Advertisement

Laserdioden mit Vertikalresonator (VCSELs) für optische Verbindungssysteme

  • K. J. Ebeling

Zusammenfassung

Laserdioden [1,2] sind ideale Sendeelemente für die faseroptische Kommunikationstechnik. Kantenemittierende Laserdioden werden routinemäßig in der hochbitratigen Langstreckenübertragung bei 1,3 oder 1,55μm Wellenlänge eingesetzt. Laserdioden mit Vertikalresonator (vertical-cavity surface-emitting lasers, VCSELs) haben sich zu erfolgversprechenden Alternativen für die Übertragung über kurze Strecken entwickelt [3], wo wegen der geringeren Anforderungen an die Faserdämpfung und Faserdispersion Wellenlängen um 850 oder 980 nm bevorzugt werden. VCSELs bieten eine Reihe von Vorteilen im Vergleich zu kantenemittierenden Laserdioden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Ebeling, K.J.: Integrated Optoelectronics Springer-Verlag, Berlin 1993CrossRefGoogle Scholar
  2. [2]
    Coldren, L.A.; Corzine, S. W.: Diode Lasers and Photonic Integrated Circuits. Wiley, NewYork 1995Google Scholar
  3. [3]
    Choquette, K.D.; Hou, H.Q.: Vertical-cavity surface emitting lasers: Moving from research to manufacturing, Proc. IEEE 85, pp. 1730–1739, 1997CrossRefGoogle Scholar
  4. [4]
    Hayashi, Y. et al.: Record low-threshold InGaAs/GaAIAs vertical-cavity surface-emitting laser with a native oxide confinement structure, Electron. Lett. 31, pp. 560–561, 1995CrossRefGoogle Scholar
  5. [5]
    Huffaker, D.L. et al.: Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface emitting laser with dielectric mirrors, IEEE Photon. Technol. Lett. 8, pp. 974–976, 1996CrossRefGoogle Scholar
  6. [6]
    Jung, C. et al.: 4,8 mW single-mode oxide confined top-surface emitting vertical-cavity laser diodes, Electron. Lett. 33, pp. 1790-1791, 1997CrossRefGoogle Scholar
  7. [7]
    Lear, K.L. et al.: Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency, Electron. Lett. 31, pp. 208–209, 1995CrossRefGoogle Scholar
  8. [8]
    Weigl, B. et al.: High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers, Electron. Lett. 32, pp. 557–558, 1996CrossRefGoogle Scholar
  9. [9]
    Sugimoto, Y. et al.: High-performance 980-nm vertical-cavity surface-emitting lasers and their application to two-dimensional array interconnects, TOPS Vol. 15, OSA, pp. 139–149, 1997Google Scholar
  10. [10]
    Liu, Y. et al.: Integrated VCSELs, MSM Photodetectors, and GaAs MESFETs for low cost optical interconnects, TOPS Vol. 15, OSA, pp. 196–198, 1997Google Scholar
  11. [11]
    Cheng, J. et al.: Surface-emitting laser-based smart pixels for two-dimensional optical logic and recon figurable optical interconnects, IEEE J. Quantum Electron. 29, pp. 741–756, 1993CrossRefGoogle Scholar
  12. [12]
    Matsuo, S. et al.: A monolithically integrated smart pixel using an MSM-PD, MESFET’s, and a VCSEL, IEEE J. Sel. Top. Quantum Electron. 2, pp. 121–127, 1996CrossRefGoogle Scholar
  13. [13]
    Pu, R. et al.: VCSEL’s bonded directly to foundry fabricated GaAs smart pixel arrays, IEEE Photon. Technol. Lett. 9, pp. 1622–1624, 1997CrossRefGoogle Scholar
  14. [14]
    Kosaka, H. et al.: Plastic-based receptacle-type VCSEL-array modules with one and two dimensions fabricated using the self-alignment mounting technique, Proc. IEEE Electronic Components and Technology Conference, pp. 382–390, 1997Google Scholar
  15. [15]
    Hu, S.Y. et al.: High-performance multiple-wavelength vertical-cavity photonic-integrated emitter arrays for direct-coupled multimode optical links, Proc. CLEO’98, pp. 366–367, 1998Google Scholar
  16. [16]
    Michalzik, R. et al.: High-bit-rate data transmission with short-wavelength oxidazed VCSELs: Towards bias-free operation, IEEE J. Se. Top. QE 3, pp. 396–403, 1997CrossRefGoogle Scholar
  17. [17]
    Born, M.; Wolf, E.:Principles of Optics, 6th ed. Oxford: Pergamon Press, 1989Google Scholar
  18. [18]
    Ebeling, K.J.; Coldren, L.A.: Analysis of multielement semiconductor lasers. J. Appl. Phys. 54, pp. 2962–2969, 1983CrossRefGoogle Scholar
  19. [19]
    Michalzik, R.; Ebeling, K.J.: Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes, IEEE J.Quantum Electron. 29, pp. 1963–1974, 1993CrossRefGoogle Scholar
  20. [20]
    Casey, J.; Panish, M.B.: Heterostructure Lasers. Part A: Fundamental Principles. Orlando: Academic Press, 1978Google Scholar
  21. [21]
    Iga, K.: Fundamentals of Laser Optics. Plenum, New York, 1994CrossRefGoogle Scholar
  22. [22]
    Reiner, G. et al.: Optimization of planar Be-doped InGaAs VCSELs with two-sided output, IEEE Photon. Technol. Lett. 7, pp. 730–732, 1995CrossRefGoogle Scholar
  23. [23]
    Huffaker, D.L.et al.: Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl.Phys. Lett. 65, pp. 97–99, 1994CrossRefGoogle Scholar
  24. [24]
    Zeeb, E.; Reiner, G.; Ebeling, K.J.: Planar Be-doped VCSELs with high wallplug efficiencies, Electron. Lett. 31, pp. 1160–1161, 1995CrossRefGoogle Scholar
  25. [25]
    Fiedler, U. et al.: Top-surface emitting vertical-cavity laser diodes for 10 Gbit/s data transmission. IEEE Photon. Technol. Lett. 8, pp. 746–748, 1996CrossRefGoogle Scholar
  26. [26]
    Weigl, B. et al.: High power single-mode oxidized vertical cavity surface emitting lasers, IEEE Photon. Technol. Lett. 8, pp. 971–973, 1996CrossRefGoogle Scholar
  27. [27]
    Weigl, B. et al.: High-performance oxide-confined GaAsVCSELs, IEEEJ. Sel. Top. QE. 3, pp. 409–415, 1997CrossRefGoogle Scholar
  28. [28]
    Grabherr; M. et al.: Efficient bottom-emitting VCSEL arrays for high cw optical output power, Electron. Lett. 34, pp. 1227–1228, 1998CrossRefGoogle Scholar
  29. [29]
    Grabherr, M. et al.: Comparision of proton implanted and selectively oxidized vertical-cavity surface emitting lasers. Proc. CLEO/Europe, Hamburg, Germany, 1996, paperGoogle Scholar
  30. [30]
    Fiedler, U. et al.: Stable linearly polarized light emission from VCSELs with oxidized elliptical current aperture. Proc. 15th Int. Sem. Laser Conf. Haifa, Israel, paper M. 3.3, 1996Google Scholar
  31. [31]
    Unger, H.-G.: Optische Nachrichtentechnik. Hüthig, Heidelberg, Germany, 1985Google Scholar
  32. [32]
    Michalzik, R.: Modellierung und Design von Laserdioden mit Vertikalresonator. Ph.D.Thesis, University of Ulm, Germany, 1996Google Scholar
  33. [33]
    Nakwaski, W.; Osinski, M.: Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays, Electron. Lett. 28, p. 1283, 1992CrossRefGoogle Scholar
  34. [34]
    King, R.et al.: Oxide confined 2D VCSEL arrays for high-density inter/intra-chip interconnects, SPIE Vol. 3286, pp. 64–67, 1998CrossRefGoogle Scholar
  35. [35]
    Yoshikawa, T. et al.: Complete polarization-control of 8 x 8 vertical-cavity surface-emitting laser matrixarrays, Appl. Phys. Lett. 66, pp. 908–910, 1995CrossRefGoogle Scholar
  36. [36]
    Zhang, S.Z. et al.: 1,54 μm vertical-cavity surface-emitting laser transmission at 2,5 Gbit/s, TOPS Vol. 15, OSA, pp. 90–93, 1997zbMATHGoogle Scholar
  37. [37]
    Yariv, A.: Quantum Electronics, Third Edition, Wiley, NewYork 1982Google Scholar
  38. [38]
    Fiedler, U.: Hochbitratige optische Nachrichtenübertragung mit Vertikallaserdioden. Ph. D. Thesis, University of Ulm, Germany, 1997Google Scholar
  39. [39]
    Olshansky, R. et al.: Frequency response of 1,3 μm InGaAsP high speed quantum-well semiconductor lasers, IEEE J. Quant. Electron. 23, pp. 1410–1418, 1987CrossRefGoogle Scholar
  40. [40]
    Petermann, K.: Laser Diode Modulation and Noise, Kluwer Academic Publishers, Tokyo 1998Google Scholar
  41. [41]
    Glauber, R.J.: Quantum Optics. Academic-Press, NewYork 1969Google Scholar
  42. [42]
    Wiedenmann, D. et al.: Design and analysis of single-mode oxidized VCSELs for high speed optical interconnects, IEEE J. Sel. Top. Quant. Electron., Vol. 5, pp. 503–511, 1999CrossRefGoogle Scholar
  43. [43]
    Henry, C.H.: Phase noise in semiconductor lasers. IEEE J. Lichtwave Techn. 4, pp. 298–311, 1986CrossRefGoogle Scholar
  44. [44]
    Ebeling, K.J.: Optical interconnects and data links with vertical cavity surface emitting laser diodes (VCSEL). Proc. 21st Europ. Conf. on Opt. Comm. ECOC, Brussels, Belgium, Tutorials, pp. 113–147, 1995Google Scholar
  45. [45]
    Fiedler, U. et al.: Proton implanted VCSELs for 3 Gbit/s data links. IEEE Photon. Technol. Lett. 7, pp. 1116–1118, 1995CrossRefGoogle Scholar
  46. [46]
    Schnitzer, P. et al.: Bias-free 2,5 Gbit/s data transmission using polyimide passivated GaAs VCSELs, Electron. Lett. 34, pp. 573–575, 1998CrossRefGoogle Scholar
  47. [47]
    Petermann, K.: External optical feedback phenomena in semiconductor lasers, IEEE J. Sel. Top. Quantum Electron. 1, pp. 480–489, 1995CrossRefGoogle Scholar
  48. [48]
    Fiedler, U; Ebeling, K.J.: Design of VCSELs for feedback insensitive data transmission and external cavity mode-locking, IEEE J. Sel. Top. Quant. Electron. 1, pp. 442–450, 1995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K. J. Ebeling

There are no affiliations available

Personalised recommendations