Optische Sender: Grundlagen

  • H. Burkhard


Zum Verständnis von Halbleiterlasern ist die Kenntnis der Halbleiterphysik erforderlich. Deren Darstellung soll hier nur knapp zusammenfassend erfolgen. Detaillierte Ausführungen sind in der Liste der Bücher zu finden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    R. de L. Kronig und W. G. Penney: Proc. Roy. Soc., A130 (1931) 499, vgl. auch A. Sommerfeld, H. Bethe, Elektronentheorie der Metalle, Springer Verlag, Berlin (1967) und Ch. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., New York (1963)Google Scholar
  2. [2]
    S. Adachi: Physical Properties of III-V Semiconductor Compounds, John Wiley & Sons, New York (1992) Kap 2CrossRefGoogle Scholar
  3. [3]
    R.E. Nahory: Band gap versus composition and demonstration of Vegard’s law for In1-xGaxAsyP1-y lattice matched to InP. Appl. Phys. Lett. 33, (1978) 659–661CrossRefGoogle Scholar
  4. [4]
    J.M. Langer: Phys. Rev. B38, (1988) 7723CrossRefGoogle Scholar
  5. [5]
    S.R. Forrest: Vacuum Sci. Technol. B4, (1986) 37CrossRefGoogle Scholar
  6. [6]
    F. Stern, Solid State Physics, F. Seitz and D. Turnbull, eds., Vol. 15, Seite 300, Academic Press New York, 1963Google Scholar
  7. [7]
    S.R. Chinn, P. Zory, A.R. Reisinger: A model for GRIN-SCH diode lasers, IEEE J. Quantum. Electron., QE-24, (1988) 2191CrossRefGoogle Scholar
  8. [8]
    S. Y. Hu: High efficiency and low-threshold InGaAslAIGaAs quantum well lasers, J. Appl. Phys., 76, (1994) 3932CrossRefGoogle Scholar
  9. [9]
    J.S. Blakemore, Semiconductor Statistics, Pergamon Press, Oxford (1962), Seite 205zbMATHGoogle Scholar
  10. [10]
    W. Shockley, W. T. Read, Jr.; Statistics of the Recombination of Holes and Electrons, Phys. Rev. 87, (1952) 835CrossRefzbMATHGoogle Scholar
  11. [11]
    R. N. Hall: Electron-Hole Recombination in Germanium, Phys. Rev., 87, (1952) 387CrossRefGoogle Scholar
  12. [12]
    A. Haug, Auger Recombination in Quantum Well InGaAs. Electron. Lett. 26, No. 17 (1990) 1415–1416CrossRefGoogle Scholar
  13. [13]
    A. Haug, Auger recombination in quantum well semiconductors: calculation with realistic energy bands, Semicond. Sci. Technol., Vol. 7, (1992) 1337–1340. Vgl. auch A. Haug, Appl. Phys. Lett. 42, (1983) 512CrossRefGoogle Scholar
  14. [14]
    R.I. Taylor, R. A. Abram: The effects of non-parabolic band structure on Auger transition rates in bulk semiconductors, quantum wells and quantum well wires, Semicond. Sci. Technol. 3 (1988) 859–864CrossRefGoogle Scholar
  15. [15]
    R.I. Taylor: A detailed study of Auger recombination in 1.3 μm InGaAsP/InP quantum wells and quantum well wires, Semicond. Sci. Technol, 5, (1990) 90CrossRefGoogle Scholar
  16. [16]
    S. Adachi, GaAs,AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications, J. Appl. Phys. 58(3), (1985), R1–R29CrossRefGoogle Scholar
  17. [17]
    S. Adachi, Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsYP1-y, J. Appl. Phys, 66(12), (1989) 6030–6040CrossRefGoogle Scholar
  18. [18]
    Ch. Henry: Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy, IEEE Journal of Quantum Electronics, VOl. QE-21, No. 12, (1985) 1887–1892CrossRefGoogle Scholar
  19. [19]
    S. Adachi, Refractive Indices of III-V compounds: Key properties of InGaAsP relevant to device design, J. Appl. Phys. 53, (1982) 5863CrossRefGoogle Scholar
  20. [20]
    P. Chandra, L.A. Coldren und K.E. Strege, Refractive Index Data from GaXIn1-xAsyP1-y Films, Electron. Lett. Vol. 17 (1981) 6–7CrossRefGoogle Scholar
  21. [21]
    M.J. Mondry: Refractive Indexes of (AIGaIn)As Epilayers on InP for Optoelectronic Applications, IEEE Photonics Technology Letters, Vol. 4, No. 6, (1992) 627–630CrossRefGoogle Scholar
  22. [22]
    H.W. Dinges: Spectroscopic ellipsometry: a useful tool to determine the refractive indices and interfaces of In0.52Al0.48As and In0.53AlxGa0.47-xAs on InP in the wavelength range from 280 to 1900 nm, Thin Solid Films, 233 (1993) 145CrossRefGoogle Scholar
  23. [23]
    M.S. Hybertsen: Modeling of the Linewidth Enhancement Factor In Multi-Quantum Well InGaAsP Based Lasers, SPIE Vol. 2994, (1997) 747CrossRefGoogle Scholar
  24. [24]
    P.J.A. Thijs, and N. T. Van Dongen: High quantum efficiency, high power, modulation doped GaInAs strained-layer quantum well laser diodes emitting at 1.5 μm, Electron. Lett. 25, (1989) 1735CrossRefGoogle Scholar
  25. [25]
    W.T. Tsang: Strained-layer 1.5 μm wavelength InGaAs/inP multiple quantum well lasers grown by chemical beam epitaxy, Electron. Lett. 26, (1990) 203CrossRefGoogle Scholar
  26. [26]
    H. Temkin, T, Tanbun-Ek, and R.A. Logan, Strained InGaAs/InP quantum well lasers, Appl. Phys. Lett. 56, (1990) 1210CrossRefGoogle Scholar
  27. [27]
    C.E. Zah: Low threshold (92 A/cm2) 1.6 μm strained-layer single quantum well laser diodes optically pumped by a 0.8 μm laser diode, AppL Phys. Lett. 57, (1990) 1608CrossRefGoogle Scholar
  28. [28]
    M. Silver, E.P. O’Reilly: Gain and Radiative Current Density in InGaAs/lnGaAsP Lasers with Electrostatically Confined Electron States, IEEE Journal of Quantum Electronics, Vol. 30. No. 2 (1994) 547–553CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. Burkhard

There are no affiliations available

Personalised recommendations