Skip to main content

Laserdioden mit Vertikalresonator (VCSELs) für optische Verbindungssysteme

  • Chapter
Optische Kommunikationstechnik
  • 515 Accesses

Zusammenfassung

Laserdioden [1,2] sind ideale Sendeelemente für die faseroptische Kommunikationstechnik. Kantenemittierende Laserdioden werden routinemäßig in der hochbitratigen Langstreckenübertragung bei 1,3 oder 1,55μm Wellenlänge eingesetzt. Laserdioden mit Vertikalresonator (vertical-cavity surface-emitting lasers, VCSELs) haben sich zu erfolgversprechenden Alternativen für die Übertragung über kurze Strecken entwickelt [3], wo wegen der geringeren Anforderungen an die Faserdämpfung und Faserdispersion Wellenlängen um 850 oder 980 nm bevorzugt werden. VCSELs bieten eine Reihe von Vorteilen im Vergleich zu kantenemittierenden Laserdioden.

Allgemeine Literatur

Casey, J., M.B. Panish, Heterostructure Lasers. Part A: Fundamental Principles. Orlando: Academic Press, 1978. — Coldren, L.A., S.W. Corzine, Diode Lasers and Photonic Integrated Circuits. Wiley, New York 1995.- Ebeling, K.J., Integrated Optoelectronics. Springer-Verlag, Berlin 1993.- Iga, K., Fundamentals of Laser Optics. Plenum,New York 1994. — Petermann, K., Laser Diode Modulation and Noise. Kluwer Academic Publishers, Tokyo 1991.- Yariv, A., Quantum Electronics, Third Edition. Wiley, New York 1982.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Ebeling, K.J.: Integrated Optoelectronics Springer-Verlag, Berlin 1993

    Book  Google Scholar 

  2. Coldren, L.A.; Corzine, S. W.: Diode Lasers and Photonic Integrated Circuits. Wiley, NewYork 1995

    Google Scholar 

  3. Choquette, K.D.; Hou, H.Q.: Vertical-cavity surface emitting lasers: Moving from research to manufacturing, Proc. IEEE 85, pp. 1730–1739, 1997

    Article  Google Scholar 

  4. Hayashi, Y. et al.: Record low-threshold InGaAs/GaAIAs vertical-cavity surface-emitting laser with a native oxide confinement structure, Electron. Lett. 31, pp. 560–561, 1995

    Article  Google Scholar 

  5. Huffaker, D.L. et al.: Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface emitting laser with dielectric mirrors, IEEE Photon. Technol. Lett. 8, pp. 974–976, 1996

    Article  Google Scholar 

  6. Jung, C. et al.: 4,8 mW single-mode oxide confined top-surface emitting vertical-cavity laser diodes, Electron. Lett. 33, pp. 1790-1791, 1997

    Article  Google Scholar 

  7. Lear, K.L. et al.: Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency, Electron. Lett. 31, pp. 208–209, 1995

    Article  Google Scholar 

  8. Weigl, B. et al.: High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers, Electron. Lett. 32, pp. 557–558, 1996

    Article  Google Scholar 

  9. Sugimoto, Y. et al.: High-performance 980-nm vertical-cavity surface-emitting lasers and their application to two-dimensional array interconnects, TOPS Vol. 15, OSA, pp. 139–149, 1997

    Google Scholar 

  10. Liu, Y. et al.: Integrated VCSELs, MSM Photodetectors, and GaAs MESFETs for low cost optical interconnects, TOPS Vol. 15, OSA, pp. 196–198, 1997

    Google Scholar 

  11. Cheng, J. et al.: Surface-emitting laser-based smart pixels for two-dimensional optical logic and recon figurable optical interconnects, IEEE J. Quantum Electron. 29, pp. 741–756, 1993

    Article  Google Scholar 

  12. Matsuo, S. et al.: A monolithically integrated smart pixel using an MSM-PD, MESFET’s, and a VCSEL, IEEE J. Sel. Top. Quantum Electron. 2, pp. 121–127, 1996

    Article  Google Scholar 

  13. Pu, R. et al.: VCSEL’s bonded directly to foundry fabricated GaAs smart pixel arrays, IEEE Photon. Technol. Lett. 9, pp. 1622–1624, 1997

    Article  Google Scholar 

  14. Kosaka, H. et al.: Plastic-based receptacle-type VCSEL-array modules with one and two dimensions fabricated using the self-alignment mounting technique, Proc. IEEE Electronic Components and Technology Conference, pp. 382–390, 1997

    Google Scholar 

  15. Hu, S.Y. et al.: High-performance multiple-wavelength vertical-cavity photonic-integrated emitter arrays for direct-coupled multimode optical links, Proc. CLEO’98, pp. 366–367, 1998

    Google Scholar 

  16. Michalzik, R. et al.: High-bit-rate data transmission with short-wavelength oxidazed VCSELs: Towards bias-free operation, IEEE J. Se. Top. QE 3, pp. 396–403, 1997

    Article  Google Scholar 

  17. Born, M.; Wolf, E.:Principles of Optics, 6th ed. Oxford: Pergamon Press, 1989

    Google Scholar 

  18. Ebeling, K.J.; Coldren, L.A.: Analysis of multielement semiconductor lasers. J. Appl. Phys. 54, pp. 2962–2969, 1983

    Article  Google Scholar 

  19. Michalzik, R.; Ebeling, K.J.: Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes, IEEE J.Quantum Electron. 29, pp. 1963–1974, 1993

    Article  Google Scholar 

  20. Casey, J.; Panish, M.B.: Heterostructure Lasers. Part A: Fundamental Principles. Orlando: Academic Press, 1978

    Google Scholar 

  21. Iga, K.: Fundamentals of Laser Optics. Plenum, New York, 1994

    Book  Google Scholar 

  22. Reiner, G. et al.: Optimization of planar Be-doped InGaAs VCSELs with two-sided output, IEEE Photon. Technol. Lett. 7, pp. 730–732, 1995

    Article  Google Scholar 

  23. Huffaker, D.L.et al.: Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl.Phys. Lett. 65, pp. 97–99, 1994

    Article  Google Scholar 

  24. Zeeb, E.; Reiner, G.; Ebeling, K.J.: Planar Be-doped VCSELs with high wallplug efficiencies, Electron. Lett. 31, pp. 1160–1161, 1995

    Article  Google Scholar 

  25. Fiedler, U. et al.: Top-surface emitting vertical-cavity laser diodes for 10 Gbit/s data transmission. IEEE Photon. Technol. Lett. 8, pp. 746–748, 1996

    Article  Google Scholar 

  26. Weigl, B. et al.: High power single-mode oxidized vertical cavity surface emitting lasers, IEEE Photon. Technol. Lett. 8, pp. 971–973, 1996

    Article  Google Scholar 

  27. Weigl, B. et al.: High-performance oxide-confined GaAsVCSELs, IEEEJ. Sel. Top. QE. 3, pp. 409–415, 1997

    Article  Google Scholar 

  28. Grabherr; M. et al.: Efficient bottom-emitting VCSEL arrays for high cw optical output power, Electron. Lett. 34, pp. 1227–1228, 1998

    Article  Google Scholar 

  29. Grabherr, M. et al.: Comparision of proton implanted and selectively oxidized vertical-cavity surface emitting lasers. Proc. CLEO/Europe, Hamburg, Germany, 1996, paper

    Google Scholar 

  30. Fiedler, U. et al.: Stable linearly polarized light emission from VCSELs with oxidized elliptical current aperture. Proc. 15th Int. Sem. Laser Conf. Haifa, Israel, paper M. 3.3, 1996

    Google Scholar 

  31. Unger, H.-G.: Optische Nachrichtentechnik. Hüthig, Heidelberg, Germany, 1985

    Google Scholar 

  32. Michalzik, R.: Modellierung und Design von Laserdioden mit Vertikalresonator. Ph.D.Thesis, University of Ulm, Germany, 1996

    Google Scholar 

  33. Nakwaski, W.; Osinski, M.: Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays, Electron. Lett. 28, p. 1283, 1992

    Article  Google Scholar 

  34. King, R.et al.: Oxide confined 2D VCSEL arrays for high-density inter/intra-chip interconnects, SPIE Vol. 3286, pp. 64–67, 1998

    Article  Google Scholar 

  35. Yoshikawa, T. et al.: Complete polarization-control of 8 x 8 vertical-cavity surface-emitting laser matrixarrays, Appl. Phys. Lett. 66, pp. 908–910, 1995

    Article  Google Scholar 

  36. Zhang, S.Z. et al.: 1,54 μm vertical-cavity surface-emitting laser transmission at 2,5 Gbit/s, TOPS Vol. 15, OSA, pp. 90–93, 1997

    MATH  Google Scholar 

  37. Yariv, A.: Quantum Electronics, Third Edition, Wiley, NewYork 1982

    Google Scholar 

  38. Fiedler, U.: Hochbitratige optische Nachrichtenübertragung mit Vertikallaserdioden. Ph. D. Thesis, University of Ulm, Germany, 1997

    Google Scholar 

  39. Olshansky, R. et al.: Frequency response of 1,3 μm InGaAsP high speed quantum-well semiconductor lasers, IEEE J. Quant. Electron. 23, pp. 1410–1418, 1987

    Article  Google Scholar 

  40. Petermann, K.: Laser Diode Modulation and Noise, Kluwer Academic Publishers, Tokyo 1998

    Google Scholar 

  41. Glauber, R.J.: Quantum Optics. Academic-Press, NewYork 1969

    Google Scholar 

  42. Wiedenmann, D. et al.: Design and analysis of single-mode oxidized VCSELs for high speed optical interconnects, IEEE J. Sel. Top. Quant. Electron., Vol. 5, pp. 503–511, 1999

    Article  Google Scholar 

  43. Henry, C.H.: Phase noise in semiconductor lasers. IEEE J. Lichtwave Techn. 4, pp. 298–311, 1986

    Article  Google Scholar 

  44. Ebeling, K.J.: Optical interconnects and data links with vertical cavity surface emitting laser diodes (VCSEL). Proc. 21st Europ. Conf. on Opt. Comm. ECOC, Brussels, Belgium, Tutorials, pp. 113–147, 1995

    Google Scholar 

  45. Fiedler, U. et al.: Proton implanted VCSELs for 3 Gbit/s data links. IEEE Photon. Technol. Lett. 7, pp. 1116–1118, 1995

    Article  Google Scholar 

  46. Schnitzer, P. et al.: Bias-free 2,5 Gbit/s data transmission using polyimide passivated GaAs VCSELs, Electron. Lett. 34, pp. 573–575, 1998

    Article  Google Scholar 

  47. Petermann, K.: External optical feedback phenomena in semiconductor lasers, IEEE J. Sel. Top. Quantum Electron. 1, pp. 480–489, 1995

    Article  Google Scholar 

  48. Fiedler, U; Ebeling, K.J.: Design of VCSELs for feedback insensitive data transmission and external cavity mode-locking, IEEE J. Sel. Top. Quant. Electron. 1, pp. 442–450, 1995

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebeling, K.J. (2002). Laserdioden mit Vertikalresonator (VCSELs) für optische Verbindungssysteme. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics