer, 1991Google Scholar
  13. [13]
    H.G. Unger. Regellose Störungen in Wellenleitern. AEÜ Archiv Elektron. Obertragungstechn., 15: 393–401, 1961Google Scholar
  14. [14]
    H. G. Unger. Planar optical waveguides and fibers. Clarendon Press, Oxford, 1977Google Scholar
  15. [15]
    F.H. Lange. Korrelationselektronik. Verlag Technik, Berlin, 1962zbMATHGoogle Scholar
  16. [16]
    D. Marcuse. Theory of dielectric optical waveguides. Academic Press, New York, 1974Google Scholar
  17. [17]
    I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik. Harry Deutsch, Zürich, 1976Google Scholar
  18. [18]
    A. W. Snyder. Understanding monomode optical fibers. Proc. IEEE, 69: 6–13, 1981Google Scholar
  19. [19]
    D. Marcuse. Loss analysis of single-mode fiber splices. Bell Syst. Techn. J., 56: 703–718, 1977Google Scholar
  20. [20]
    P.M. Morse and H. Feshbach. Methods of theoretical physics. McGraw-Hill, New York, 1953zbMATHGoogle Scholar
  21. [21]
    A. W. Snyder and R.A. Sammut. Fundamental (HE11) modes of graded optical fibers. J. Opt. Soc. Am., 69: 1663–1671, 1979Google Scholar
  22. [22]
    Y. Liu und G. Berkey. Single-mode dispersion-shifted fibers with effective area over 100 μm2. In Proc. 24th European Conference on Optical Communication ECOC’ 98, pages 41–42, Madrid, 1998Google Scholar
  23. [23]
    Definition and test methods for the relevant parameters of single-mode fibres. ITU-T Recommendation G.650 (04/9/). Technical report, International Telecommunications UnionGoogle Scholar
  24. [24]
    W.A. Gambling, D.N. Payne, and H. Matsumura. Routine characterization of single-mode fibres. Electron. Lett., pages 546–547, 1976Google Scholar
  25. [25]
    S. Nemoto and T. Makimoto. Analysis of splice loss in single-mode fibres using a Gaussian field approximation. Opt. Quant. Electron., 11: 447–457, 1979Google Scholar
  26. [26]
    V. Shah, W.C Young and L. Curtis. Large fluctuations in transmitted power at fiber joints with polished endfaces. In Proc. Optical Fiber Communication Conference, p 56, Reno, 1987. paper TuF4Google Scholar
  27. [27]
    A. Yariv. Optical Electronics in Modern Communications. Oxford University Press, New York, 1997Google Scholar
  28. [28]
    R. Ulrich and S. Rashleigh. Beam-to-fiber coupling with low standing wave ratio. Appl. Opt., 19: 2453–2456, 1980Google Scholar
  29. [29]
    G.P. Agrawal. Fiber-Optic Communication Systems. Wiley & Sons, New York, 1997Google Scholar
  30. [30]
    D. Marcuse. Pulse distortion in single-mode fibers. Appl. Opt. 19: 1653–1660, 1980Google Scholar
  31. [31]
    D. Marcuse. Pulse distortion in single-mode fibers: Part 2. Appl. Opt., 20: 2969–2974, 1981Google Scholar
  32. [32]
    D. Marcuse. Pulse distortion in single-mode fibers. 3: chirped pulses. Appl. Opt., 20: 3573–3579, 1981Google Scholar
  33. [33]
    G.P. Agrawl and M.I. Potasek. Effect of frequency chirping on the performane of optical communication systems. Opt. Lett., 11: 318–320, 1986Google Scholar
  34. [34]
    I.H. Maltison. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55: 1205–1209, 1965Google Scholar
  35. [35]
    J. W. Fleming. Material and mode dispersion in Ge02 · B203 · Si02 glasses. J. Amer. Ceramic Soc., 59:503–507, 1976Google Scholar
  36. [36]
    J. W. Fleming. Material dispersion in lightguide glasss. Electron. Lett., 14: 326–328, 1978Google Scholar
  37. [37]
    J. W. Fleming and D.L. Wood. Refractive-index dispersion and related properties in flourine doped silcia. Appl. Opt., 22: 3102–3104, 1983Google Scholar
  38. [38]
    J. W. Fleming and D.L. Wood. Dispersion in GeO2 · SiO2 glasses. Appl. Opt., 23: 4486–4493, 1984Google Scholar
  39. [39]
    C. R. Hammond and S.R. Norman. Silical based binary glass systems-refactive-index behaviour and composition in optical fibers. Opt. Quant. Electron., 9: 399–409, 1977Google Scholar
  40. [40]
    C. R. Hammond. Silica-based binary glass systems: wavelength dispersive properties and composition in optical fibers. Opt. Quant. Electron., 10: 163–170, 1978Google Scholar
  41. [41]
    S. Mitachi. Dispersion measurement on flouride glasses and fibers. J. Lightwave Technol., 7: 1256–1263, 1989Google Scholar
  42. [42]
    F.M.E. Siaden, D.N. Payne and M.J. Adams. Profile measurements for optical fibers over the wavelength range 350 nm to 1900 nm. In Proc 4th European Conference on Optical Communication ECOC’ 78, pages 48–57, Genua, 1978Google Scholar
  43. [43]
    M. Monerie. Propagation in doubly clad single-mode fibers. IEEE Trans. Microwave Theory Techn., 30:381–388, 1982Google Scholar
  44. [44]
    P.L. Francois. Zero dispersion in attenuation optimized doubly clad fibers. J. Lightwave TechnoL., 1:26–37, 1983Google Scholar
  45. [45]
    M. Marukami, H. Maeda and T. Imai. Long-haul 16 x 10 WDM transmission experiment using higherorder dispersion management technique. In Proc. 24th European Conference on Optical Communication ECOC’98, pages 313–314, Madrid, 1998Google Scholar
  46. [46]
    A.M. Vengsarkar and W.A. Reed. Dispersion-compensating single-mode fibers: efficient designs for first-and second-order compensation. Opt. Lett., 11:924–926, 1993Google Scholar
  47. [47]
    A. Bertaina, S. Bigo, C. Francia, S. Gauchard, J.P. Hamaide, and M. W. Chbat. Experimental investigation of dispersion management for an 8 x 10 Gbit/s WDM transmission over non-zero dispersion shifted fiber. In Proc. Optical Fiber Communication Conference, pages 77–79, San Diego, 1999. paper FD6Google Scholar
  48. [48]
    D. Marcuse. Low-dispersion single-mode fiber transmission-The question of practical versus theoretical maximum transmission bandwidth. IEEE J. Quantum Electron., 17:869–878, 1981Google Scholar
  49. [49]
    M. Miyagi and S. Nishida. Pulse spreading in a single-mode fiber due to third-order dispersion. Appl. Opt., 18:678–682, 1979Google Scholar
  50. [50]
    M.J. Bennet. Dispersion characteristics of monomode optical-fibre systems. IEE Proceedings, 13:309–314, 1983. Part H: OptoelectronicsGoogle Scholar
  51. [51]
    L.G. Cohen, D. Marcuse and W.L. Mammel. Radiating leaky-mode losses in single-mode lightguides with depressed-index cladding. IEEE J. Quantum Electron., 18:1467–1472, 1982Google Scholar
  52. [52]
    Characteristics of single-mode optical fibre cable. ITU-T Recommendation G.652 (04/97). Technical report, International Telecommunications Union.Google Scholar
  53. [53]
    Characteristics of dispersion-shifted single-mode optical fibre. ITU-T Recommendation G.653 (04/97). Technical report, International Telecommunications UnionGoogle Scholar
  54. [54]
    K. Okamoto and T. Okoshi. Analysis of wave propagation in optical fibers having core with α-power refractive-index distribution and uniform cladding. IEEE Trans. Microwave Theory Tech, 24:416–421, 1976Google Scholar
  55. [55]
    P.L. Francois. Propagation mechanisms in quadruple-clad fibres: mode coupling, dispersion and pure bend loss. Electron. Ledd., 19: 885–886, 1983Google Scholar
  56. [56]
    P.L. Francois, P. Alard, J.P. Bayon and B. Rose. Multimode nature of quadruple-clad fibres. Electron. Lett., 20:37–38,1984Google Scholar
  57. [57]
    H. Schwierz and E.G. Neumann. Bend losses of higher-order modes in dispersion-flattened multipleclad fibres. Electron. Lett., 23: 1296–1298, 1987Google Scholar
  58. [58]
    R. W. Tkach, R.M. Deroier, P. Forghieri, A.H. Gnauck, A.M. Vengsarkar, D. W. Peckham, J.L. Zyskind, J. W. Sulhoff and A.R. Chraplyvy. Transmission of eight 20-Gb/s channels over 232 km of conventional single-mode fiber. IEEE Photon. Technol. Lett., 7:1369–1371, 1995Google Scholar
  59. [59]
    A.J. Antos and D.K. Smith. Design and characterization of dispersion compensating fiber based on the LP01 mode. J. Lightwave Technol., pages 1739–1945, 1994Google Scholar
  60. [60]
    Y. Akasaka, R. Sugizaki, A. Umeda, I. Oshima and K. Kokura. Dispersion-compensating fiber with W-shaped index profile. In Proc. Optical Fiber Communication Conference, pages 2611–262, San Diego, 1995. paper ThH3Google Scholar
  61. [61]
    L. Gruner-Nielsen, B. Edvold, D. Magnussen, D. Peckham, A. Vengsarkar, D. Jacobsen, T. Veng, C.C. Larsen and H. Damsgaard. Large volume manufacturing of dispersion-compensating fibers. In Proc. Optical Fiber Communication Conference, pages 24–25, San Jose, 1998Google Scholar
  62. [62]
    D. W. Hawtoff, G.E. Berkey and A.J. Antos. High figure of merit dispersion compensating fiber. In Proc. Optical Fiber Communication Conference, San Jose, 1996. paper PD6Google Scholar
  63. [63]
    M. Onishi, H. Ishikawa, M. Shigematsu, H. Kanamori and M. Nishimura. Dispersion-compensating fiber with high figure of merit and its application to an analog transmission system. In Proc. Optical Fiber Communication Conference, pages 224–225, San Jose, 1994. paper ThK1Google Scholar
  64. [64]
    C.D. Poole. Optical fiber-based dispersion-compensating techniques. In Proc. Optical Fiber Communication Conference, pages 202–203, San Jose, 1993. paper ThJ1Google Scholar
  65. [65]
    A.M. Vengsarkar, A.E. Miller, M. Haner, A.H. Gnauck, W.A. Reed and K.L. Walter. Fundamental-mode dispersion-compensating fibers: design considerations and experiment. In Proc. Optical Fiber Communication Conference, pages 225–227, San Jose, 1994. paper ThK2Google Scholar
  66. [66]
    M. Onishi, C. Fukuda, H. Kanamori and M. Nishimura. High NA double-cladding dispersion compensating fiber for WDM systems. In Proc. 20th European Conference on Optical Communication ECOC’94, pages 681–684, Florenz, 1994Google Scholar
  67. [67]
    M. Onishi, H. Kanamori, T. Kato and M. Nishimura. Optimization of dispersion-compensating fibers considering self-phase modulation suppression. In Proc. Optical Fiber Communication Conference, pages 200–201, San Jose, 1996. paper ThA2Google Scholar
  68. [68]
    R. Sugizaki, Y. Akasaka, Y. Emori, S. Namaki and Y. Suzuki. Polarization insensitive broadband transparent DCF module with Faraday rotator mirror, Raman-amplified by single polarization diodelaser pumping. In Proc. Optical Fiber Communication Conference, pages 279–281, San Diego, 1999. paper TuS5Google Scholar
  69. [69]
    L. Gruner-Nielsen, S.N. Knudsen, T. Veng, B. Edvold and C.C. Larsen. Design and manufacture of dispersion compensating fibers for simultaneous compensation of dispersion and dispersion slope. In Proc. Optical Fiber Communication Conference, pages 232–234, San Diego, 1999. paper WM13Google Scholar
  70. [70]
    A.J. Antos, D. W. Hall and D.K. Smith. Dispersion-compensating fiber for upgrading existing 1310-nm-optimized systems to 1550-nm operation. In Proc. Optical Fiber Communication Conference, pages 204–205, San Jose, 1993. paper ThJ3Google Scholar
  71. [71]
    Y. Akasaka, R. Sugizaki, A. Umeda and T. Kamiya. High-dispersion-compensation ability and low non-linearity of W-shaped DCE. In Proc. Optical Fiber Communication Conference, pages 201–202, San Jose, 1996. paper ThA3Google Scholar
  72. [72]
    V.L. da Silva, Y. Liu, A.J. Antos, G.E. Berkey and A.A. Newhouse. Comparison of nonlinear coefficient of optical fibers at 1550 nm. In Proc. Optical Fiber Communication Conference, pages 202–203, San Jose, 1996. paper ThA4Google Scholar
  73. [73]
    P. Forghieri, R. W. Tkach, A.R. Chraplyvy and A.M. Vengsarkar. Dispersion compensating fibers: is there merit in the figure of merit? In Proc. Optical Fiber Communication Conference, pages 255–257, San Jose, 1996. paper ThM5Google Scholar
  74. [74]
    C.D. Poole, J.M. Wiesenfeldt and D.J. DiGiovanni. Elliptical-core dual-mode fiber dispersion compensator. IEEE Photon. Technol. Lett., 5: 194–197, 1993Google Scholar
  75. [75]
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni and A.M. Vengsarkar. Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightwave Technol., 12: 1746–1758, 1994Google Scholar
  76. [76]
    Characteristics of non-zero dispersion-shifted single-mode optical fibre cable. ITU-T Recommendation G.655 (04/97). Technical report, International Telecommunications UnionGoogle Scholar
  77. [77]
    Y. Yokoyama, T. Kato, M. Hirano, M. Onishi, E. Sasaoka, Y. Makio and M. Nishimura. Practically feasible dispersion flattened fibers produced by VAD technique. In Proc. 24th European Conference on Optical Communication ECOC’98, pages 131–132, Madrid, 1998Google Scholar
  78. [78]
    Y. Liu, W.N. Mattingly, D.K. Smith, C.E. Lacy, J.A. Cline and E.M. DeLiso. Design and fabrication of locally dispersion-flattened large effective area fibers. In Proc. 24th European Conference on Optical Communication ECOC’98, pages 37–38, Madrid, 1998Google Scholar
  79. [79]
    A.R. Chraplyvy. Limitations on lightwave communications imposed by optical-fiber nonlinearities. J. Lightwave Technol., 8: 1648–1557, 1990Google Scholar
  80. [80]
    G.P. Agrawal. Nonlinear Fiber Optics. Academic Press, San Diego, 1995Google Scholar
  81. [81]
    A.J. Lucero, S. Tsuda, V.L. da Silva and D.L. Butler. 320 Gbit/s WDM transmission over 450 km of LEAF optical fiber. In Proc. Optical Fiber Communication Conference, pages 215–217, San Diego, 1999. paper Th02Google Scholar
  82. [82]
    M. Kato, K. Kurokawa and Y. Miyajima. A new design for dispersion-shifted fiber with an effective core area larger than 100 μm2 and good bending characteristics. In Proc. Optical Fiber Communication Conference, pages 301–302, San Jose, 1998. paper ThK1Google Scholar
  83. [83]
    Y. Liu, A.J. Antos and M.A. Newhouse. Large effective area dispersion-shifted fibers with dual-ring index profiles. In Proc. Optical Fiber Communication Conference, pages 165–166, San Jose, 1996,paper WK15Google Scholar
  84. [84]
    Y. Akasaka and Y. Suzuki. Enlargement of effective core area on dispersion-flattened fiber and its low non-linearity. In Proc. Optical Fiber Communication Conference, pages 302–303, San Jose, 1998. paper ThK2Google Scholar
  85. [85]
    S. Kawakami and S. Nishida. Perturbation theory of a doubly clad optical fiber with low-index inner cladding. IEEE J. Quantum Electron., 11:131–138, 1975Google Scholar
  86. [86]
    W. Magnus, P. Oberhettinger and R.P. Somi. Formulas and Theorems for the Special Functions of Matheamtical Physics. Springer Verlag, New York, 1966Google Scholar
  87. [87]
    P.J. Samson. Usage-based comparison of ESI-techniques. J. Lightwave Technol., pages 165–175, 1985Google Scholar
  88. [88]
    M. Heiblum and J.H. Harris. Analysis of curved optical waveguides by conformal transformation. IEEE J. Qantum Electron., QE-11: 75–83, 1975Google Scholar
  89. [89]
    D. Marcuse. Influence of curvature on the losses of doubly clad fibers. Appl. Opt., 23:4208–4213, 1982Google Scholar
  90. [90]
    J.H. Hannay. Mode coupling in an elastically deformed optical fibre. Electron. Lett., 12: 173–174, 1976Google Scholar
  91. [91]
    K. Nagano, S. Kawakami and S. Nishida. Changes of the refractive index in an optical fiber due to external forces. Appl. Opt., 17: 2080–2085, 1978Google Scholar
  92. [92]
    M. Hirano, T. Kato, T. Ishihara, M. Nakamura, Y. Yokoyama, M. Onishi, Y. Makio and M. Nishimura. Novel ring-core-dispersion-shifted fiber with depressed cladding and its four-wave mixing efficiency. In Proc. 25th European Conference om Optical Communications ECOC’ 99, Vol. II, pages 278–279, Nizza, 1999Google Scholar
  93. [93]
    J. Sakai and T. Kimura. Bending loss of propagation modes in arbitrary-index profile optical fibers. Appl. Opt., 22: 1499–1506, 1978Google Scholar
  94. [94]
    D. Marcuse. Curvature loss formula for optical fibers. J. Opt. Soc. Am., 66: 216–220, 1976Google Scholar
  95. [95]
    C. Vassallo. Scalar-field theory and 2-D ray theory for bent single-mode weakly guiding optical fibers. J. Lightwave Technol., 3: 416–423, 1985Google Scholar
  96. [96]
    D. Marcuse. Bend loss of slab and fiber modes computed with diffraction theory. IEEE J. Quantum Electron., 29: 2957–2961, 1993.Google Scholar
  97. [97]
    C.D. Poole and S.C Wang. Bend-induced loss for the higher-order spatial mode in a dual-mode fiber. Opt. Lett., 20: 1712–1714, 1993Google Scholar
  98. [98]
    A.J. Harris and P.P. Castle. Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius. J. Lightwave Technol., pages 34–40, 1987Google Scholar
  99. [99]
    C.I. Swift and A.J. Harris. Bend loss in neodymium-doped fiber lasers. J. Lightwave Technol., 16: 428–432, 1998Google Scholar
  100. [100]
    H. Renner. Bending losses of coated single-mode fibers: a simple approach. J. Lightwave Technol., 10: 544–551, 1992Google Scholar
  101. [101]
    G.L. Tangonan, H.P. Hsu, V. Jones and J. Pikulski. Bend loss measurements for small mode field diameter fibres. Electron. Lett., 25: 142–143, 1989Google Scholar
  102. [102]
    S.B. Andreasen. New bending loss formual explaining bends on loss curve. Electron. Lett., 23, 1987. 1138–1139Google Scholar
  103. [103]
    P. Geittner, H. Lydtin, P. Weling, and D.U. Wiechert. Bend loss characteristics of single-mode fibres. In Proc. 13th European Conference on Optical Communication ECOC’ 87, pages 97–108, Helsinki, 1987Google Scholar
  104. [104]
    K.J. Blow, N.J. Doran and S. Hornung. Power spectrum of microbends in monomode optical fibres. Electron. Lett., 18: 448–450, 1982Google Scholar
  105. [105]
    M. Artiglia, C. Coppa, P. Di Vita, H.J. Kalinowski and M. Potenza. Bending loss characterization in singlemoe fibres. In Proc.13th European Conference on Optical Communication ECOC’ 87, pages 437–443, Helsinki, 1987Google Scholar
  106. [106]
    K. Petermann. Theory of microbending loss in monomode fibres with arbitrary refractive-index profiles. AEO Arch. Elektr. Obertr., 30: 337–342, 1976.Google Scholar
  107. [107]
    K. Petermann. Fundamental mode microbending loss in graded-index and W fibres. Opt. Quantum Electron., 9: 167–175, 1977Google Scholar
  108. [108]
    K. Petermann and R. Kuhne. Upper and lower limits for microbending loss in arbitrary single-mode fibers. J. Lightwave Technol., 4: 2–7, 1986Google Scholar
  109. [109]
    M. Artiglia, C. Coppa and P. Di Vita. Simple and accurate microbending loss evaluation in generic single-mode fibres. In Proc. 12th European Conference on Optical Communication ECOC’86, pages 341–344, Barcelona, 1986Google Scholar
  110. [110]
    M. Artiglia, C. Coppa and P. Di Vita. New analysis of microbending losses in single-mode fibres. Electron. Lett., 22: 623–625, 1986Google Scholar
  111. [111]
    S. Hornung, N.J. Doran and R. Allen. Monomode fiber microbending loss measurements and their interpretation. Opt. Quantum Electron., 14: 359–362, 1982Google Scholar
  112. [112]
    J.M. Arnold and R. Allen. Microbending loss in optical waveguides. Proc. IEE; 130: 331–339, 1983. Part H: OptoelectronicsGoogle Scholar
  113. [113]
    C. Unger and W. Stöcklein. Investigation of the microbending sensitivity of fibers. J. Lightwave Technol., 12:591–596, 1994Google Scholar
  114. [114]
    H. Renner. Anomalous wavelength dependence of microbending losses in single-mode fibres. Int. J. Optoelectron., 6: 293–299, 1991Google Scholar
  115. [115]
    D. Marcuse. Field deformation and loss caused by curvature of optical fibers. J. Opt. Soc. Am., 66: 311–320, 1976Google Scholar
  116. [116]
    Z. W. Bao, M. Miyagi and S. Kawakami. Measurement of field deformations caused by bends in a single-mode optical fiber. Appl. Opt., 22: 3678–3680, 1983Google Scholar
  117. [117]
    W.A. Gambling, H. Matsumura and C.M. Ragdale. Field deformation in a curved single-mode fibre. Electron. Lett., 14: 130–132, 1978Google Scholar
  118. [118]
    K. Ciemiecki Nelson, D.L. Brownlow, L.G. Cohen, F.V. DiMarcello, R.G. Huff, J.T. Krause, P.L. Lemaire, W.A. Reed, D.S. Shenk, E.A. Sigety, J.R. Simpson, A. Tomita and K.L. Walker. The fabrication and performance of long lengths of silica core fibers. J. Lightwave Technol., LT-3: 935–941, 1985Google Scholar
  119. [119]
    J.B. MacChesney, D. W. Johnson, P.L. Lemaire, L.G. Cohen and E.M. Rabinovich. Depressed index substrate tubes to eliminate leaky-mode losses in single-mode fibers. J. Lightwave Technol., LT-3: 942–945, 1985Google Scholar
  120. [120]
    H. Renner. Leaky-mode loss in coated depressed-cladding fibers. IEEE Photon. Technol. Letters, 3:31–32, 1991Google Scholar
  121. [121]
    A.S. Sudbø and E. Nesset. Attenuation coefficient and effective cutoff wavelength of the LP11 modes in curved optical fibers. J. Lightwave Technol., 7: 785–790, 1989Google Scholar
  122. [122]
    V. Shah and L. Curtis. Mode coupling effects of the cutoff wavelength characteristics of dispersion-shifted and dispersion-unshifted single-mode fibers. J. Lightwave Technol., 7: 1181–1187, 1989Google Scholar
  123. [123]
    S. Heckmann. Modal noise in single-mode fibres operated slightly above cutoff. Electron. Lett., 17: 499–500, 1981Google Scholar
  124. [124]
    K. Oyamada and T. Okoshi. High-accuracy numerical data on propagation characteristics of a-power graded-core fibers. IEEE Trans. Microwave Theory Tech., 28: 1113–1118, 1980MathSciNetGoogle Scholar
  125. [125]
    H. Renner. Cutoff frequencies in optical fibres with central refractive-index depression. Opt. Quant. Electron., 29: 591–604, 1997Google Scholar
  126. [126]
    J.D. Love. Explicit formulae for cutoff values on fibers and couplers. Opt. Quant. Electron., 17: 139–147, 1985Google Scholar
  127. [127]
    S. Kawakami and S. Nishida. Characteristics of doubly-clad optical fibers with low-index inner cladding. IEEE J. Quantum Electron., 10: 879–887, 1974Google Scholar
  128. [128]
    R.A Sammut. Range of monomode operation of W-fibers. Opt. Quantum Electron., 10: 509–514, 1978Google Scholar
  129. [129]
    M. Monerie. Fundamental-mode cutoff in depressed inner cladding fibres. Electron. Lett., 18: 642–644, 1982Google Scholar
  130. [130]
    P. Sansonetti, F. Alard, C. Vassalo, P. Kammerer, P.L. Francois, M. Monerie, J.M. Gabriagues and P. Dupont. Evidence of fundamental mode cutoff in depressed inner cladding single-mode fibres. Electron. Lett., 18:989–991, 1982Google Scholar
  131. [131]
    C.D. Hussey and C. Pasko Theory of the profile-moments description of single-mode fibres. Proc. IEE, 129: 123–134,1982. Part H: OptoelectronicsGoogle Scholar
  132. [132]
    Recommendation G.652: Characteristics of a single-mode fiber cable. Technical report, CCITT, 1984. CCITT-Dokument COM.XV 46-EGoogle Scholar
  133. [133]
    W. T. Anderson and T.A. Lenahan. Length dependence of the effective cutoff wavelength in single-mode fibers. J. Lightwave Technol., 2: 238–242, 1984Google Scholar
  134. [134]
    D.L. Franzen. Determining the cutoff wavelength of single-mode fibers: a interlaboratory comparision. J. Lightwave Technol., 3: 128–134, 1985Google Scholar
  135. [135]
    L. Wei, R.S. Lowe and S. Saravanos. Practical upper limits to cutoff wavelength for different single-mode fiber designs. J. Lightwave Technol., 5: 1147–1155, 1987Google Scholar
  136. [136]
    H. Renner. Simple coefficients for the length dependence of the effective cutoff wavelength in optical single-mode fibres. Int. J. Optoelectron., 7: 417–424, 1992Google Scholar
  137. [137]
    E.G. Neumann. Single-mode fibers. Springer, Berlin, 1988Google Scholar
  138. [138]
    K. Kitayama, M. Ohashi and Y. Ishida. Length dependence of the effective cutoff wavelength in single-mode fibers. J. Lightwave Technol., 2: 629–634, 1984Google Scholar
  139. [139]
    G. Cancellieri and A. Orfei. Asymptotic effective cutoff condition in single-mode optical fibers. J. Lightwave Technol., 5: 1147–1155, 1987Google Scholar
  140. [140]
    P.D. Lazay. Effect of curvature on the cutoff wavelength of single-mode fibers. In Techn. Dig. Symp. Opt. Fiber Measur., pages 93–95, 1980. NBS SP-597Google Scholar
  141. [141]
    H. T. Nijnuis and K.A.H. van Leeuwen. Length and curvature dependence of effective cutoff wavelength and LP 11 mode attenuation in single-mode fibers. In Techn. Dig. Symp. Opt. Fiber Measur., pages 11–14, 1984. NBS SP-683Google Scholar
  142. [142]
    V. Shah. Effective cutoff wavelength for single-mode fibers: the combined effect of curvature and index profile. In Techn. Dig. Symp. Opt. Fiber Measur., pages 7–10, 1984. NBS SP-683Google Scholar
  143. [143]
    v. Shah. Curvature dependence of the effective cutoff wavelength in single-mode fibers. J. Lightwave Technol., 5: 35–43, 1987Google Scholar
  144. [144]
    L.P. Kaminow. Polarization in optical fibers. IEEE J. Quantum Electron., QE-17: 15–22, 1981Google Scholar
  145. [145]
    S.C Rashleigh. Origins and control of polarization effects in single-mode fibers. IEEE J. Lightwave Technol., LT-1: 312–331, 1983Google Scholar
  146. [146]
    K. Simonyi. Theoretische Elektrotechnik. VEB Deutscher Verlag der Wissenschaften, Berlin, 1980Google Scholar
  147. [147]
    H.-G. Unger. Optische Nachrichtentechnik. Elitera-Verlag, Berlin, 1976Google Scholar
  148. [148]
    A. W. Snyder and J.D. Love. Optical Waveguide Theory. Chapman and Hall, London, 1983Google Scholar
  149. [149]
    M. Born and E. Wolf. Principles of Optics. Pergamon Press, Oxford, 1965.Google Scholar
  150. [150]
    E. Hecht. Optik. Addison-Wesley, Bonn, 1989Google Scholar
  151. [151]
    G.N. Ramachandra and S. Ramaseshan. Encyclopedia of physics, volume XXV /1, chapter Crystal optics, Part A: Polarization of light, pages 1–54. Springer, Berlin, 1961Google Scholar
  152. [152]
    L.D. Landau and E.M. Lifshitz. Electrodynamics of continuous media. Pergamon Press, Oxford, 1960zbMATHGoogle Scholar
  153. [153]
    K. Lange and K.-H. Löcherer. Meinke-Gundlach, Taschenbuch der Hochfrequenztechnik. Springer, Berlin, 1992Google Scholar
  154. [154]
    J.D. Kraus. Electromagnetics. McGraw-Hill, New York, 1992Google Scholar
  155. [155]
    H.J. Carlin. Network Theory without circuit elements. Proc. IEEE, 55: 482–497, 1967Google Scholar
  156. [156]
    R. Ulrich and A. Simon. Polarization optics of twisted single-mode fibers. Appl. Opt., 18: 2241–2251, 1979.Google Scholar
  157. [157]
    LN. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik, S. 214–218. B.G. Teubner, Leipzig, 1959Google Scholar
  158. [158]
    P.D.M. Haldane. Path dependence of the geometric rotation of polarization in optical fibers. Opt. Lett., 11: 730–732, 1986Google Scholar
  159. [159]
    R. Ulrich, S.C Rashleigh and W. Eickhoff. Bending-induced birefringence in single-mode fibers. Opt. Lett., 5: 273–275, 1980Google Scholar
  160. [160]
    S.R. Norman, P.N. Payne and M.J. Adams. Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence. Electron. Lett., 15: 309–310, 1979Google Scholar
  161. [161]
    R.B. Dyott. Elliptical fiber waveguides. ARTEC House, Norwood 1995Google Scholar
  162. [162]
    J.P. Nye. Physical Properties of Crystals. Clarendon Press, Oxford, 1960Google Scholar
  163. [163]
    P. Grummert and K.A. Reckling. Mechanik. Friedrich Vieweg & Sohn, Braunschweig, 1994Google Scholar
  164. [164]
    H. Bach and N. Neuroth. The properties of optical glass, Springer, Berlin, 1995Google Scholar
  165. [165]
    D.E. Gray (Ed.). American Institute of Physics Handbook. McGraw-Hill, New York, 1963Google Scholar
  166. [166]
    Y. Namihira, M. Kudo and Y. Mushiako. Effect of mechanical stress on the transmission characteristics of optical fiber. Trans. IECE (Japan), 60-C: 391–398, 1977; Korrektur: Trans. IECE, Japan, (1981) 64-C, S.596Google Scholar
  167. [167]
    P. Maystre and A. Bertholds. Zero-birefringence optical-fiber holger. Opt. Lett., 12: 126–128, 1987Google Scholar
  168. [168]
    S.C.R. Rashleigh and R. Ulrich. High birefringence in tension-coiled single-mode fibers. Opt. Lett., 5:354–356, 1980Google Scholar
  169. [169]
    R. Ulrich and S.C.R. Rashleigh. Polarization coupling in kinked single-mode fibers. IEEE J. Quantum Electron., QE-18: 767–771, 1982Google Scholar
  170. [170]
    J. Noda, T. Hosaka, Y. Sasaki and R. Ulrich. Dispersion of Verdet constant in stress-birefringent fibre. Electron. Lett., 20: 906–907, 1984Google Scholar
  171. [171]
    R. Ulrich and A. Simon. Evolution of polarization along a single-mode fiber. Appl. Phys. Lett., 31: 517–519, 1977Google Scholar
  172. [172]
    N. Chinone and R. Ulrich. Elasto-optic polarization measurement in optical fiber. Opt. Lett., 6: 16–18, 1981Google Scholar
  173. [173]
    W. Eickhoff. In-line fiber-optic polarizer. Electron. Lett., 22: 762–763, 1980Google Scholar
  174. [174]
    R.B. Dyott, J. Bello and V.H. Handerek. Indium-coated D-shaped-fiber polarizer. Opt. Lett., 12: 287–289, 1984Google Scholar
  175. [175]
    R. Feth and C.H. Chang. Metal clad fiber-optic cutoff polarizer. Opt. Lett., 11: 386–388, 1986Google Scholar
  176. [176]
    M.P. Varnham, D.N. Payne, A.J. Barlow and E.J. Tarbox. Coiled-birefringet-fiber polarizers. Opt. Lett., 9:306–308,1984Google Scholar
  177. [177]
    M.P. Varnham, D.N. Payne, R.D. Birch and E.J. Tarbox. Single-polarisation operation of highly birefringent bow-tie fibres. Electron. Lett., 19: 246–247, 1983Google Scholar
  178. [178]
    C.D. Poole and R.H. Wagner. Phenomenological approach to polarisation dispersion in long singlemode fibres. Electron. Lett., 16: 1029–1030,1986Google Scholar
  179. [179]
    C.D. Poole and C.R. Giles. Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fibers. Opt. Lett., 13: 155–157, 1988Google Scholar
  180. [180]
    C.D. Poole. Statistical treatment of polarization dispersion in single-mode fibers. Opt. Lett., 13: 687–689, 1988Google Scholar
  181. [181]
    F. Curti, B. Daino, G. deMarchis and F. Matera. Statistical treatment of the evolution of the principal states of polarization in single-mode fibers. IEEE J. Lightwave Technol., LT-8: 1162–1166, 1990Google Scholar
  182. [182]
    C.D. Poole, J.H. Winters and J.A. Nagel. Dynamical equation for polarization dispersion. Opt. Lett., 16: 372–374, 1991Google Scholar
  183. [183]
    G.J. Foschini and C.D. Poole. Statistical theory of polarization dispersion in single-mode fibers. IEEE J. Lightwave Technol., LT-9: 1439–1456, 1991Google Scholar
  184. [184]
    G.J. Foschini, R.M. Jopson, L.E. Nelson and H. Kogelnik. The statistics of PMD-induced chromatic fiber dispersion. IEEE J. Lightwave Technol., LT-17: 1560–1565, 1999Google Scholar
  185. [185]
    F. Bruyére. Impact of first-and second-order PMD in optical digital transmission systems. Opt. Fiber Technol., 2: 269–280, 1996Google Scholar
  186. [186]
    E. Iannone, F. Matera, A. Galtarossa, G. Gianello and G. Schiano. Effect of polarization dispersion on the performance of IM-DD communication systems. IEEE Photon Technol. Lett., 5: 1247–1249, 1993Google Scholar
  187. [187]
    F. Heismann. Polarization mode dispersion: fundamentals and impact on optical communication systems. In ECOC’ 98, pages 20–24, Madrid, Spanien, September 1998Google Scholar
  188. [188]
    C.D. Poole, R. W. Tkach, A.R. Chraplyvy and D.A. Fishman. Fading in Lightwave Systems due to Polarization-Mode Dispersion. IEEE Photon Technol. Lett., 3: 68–70, 1991Google Scholar
  189. [189]
    L.E. Nelson, R.M. Jopson and H. Kogelnik. Polarization mode dispersion penalties associated with rotation of principal states of polarization in optical fiber. In Conf. on Optical Communication: OFC 2000, Baltimore, März 2000. paper ThB2Google Scholar
  190. [190]
    N.J. Gisin, J.P. Von der Weid and J.P. Pellaux. Polarization mode dispersion of short and long singlemode fibers. IEEE J. Lightwave Technol., LT-9: 821–827, 1991Google Scholar
  191. [191]
    S.J. Bahsoun, J.A. Nagel and C.D. Poole. Measurement of temporal variations in fiber transfer characteristics to 20 GHz due to polarization mode dispersion. In Proceedings of the European Conference on Optical Communications: ECOC’ 90, Amsterdam, 1990. Postdeadline paperGoogle Scholar
  192. [192]
    L.B. Heffner. Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. IEEE Photon Technol. Lett., 4: 1066–1069, 1992Google Scholar
  193. [193]
    B.L. Heffner. Accurate, automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis. IEEE Photon Technol. Lett., 5: 814–817, 1993Google Scholar
  194. [194]
    C.D. Poole and D.L. Favin. Polarization-mode dispersion measurements based on transmission through a polarizer. IEEE J. Lightwave Technol., LT-12: 917–929, 1994Google Scholar
  195. [195]
    D. Penninckx and S. Lanne. Influence of the statistics on polarization-mode dispersion compensator performance. In Conf. on Optical Communication: OFC 2000, Baltimore, März 2000. paper WL6Google Scholar
  196. [196]
    T. Ono, S. Yamazaki, H. Shimizu and K. Emura. Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems. IEEE J. Lightwave Technol., LT-12: 891–898, 1994Google Scholar
  197. [197]
    T. Takahashi, T. Imai and M. Aiki. Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems. Electron. Lett., 30: 348–349, 1994Google Scholar
  198. [198]
    B. W. Hakki. Polarization mode dispersion compensation by phase diversity detection. IEEE Photon Technol. Lett., 9: 121–123, 1997Google Scholar
  199. [199]
    J.H. Winters and M.A. Santoro. Experimental equalization of polarization dispersion. IEEE Photon. Techn. Lett., 2: 591–593, 1990Google Scholar
  200. [200]
    H. Büllow, R. Ballentin, W. Baumert, G. Maisoneuve, G. Thielecke and T. Wehren. Adaptive PMD mitigation at 10 GB/s using an electronic SiGe equaliser IC. In Proceedings of the European Conference on Optical Communication ECOC’99, Nizza, Frankreich, September 1999Google Scholar
  201. [201]
    F. Heismann, D.A. Fishman and D.L. Wilson. Automatic compensation of first-order polarization mode dispersion in a 10 Gb/s Transmission system. In Proceedings of the European Conference on Optical Communications: ECOC’98, pages 529–530, Madrid, Spanien, September 1998Google Scholar
  202. [202]
    H. Rosenfeldt, R. Ulrich, U. Feiste, R. Ludwig, H.G. Weber and A. Ehrhardt. First order PMD-compensation in a 10 Gb/s NRZ field experiment using a polarimetric feedback signal. In Proceedings of the European Conference on Optical Communications: ECOC’ 99, Nizza, Frankreich, September 1999Google Scholar
  203. [203]
    N. Kikuchi and S. Sasaki. Polarization-mode dispersion (PMD) detection sensitivity of degree of polarization method for PMD compensation. In Proceedings of the European Conference on Optical Communications: ECOC’ 99, Nizza, Frankreich, September 1999Google Scholar
  204. [204]
    H. Bülow. Operation of a digital optical transmission system with minimal degradation due to polarization mode dispersion. Electron. Lett., 31: 214–215, 1995Google Scholar
  205. [205]
    C. Francia, F.B. Penninckx and M. W Chbat. Time impulse response of second order PMD in single-mode fibers. In Proceedings of the European Conference on Optical Communications: ECOC’98, pages 143–144, Madrid, Spanien, September 1998Google Scholar
  206. [206]
    A. Mecozzi, M. Shtaif, M. Tur and J. Nagel. A simple compensator for high-order polarization mode dispersion effects. In Proc. Conference on Optical Communication: OFC 2000, Baltimore, März 2000. paperWL2Google Scholar
  207. [207]
    J. Vobian and K. Mörl. Aspects of PMD measurements. J. Opt. Communications, 18: 82–92, 1997Google Scholar
  208. [208]
    G. Lenz and C.K. Madsen. General optical all-pass filter structures for dispersion control in WDM-systems. IEEE J. Lightwave Technol., LT-17: 1248–1254, 1999Google Scholar
  209. [209]
    R. Noe, D. Sandel, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, W. Weyrauch and W. Haase. Polarization mode dispersion compensation at 10,20, and 40 Gb/s with various optical equalizers. IEEE J. Lightwave Technol., LT-17: 1602–1615, 1999Google Scholar
  210. [210]
    T. Chiba, Y. Ohtera and S. Kawakami. Polarization stabilizer using liquid crystal rotatable waveplates. IEEE J. Lightwave Technol., LT-17: 885–890, 1999Google Scholar
  211. [211]
    D. Sandel, S. Hinz, M. Yoshida-Dierolf, J. Graser, R. Noe, L. Beresnev, T. Weyrauch and W. Haase. 10 Gb/s PMD compensation using deformed-helical ferroelectric liquid crystals. In Proceedings of the European Conference on Optical Communications: ECOC’98, pages 555–556, Madrid, Spanien, September 1998Google Scholar
  212. [212]
    J.N. Damask. A programmable polarization-mode dispersion emulator for systematic testing in 10 GB/s PMD compensators. In Proc. Conference on Optical communication: OFC 2000, Baltimore, März 2000. paper ThB3Google Scholar
  213. [213]
    H. Shimizu, S. Yamazaki, T. Ono and K. Emura. Highly practical fiber squeezer polarization controller. IEEE J. Lightwave Technol., LT-9: 1217–1224, 1991Google Scholar
  214. [214]
    M. Johnson. In-line fiber-optical polarisation transformer. Appl. Opt., 18: 1288–1289, 1979Google Scholar
  215. [215]
    L. Dupont, J.L. de Bougrenet de la Tocnaye, M. Le Gall and D. Penninckx. Principle of compact polarisation mode dispersion controller using homeotropic electro clinic liquid crystal confined single mode fibre devices. Opt. Communic., 176: 113–119, 2000Google Scholar
  216. [216]
    L.Y. Lin, E.L. Goldstein, N.J. Frigo and R.W. Tkac. Micromachined polarization-state controller and its application to polarization-mode dispersion compensation. In Proc. Conference on Optical Communication: OFC 2000, Baltimore, März 2000. paper ThQ3Google Scholar
  217. [217]
    B.A. Ferguson and C.L. Chen. Polarization controller based on a fiber-recirculating delay line. Appl. Opt., 36: 7597–7604, 1992Google Scholar
  218. [218]
    H. Rosenfeldt, Ch. Knothe and E. Brinkmeyer. Component for optical PMD-compensation in a WDM environment. In Proc. Europ. Conf. on Optical Communication: ECOC 2000, volume 1, pages 135–136, München, 2000Google Scholar
  219. [219]
    I.T. Lima, R. Khosravani, P. Ebrahimi, E. Ibragimov, A.E. Willner and C.R. Menyuk. Polarization mode dispersion emulator. In Proc. Conference on Optical Communication: OFC 2000, Baltimore, März 2000. paper ThB4Google Scholar
  220. [220]
    R.G. Waarts, A.A. Friesem, E. Lichtman, H.H. Yaffe and R.-P. Braun. Nonlinear Effects in Coherent Multichannel Transmission Through Optical Fibers, Proc. Ieee, Vol. 78, Nr. 8, S. 1344–1368, 1990Google Scholar
  221. [221]
    A.R. Chraplyvy. Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities, J. Lightwave Tech., Vol. 9, Nr. 10, S. 1548–1557, 1990Google Scholar
  222. [222]
    G.P. Agrawal. Nonlinear Fiber Optics. 2. Auflage, Academic Press, 1992Google Scholar
  223. [223]
    R.W. Boyd. Nonlinear Optics, Academic Press, 1992Google Scholar
  224. [224]
    E. Iannone, F. Matera, A. Mecozzi and M. Settembre. Nonlinear Optical Communication Networks. Wiley, New York, 1998Google Scholar
  225. [225]
    F. Forghieri, R.W Tkach, A.R. Chraplyvy, „Fiber Nonlinearities and Their Impact on Transmission Systems. In Optical Fiber Telecommunications, Vol. IIIa, verlegt von I.P. Kaminow and T.L. Koch, Academic Press, S. 196–263, 1997Google Scholar
  226. [226]
    R. W Hellwarth. Third-Order Optical Susceptibilities of Liquids and Solids. Prog. Quant. Electr., Vol. 5, S. 1–68, 1997Google Scholar
  227. [227]
    C. Headley and G.P. Agrawal. Noise Characteristics and Statistics of Picosecond Stokes Pulses Generated in Optical Fibers Through Stimulated Raman Scattering. IEEE J. Quantum Elec., Vol. 31, Nr. 11, S. 2058–2067, 1977Google Scholar
  228. [228]
    R. Helwarth, J. Cherlow and T.-T. Yang. Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Phys. Rev. B, Vol. 11, Nr.12, 1975Google Scholar
  229. [229]
    K.J. Blow and D. Wood. Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers. IEEE J. Quantum Electr., Vol. 11, Nr. 1, S. 2665–2673, 1989Google Scholar
  230. [230]
    E.A. Golovchenko and A.N. Pilipetskii. Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers. J. Opt. Soc. Am. B, Vol. 11, Nr. 1, S. 92–101, 1994Google Scholar
  231. [231]
    Y. Kodama, A. Maruta and A. Hasegawa. Long distance communications with solitons. Quantum Opt., Vol. 6, S. 463–516, 1994Google Scholar
  232. [232]
    R.H. Stolen, J.P. Gordon, W.J. Tomlinson and H.A. Haus. Raman response function of silica-core fibers“, J. Opt. Soc. Am. B, Vol. 6, Nr. 6, S. 1159–1165, 1989Google Scholar
  233. [233]
    J. Wang and K. Petermann. Small Signal Analysis for Dispersive Optical Fiber Communication Systems. J. Lightwave Tech., Vol. 10, Nr. 1, S. 96–100, 1992Google Scholar
  234. [234]
    D. Marcuse, C.R. Menyuk and P.K.A. Wai. Application of the Manakov-PMD Equation to Studies of Signal Propagation in Optical Fibers with Randomly Varying Birefringence. J. of Lightwave Techl, Vol. 15, Nr. 9, S. 1735–1746, 1997Google Scholar
  235. [235]
    K.O. Hill, D.C. Johnson, B.S. Kawasaki and R.I. MacDonald. Cw three-wave mixing in single-mode optical fibers. J. Appl. Phys., Vol. 49, Nr. 10, S. 5098–5106, 1978Google Scholar
  236. [236]
    R.H. Stolen and J.E. Bjorkholm. Parametric Aplification and Frequency Conversion in Optical Fibers. IEEE J. Quantum Electronics, Vol. 18, Nr. 7, S. 1062, 1982Google Scholar
  237. [237]
    A.V.T. Cartaxo. Impact of Modulation Frequency on Cross-Phase Modulation Effect in Intensity Modulation-Direct Detection WDM Systems. IEEE Photon. Technol. Lett., Vol. 10, Nr. 9, S. 1268–1270, 1998Google Scholar
  238. [238]
    A.V.T. Cartaxo. Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators. J. Lightwave Technol., to be publishedGoogle Scholar
  239. [239]
    R. Hui, Y. Wang, K. Demarest and C. Allen. Frequency Response of Cross-Phase Modulation in Multispan WDM Optical Fiber Systems. IEEE Photon. Technol. Lett., Vol. 10, Nr. 9, S. 1271–1273, 1998Google Scholar
  240. [240]
    R.H. Stolen, C. Lee and R.K. Jain. Development of the stimulated Raman spectrum in single-mode silica fibers. J. Opt. Soc. Am. B, Vol. 1, Nr. 4, S. 652–657, 1984Google Scholar
  241. [241]
    A. Carena, V. Curri, R. Gaudino, P. Poggiolini and S. Benedetto. A Time-Domain Optical Transmission System Simulation Package Accounting For Nonlinear And Polarization Effects in Fiber. IEEE J. Select. Areas, Vol. 15, Nr. 4, S. 751–761, 1997Google Scholar
  242. [242]
    D. Marcuse, A.R. Chraplyvy and R. W. Tkach. Effect of Fiber-Nonlinearity on Long-Distance Transmission. J. Lightwave Technol., Vol. 9, Nr. 1, S. 121–128, 1991Google Scholar
  243. [243]
    K. V. Peddanarappagari and M. Brandt-Pearce. Volterra-Series Transfer Function of Single Mode Fibers. J. Lightwave Technol., Vol. 15, Nr. 12, S. 2232–2241, 1997Google Scholar
  244. [244]
    D. Cotter. Supression of Stimulated Brioullin Scattering During Transmission of High-Power Narrowband Laser Light in Monomode Fiber. IEEE Electron. Lett., Vol. 18, S. 638, 1982Google Scholar
  245. [245]
    S. Kuwano, K. Yonenaga and K. Iwashita. 10 Gbit/s repaeterless transmission experiment of optical duobinary modulated signal. IEEE Electron. Lett., Vol. 31, S. 1359, 1995Google Scholar
  246. [246]
    V.E. Zakharov and A.B. Shabat. Exact Theory of Two-Dimensional Self-Focussing and One-Dimensional Self-Modulation of Waves in Nonlinear Media. Sov. Phys. JETP34, S. 62–69, 1972Google Scholar
  247. [247]
    L.F. Mollenauer, S.G. Evangelides and H.A. Haus. Long-Distance Soliton Propagation usig lumoed amplifiers and Dispersion-Shifted fiber. J. Lightwave Technol., Vol. 9, Nr. 2, S. 194–196, 1991Google Scholar
  248. [248]
    L.F. Mollenhauer, J.P. Gordon and S. G. Evangelides. The Sliding-Frequency Guiding Filter: An Improved Form of Soliton Jitter Control. Opt. Lett., Vol. 17, Nr. 22, S. 1575–1577, 1992Google Scholar
  249. [249]
    N.A. Olson and J.P. van der Ziel. Characteristics of a semiconductor laser pumped Brillouin Amplifier with electronically controlled Bandwidth. J. Lichtwave Technol., Vol. 5, S. 147, 1987Google Scholar
  250. [250]
    M. Schubert und B. Wilhelmi. Nonlinear Optics and Quantum Electronics. Wiley, New York, 1986Google Scholar
  251. [251]
    G.P. Agrawal. Fiber optic Communication Systems. Wiley, New York, 1997Google Scholar
  252. [252]
    C. Glingener. Modellierung und Simulation faseroptischer Netze mit Wellenlägenmultiplex. WFT Verlag, 1998Google Scholar
  253. [253]
    M. Kuckartz. Nichtlineare Effekte in optischen Einmoden-Fasern und ihre Anwendung zur Erzeugung ultra-kurzer Lichtpulse mit einem Nd: Yag Laser. Dissertation an der Universität der Bundeswehr Hamburg, 1989Google Scholar
  254. [254]
    F. Heismann, S.K. Korotky and J.J. Veselka. Lithium Niobate Integrated Optics, Selected Contemporary Devices and System Applications. Vol. IIIb, verlegt von I.P. Kaminow, T.L. Koch, Academic Press, S. 196–263, 1997Google Scholar
  255. [255]
    H.J. Thiele, R.I. Killey and P. Bayvel. Influence of fibre dispersion on XPM pulse distortion in WDM systems. Proc. ECOC’ 98, Madrid, Vol. 1, S. 593–594, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. Renner
  • R. Ulrich
  • J.-P. Elbers
  • Ch. Glingener

There are no affiliations available

Personalised recommendations