Advertisement

Nichtlineare Optik und optische Signalverarbeitung

  • H. G. Weber
Chapter

Zusammenfassung

In der linearen Optik wird die Ausbreitung von Licht in Materie durch die Brechzahl n und die Dämpfungskonstante α beschrieben. Beide sind frequenzabhängige bzw. wellenlängenabhängige Größen, die unabhängig von der Strahlungsdichte des einfallenden Lichtes sind. Es gilt das Superpositionsprinzip, das besagt, daß Lichtsignale sich gegenseitig nicht beeinflussen und sich ungestört überlagern können. Die lineare Optik ist aber nur ein Grenzfall der Optik für kleine Strahlungsdichten. Bei großen Strahlungsdichten werden n und α von der Lichtleistung abhängig, und es tritt eine Vielzahl weiterer optischer Effekte auf, die die lineare Optik nicht kennt. Insbesondere gilt das Superpositionsprinzip nicht mehr. Licht kann durch Licht beeinflußt, gesteuert und geschaltet werden. Dies ist die Grundlage für die optische Signalverarbeitung, die in diesem Kapitel beschrieben wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Sutherland, R.L.: Handbook of nonlinear optics, NewYork, Marcel Dekker, 1996, Kapitel4Google Scholar
  2. [2]
    s.[1], Kapitel 8Google Scholar
  3. [3]
    s.[1], Kapitel 2Google Scholar
  4. [4]
    Yamada, M.; Nada, N.; Saitoh, M.; Watanabe, K.: First-order quasiphase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation, Appl. Phys. Lett. 62, p. 435, 1993CrossRefGoogle Scholar
  5. [5]
    s. [1], Kapitel 3Google Scholar
  6. [6]
    Byer, R.L.: Parametric oscillation and nonlinear materials, in „Nonlinear Optics“, Editors. Harper, P.G., Wherrett, B.S., NewYork, Academic Press, 1977Google Scholar
  7. [7]
    Sohler, W.:Second order nonlinear guided wave interaction, in „Nonlinear Surface Electromagnetic Phenomena“, Editors: Ponath, H.E., Stegeman, G., NewYork, Elsevier Science, 1990, Kapitel 1Google Scholar
  8. [8]
    Suche, H.; Sohler, W.: Integrated optical parametric oscillators: J. Optoelectron. Dev. and Technology, vol 4, pp 1–20, 1989Google Scholar
  9. [9]
    Sohler, W.: Nonlinear integrated optics, in „NATO Asi Series E, New Directions in Guided Wave and Coherent Optics“, Editors: Ostrowsky, D.B.ans Spitz, E.,Vol 11, pp 449–480, 1984Google Scholar
  10. [10]
    s. [1] Kapitel 6Google Scholar
  11. [11]
    Inoue, K.: Four-wave mixing in an optical fiber in the zero-dispersion wavelength region, IEEE J. of Lightwave Technol., vol 10, pp 1553–1561, 1992CrossRefGoogle Scholar
  12. [12]
    s. [1], Kapitel 6Google Scholar
  13. [13]
    Shen, V.R.: Basic considerations of four-wave mixing and dynamic gratings, IEEE J. of Quantum Electron., QE-22 [8], pp 1196–1203, 1986CrossRefGoogle Scholar
  14. [14]
    Asobe, M.; Suzuki, K.; Kanamori, T.; Kubodera, K.: Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation, Appl. Phys. Lett. 60, pp 1153–1154, 1992CrossRefGoogle Scholar
  15. [15]
    Stegemann, G.I.: Guided wave approaches to optical bistability, IEEE J. of Quantum Electron., QE-18, pp 1610–1619, 1982CrossRefGoogle Scholar
  16. [16]
    Vassallo, C.: Rigorous and approximate calculations of antireflection layer parameter for traveling wave diode laser amplifiers, Electron. Lett., vol 21, pp 333–334, 1985CrossRefGoogle Scholar
  17. [17]
    Tiemeijer, L.; Thijs, P.J.A.; v. Dongen, T.; Binsma, J.J.M.; Jansen, E.f.; Verboven, A.J.M.: 27 dB gain unidirectional 1300nm polarization-insensitive multiple quantum well laser amplifier module, IEEE Photon. Technol. Lett. 6, pp 1430–1432, 1994CrossRefGoogle Scholar
  18. [18]
    Doussiere, P.; Garabedian, P.; Graver, C.; Bonnevie, D.; Fillion, T.; Derouin, E.; Monnot, M.; Provost, J.: Leclerc, D.; Klenk; M.: 1.55 μm polarisation independent semiconductor optical amplifier with 25 dB fiber to fiber gain, IEEE Photon. Technol. Lett. 6, pp 170–172, 1994CrossRefGoogle Scholar
  19. [19]
    Magari, K.; Okamoto, M.; Noguchi, Y.: 1.55 μm polarisation-insensitive high-gain tensile-strained barrier MQW optical amplifier, IEEE Photon. Technol. Lett. 3, pp 998–1000, 1991CrossRefGoogle Scholar
  20. [20]
    Newkirk, M.; Miller, B.; Koren, U; Chien, M.; Jopson, R.; Burrus, C: 1.5 μm multiquantum-well semiconductor optical amplifier with tensile compressively strained wells for polarisation-independent gain, IEEE Photon. Technol. Lett. 5, pp 406–408, 1993CrossRefGoogle Scholar
  21. [21]
    Dutta, N.K.: Calculated Absorption, emission and gain in InGaAsP, J. of Appl. Phys., vol 51, pp 6095–6100, 1980CrossRefGoogle Scholar
  22. [22]
    Saleh, B.E.A.; Teich, M.C.:Fundamentals of photonics, Kapitel 16.2, John Wiley, NewYork, 1991CrossRefGoogle Scholar
  23. [23]
    Mukai, T.; Saitoh, T.: Detuning characteristics of conversion efficiency of nearly degenerate four-wave mixing in a 1,5 μm traveling-wave semiconductor laser amplifier, IEEE J. of Quantum Electron., vol 16, pp 865–875, 1990CrossRefGoogle Scholar
  24. [24]
    Obermann, K.; Mecozzi, A., Mørk, J: Theory of four-wave mixing, in „Photonic Devices for Telecommunications“, Editor: Guekos, G., Springer-Verlag, Berlin, 1999Google Scholar
  25. [25]
    Agrawal, G.P.: Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifers, J. Opt. Soc.Am. B, vol 5, pp 147–159, 1988CrossRefGoogle Scholar
  26. [26]
    Adams, M.J.; Davies, D.A.O.; Tatham, M.C.; Fisher, M.A.: Nonlinearities in semiconductor laser ampli fiers, Opt. and Quantum Electron., vol 27,pp 1–13, 1995CrossRefGoogle Scholar
  27. [27]
    Uskov, A.; Mørk, J.: Mørk, J.: Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral hole burning, IEEE J. of Quantum Electron., vol 30, pp 1769–1781, 1994CrossRefGoogle Scholar
  28. [28]
    Osinski, M.; Buus, J.: Linewidth broadening factor in semiconductor lasers-an overview, IEEE J. of Quantum Electron. QE-23, pp 9–29, 1987CrossRefGoogle Scholar
  29. [29]
    Wiesenfeld, J.M.: Gain dynamics and associated nonlinearities in semiconductor optical amplifiers. Intern. Journ, of High Speed Electronics and Systems, vol 7,pp 179–222, 1996CrossRefGoogle Scholar
  30. [30]
    Hall, K.L.; Lenz, G.; Ippen, E.P.; Koren, U; Raybon, G.: Carrier heating and spectral hole burning in strained-layer quantum-well laser amplifiers at 1.5 μm, Appl. Phys. Lett. 61, pp 2512–2514, 1993CrossRefGoogle Scholar
  31. [31]
    Hall, K.L.; Lenz, G.; Darwish, A.M.; Ippen, E.P.: Subpicosecond gain and index nonlinearities in InGaAsP diode lasers, Optics Comm., vol 111, pp 589–612, 1994CrossRefGoogle Scholar
  32. [32]
    Manning, R,J.; Ellis, A.D.; Poustie, A,J.; Blow, K.J.: Semiconductor laser amplifier for ultrafast all-optical signal processing. J. Opt. Soc. Am. B, vol 14,pp 3204–3216, 1997CrossRefGoogle Scholar
  33. [33]
    Bennett, B.R.; Soref, R.A.; DelAlamo, J.A: Carrier-induced change in refractive index of InP,GaAs and InGaAsP, IEEE J. of Quantum Electron., vol 26, pp 113–122, 1990CrossRefGoogle Scholar
  34. [34]
    Groükopf, G.; Küler, L.; Ludwig, R.; Schnabel, R.; Weber, H.G.: Semicondutor laser optical amplifier in switching and distribution networks, Opt. and Quantum Electron., vol 21,pp 59–74, 1989CrossRefGoogle Scholar
  35. [35]
    Osinski, M.; Adams, M.J.: Gain spectra of quaternary semiconductors, IEE Proc., vol 129, pp 229–236,1982Google Scholar
  36. [36]
    Agrawal, G.P.; Olsson, N.A.: Selfphase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers, IEEE J. of Quantum Electron., vol 25,pp 2297–2306, 1989CrossRefGoogle Scholar
  37. [37]
    Uskov, A.; Mørk, J.; Mark, J.: Theory of short-pulse gain saturation in semiconductor laser amplifiers, IEEE Photon. Technol. Lett. 4, pp 442–446, 1992CrossRefGoogle Scholar
  38. [38]
    Mecozzi, A.; Mørk, J.: Saturation induced by pisosecond pulses in semiconductor optical amplifiers, J. Opt. Soc.Am. B, vol 14, pp 761–770, 1997CrossRefGoogle Scholar
  39. [39]
    Diez, S.; Ludwig, R.; Weber, H.G.: Gain-transparent SOA-switch for high bitrate Add/Drop multiplexing, IEEE Photon. Technol. Lett. 11, pp 60–62, 1999CrossRefGoogle Scholar
  40. [40]
    Ludwig, R.; Pieper, W.; Schnabel, R.; Diez, S.; Weber, H.G.: Four-wave mixing in semiconductor laser amplifiers: application for optical communication systems, Fiber and Integrated Optics, vol 16, pp 211–223, 1996CrossRefGoogle Scholar
  41. [41]
    Diez, S.; Schmidt, C, Ludwig, R.; Weber, H.G.; Obermann, K.; Kind, S.; Koltchanov, I.; Petermann, K.: Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1131–1145, 1997CrossRefGoogle Scholar
  42. [42]
    Mecozzi, A.; Scotti, S.; D’Ottavi, A.; Iannone, E.; Spano, P.: Four-wave mixing in traveling-waves semiconductor, amplifiers, IEEE J. of Quantum Electron., vol 31,pp 689–699, 1995CrossRefGoogle Scholar
  43. [43]
    Scotti, S.; Mecozzi, A.: Frequency conversion based on FWM in traveling-wave optical amplifiers: theoretical aspects, Fiber and Integrated Optics, vol 15, pp 243–256, 1996CrossRefGoogle Scholar
  44. [44]
    Zhou, J.; Park, N.; Dawson, J.W.; Vahala, K.J.; Newkirk, M.A.; Miller, B.I.: Efficiency of braodband fourwave mixing wavelength conversion using semiconductor traveling-wave amplifiers, IEEE Photon. Technol. Lett. 6, pp 50–53, 1994CrossRefGoogle Scholar
  45. [45]
    Danielsen, S.L.; Jørgensen, C.; Vaa, M.; Mikkelsen, B.; Stubkjaer; K.E.; Doussiere, P.; Pommerau, F.; Goldstein, L.; Ngo, R.; Goix, M.: Bit error rate assestment of 40 Gbit/s all-optical polarisation independent wavelength converter, Electron. Lett., vol 32, pp 1688–1690, 1996CrossRefGoogle Scholar
  46. [46]
    Bray, M.E.; O’Mahony, M.J.: Cascading gain-saturation semiconductor laser-amplifier wavelength translators, IEE Proc.-Optoelectron, vol 143, pp 1–6, 1996CrossRefGoogle Scholar
  47. [47]
    Jørgensen, C; Danielsen, S.L.; Durhuus, T.; Mikkelsen, B.; Stubkjaer, K.E.; Vodjdani, N.; Ratovelomanana, F.; Enard, A.; Glastre, G.; Rondi, D.; Blondeau, R.: Wavelength converson by optimized monolithic integrated Mach-Zehnder interferometer, IEEE Photon. Technol. Lett., vol 8, pp 521–523, 1996CrossRefGoogle Scholar
  48. [48]
    Ratovelomanana, F.; Vodjdani, N.; Enard, A.; Glastre, G.; Rondi, D.; Blondeau, R.; Dupes, A.; Billés, L.; Simon, J.C: Regeneration improvement in all-optical wavelength converter, based on a Mach-Zehnder interferometer, by means of phase-shifter section, Electron. Lett., vol 33, pp 1629–1630, 1997CrossRefGoogle Scholar
  49. [49]
    Mikkelsen, B.; Vaa, M.; Poulsen, H.N.; Danielsen, S.L.; Jørgensen, C; Kloch, A.; Hansen, P.B.; Stubkjaer, E.E.; Wünstel, K.; Daub, K.; Lach, E.; Laube, G.; Idler, W.; Schilling, M.; Bouchoule, S.: 40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer, Electron. Lett., vol 33, pp 133–134, 1997CrossRefGoogle Scholar
  50. [50]
    Inoue, K.; Toba, H.: Wavelength conversion experiment using fiber four-wave mixing, IEEE Photon. Technol. Lett., vol 4, pp 69–71, 1992CrossRefGoogle Scholar
  51. [51]
    Watanabe, S.; Chikama, T.: Highly efficient conversion and parametric gain of non degenerate forward four-wave mixing in a singlemode fiber, Electron. Lett., vol 30, pp 163–164, 1994CrossRefGoogle Scholar
  52. [52]
    Watanabe, S.; Takeda, S.; Ishikawa, G.; Ooi, H.; Nielsen, I.G.; Sonne, C: Simultaneous wavelength conversion and optical phase conjugation of 200 Gbit/s (5 x 40 Gbit/s) WDM signal using a highly nonlinear fiber four-wave mixer, Proc. 23rd Europ. Conf. Opt. Commun. (ECOC), Edinburg, UK, vol 5, pp 1–4, 1997Google Scholar
  53. [53]
    Diez, S.; Schmidt, C; Ludwig, R.; Weber, H.G.; Obermann, K.; Kindt, S.; Koltchanov, I.; Petermann, K.: Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1131–1145, 1997CrossRefGoogle Scholar
  54. [54]
    Lee, R.B.; Geraghty, D.F.; Verdiell, M.; Ziari, M.; Mathur, A.; Valhala, K.J.: Cascaded wavelength conversion by four-wave mixing in a strained semiconductor optical amplifier at 10 Gbit/s, IEEE Photon. Technol. Lett., vol 9, pp 752–754, 1997CrossRefGoogle Scholar
  55. [55]
    Schunk, N.; Großkopf, G.; Ludwig, R.; Schnabel, R.; Weber, H.G.: Frequency conversion by nearly degenerate four-wave mixing in traveling-wave semiconductor laser amplifier, Proc. Inst. Electr. Eng., vol 137,pp 209–214, 1990Google Scholar
  56. [56]
    Contertabile, G.; Martelli, F.; Mecozzi, A.; Graziani, L.; D’Ottavi, A.; Spano, P.; Guekos, G.; Dall’Ara, R.; Eckner, J.: Efficiency flattering and equalization of frequency up-and down-conversion using fourwave mixing in semiconductor optical amplifiers, IEEE Photon. Technol. Lett., vol 10, pp 1398–1400, 1998CrossRefGoogle Scholar
  57. [57]
    Morgan, T.J; Lacey, J.P.R.; Tucker, R.S.: Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency, IEEE Photon. Technol. Lett., vol 10, pp 1401–1403, 1998CrossRefGoogle Scholar
  58. [58]
    Lacey, J.P.R.; Madden, S.J.; Summerfield, M.A.: Four-channel polarisation-insensitive optically transparent wavelength converter, IEEE Photon. Technol. Lett., vol 9, pp 1355–1357, 1997CrossRefGoogle Scholar
  59. [59]
    Hasegawa, T.K.; Inoue, K.; Oda, K.: Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique, IEEE Photon. Technol. Lett., vol 7, p 497, 1995CrossRefGoogle Scholar
  60. [60]
    Jopson, R.M.; Tench, R.E.: Polarisation-independent phase conjugation of lightwave signals, Electron. Lett., vol 29, pp 2216–2217, 1993CrossRefGoogle Scholar
  61. [61]
    Cortes, P.; Chbat, M.; Artigaud, S.; Beylat, J.; Chesnoy, J.: Below 0.3 dB polarisation penalty in 10 Gbit/s directly modulated DFB signal over 160 km using Mid-span spectral inversion in a semiconductor laser amplifier, Conference on Optical Communication, ECOC Brussels, Techn. Digest, vol 1, pp 271–274, 1995Google Scholar
  62. [62]
    Schnabel, R.; Hilbk, U; Hermes, Th.; Meissner, P.; Helmolt, C.; Magari, K.; Raub, R; Pieper, W.; Westphal, F.J.; Ludwig, R.; Küller; L.; Weber, H.G.: Polarisation insensitive frequency conversion of a 10-channel OFDM signal using four-wave-mixing in a semiconductor laser amplifier, IEEE Photon. Technol. Lett., vol 6, pp 56–58, 1994CrossRefGoogle Scholar
  63. [63]
    Yoo, S.J.B; Caneau, C.; Bhat, R.; Koza, M.A.; Rajhel, A.; Antoniades, N.: Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding, Appl. Phys. Lett., vol 68, pp 2609–2611, 1996CrossRefGoogle Scholar
  64. [64]
    Bennion, I.; Goodwin, M.J.: Third-order nonlinear guided-wave optical devices, in „Nonlinear Optics in Signal Processing“, Editors: Eason, R.W., Miller, A.; Chapman and Hall, London, 1993Google Scholar
  65. [65]
    Frieberg, S.R.; Weiner, A.M.; Sieberberg, Y.; Sfez, B.G.; Smith, P.W.: Femtosecond switching in a dual-corefiber nonlinear coupler, Opt. Lett., vol 13, pp 904–906, 1988CrossRefGoogle Scholar
  66. [66]
    Jinno, M.; Matsumoto, T.: Nonlinear Sagnac interferometer switch and its applications, IEEE J. of Quantum Electron., vol 28, pp 875–882, 1992CrossRefGoogle Scholar
  67. [67]
    Bigo, S.; Leclerc, O.; Desurvire, E.: All-optical fiber signal processing and regeneration for solition communications, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1208–1223, 1997CrossRefGoogle Scholar
  68. [68]
    Bigo, S.; Leclerc, O.; Desurvire, E.: All-optical fiber signal processing and regeneration for soliton communications, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1208–1223, 1997CrossRefGoogle Scholar
  69. [69]
    Jinno, M.: Nonlinear Sagnac interferometer switch and its applications, IEEE J. of Quantum Electron., vol 28, pp 875–882, 1992CrossRefGoogle Scholar
  70. [70]
    Uchiyama, K.; Takara, H.; Kawanishi, S.; Morioka, T.; Satuwatari, M.: Ultrafast polarisation-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror, Electron. Lett., vol 28, pp 1864–1865, 1992CrossRefGoogle Scholar
  71. [71]
    Bülow, H.; Veith, G.: Polarisation-independent switching in a nonlinear optical loop mirror by a dual wavelength switching pulse, Electron. Lett., vol 29, pp 588–589, 1993CrossRefGoogle Scholar
  72. [72]
    Uchiyama, K.; Kawanishi, S.; Takara, H.; Morioka, T.; Saruwatari, M.: 100 Gbit/s to 6.3 Gbit/s demultiplexing experiment using polarisation-independent nonlinear optical loop mirror, Electron. Lett., vol 30, pp 873–874, 1994CrossRefGoogle Scholar
  73. [73]
    Uchiyama, K.; Takara, H.; Morioka, T.; Kawanishi, S.; Saruwatari, M.: 100 Gbit/s multiplechannel output all-optical demultiplexer based on TDM-WDM conversion in a nonlinear optical loop mirror, Electron. Lett., vol 32, pp 1989–1991, 1996CrossRefGoogle Scholar
  74. [74]
    Eiselt, M.; Pieper, W.; Weber, H.G.: SLALOM: Semiconductor Laser Amplifier in a Loop Mirror, IEEE J. of Lightwave Technol., vol 13, pp 2099–2012, 1995CrossRefGoogle Scholar
  75. [75]
    Ellis, A.D.; Spirit, D.M.: Compact 40 Gbit/s optical demultiplexer using a GaInAsP optical amplifier, Electron. Lett., vol 29, pp 2115–2116, 1993CrossRefGoogle Scholar
  76. [76]
    Suzuki, K.; Iwatsuki, K.; Nishi, S.; Saruwatari, M.: Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier, Electron. Lett., vol 30, pp 1501–1503, 1994CrossRefGoogle Scholar
  77. [77]
    Pieper, W.; Jahn, E.; Eiselt, M.; Ludwig, R.; Schnabel, R.; Ehrhardt, A.; Ehrke, H.J.; Weber, H.G.: ,Optical Semiconductor Switching Devices, in: „Photonics Networks“, edited by G. Prati (Springer, London, 1997), pp 473–487CrossRefGoogle Scholar
  78. [78]
    Diez, S.; Ludwig, R.; Weber, H.G.: All-optical switch for TDM and WDM/TDM systems demonstrated in a 640 Gbit/s demultiplexing experiment, Electron. Lett., vol 34, pp 803–805, 1998CrossRefGoogle Scholar
  79. [79]
    Jahn, E.; Agrawal, N.; Ehrke, H.J.; Ludwig, R.; Pieper, W.; Weber, H.G.: Monolithically integrated asymmetric Mach-Zehnder interferometer as a 20 Gbit/s all-optical add/drop multiplexer for OTDM systems, Electron. Lett., vol 32, pp 216–217, 1996CrossRefGoogle Scholar
  80. [80]
    Hess, R.; Duelk, W.; Vogt, W.; Gamper, E.; Gini, E.; Besse, P.A.; Melchior, H.; Jepsen, K.S.; Mikkelsen, R; Vaa, M.; Poulsen, H.N.; Clausen, A.T.; Stubkjaer, K.E.; Bouchoule, S.; Devaux, R: Simultaneous all-optical add and drop multiplexing of 40 Gbit/s OTDM signals using monolithically integrated Mach-Zehnder interferometer, Electron. Lett., vol 34, pp 579–580, 1998CrossRefGoogle Scholar
  81. [81]
    Diez, S.; Ludwig, R.; Weber, H.G.: Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing, IEEE Photon, Technol. Lett., vol. 11, pp 60–62, 1999CrossRefGoogle Scholar
  82. [82]
    Morioka, T.; Kawanishi, S.; Uchiyama, K.; Takara, H.; Saruwatari, M.: Polarisation-independent 100 Gbit/s all-optical demultiplexer using four-wave mixing in a polarisation-maintaining fibre loop, Electron. Lett., vol 30, pp 591–592, 1994CrossRefGoogle Scholar
  83. [83]
    Morioka, T.; Takara, H.; Kawanishi, S.; Kitoh, T.; Saruwatari, M.: Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontiuum short pulses, Electron. Lett., vol 32, pp 833–834, 1996CrossRefGoogle Scholar
  84. [84]
    Kawanishi, S.; Morioka, T.; Kamatani, O.; Takara, H.; Jacob, J.M.; Saruwatari, M.: 100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier, Electron. Lett., vol 30, pp 981–982, 1994CrossRefGoogle Scholar
  85. [85]
    Morioka, T.; Takara, H.; Kawanishi, S.; Uchiyama, K.; Saruwatari, M.: Polarisation-independent alloptical demultiplexing up to 200Gbit/s using four-wave mixing in a semiconductor laser amplifier, Electron. Lett., vol 32, pp 840–842, 1996CrossRefGoogle Scholar
  86. [86]
    Islam, M.N.: Ultrafast all-optical switching devices, in: „Photonic switching and interconnects“, Editor: Marrakchi, A.; Marcel Dekker, NewYork, 1994Google Scholar
  87. [87]
    Ahn, K.H.; Vaziri, M.; Barnett, B.C; Williams, G.R.; Cao, X.D.; Islam, M.N.; Malo, B; Hill, K.O.; Chowdhury, D.Q.: Experimental demonstration of a low-latency fiber soliton logic gate, IEEE J. of Lightwave Technol., vol 14.pp 1768–1775, 1996CrossRefGoogle Scholar
  88. [88]
    Saxena, S.; Wai, P.K.A.; Menyuk, C.R.; Chbat, M.W.: Analysis of a soliton-based logic module for a ring network, IEEE J. of Lightwave Technol., vol 14,pp 1776–1785, 1996CrossRefGoogle Scholar
  89. [89]
    Gibbs, H.M.: Optical Bistability: Controlling light by light, Academic Press, NewYorkGoogle Scholar
  90. [90]
    Kawaguchi, H.: Absorptive and dispersive bistability in semiconductor injection lasers, Opt. Quantum Electron., vol 19, pp S1–S36, 1987CrossRefGoogle Scholar
  91. [91]
    Kawaguchi, H.: Bistability and Nonlinearities in Laser diodes, Norwood,MA: Artech House (1994)Google Scholar
  92. [92]
    Kuhlow, B.: Optische Computer, Mikro Elektronik, Bd6, pp 8–15, 1992Google Scholar
  93. [93]
    Ellis, A.D.; Smith, K.; Patrick, D.M.: All optical clock recovery at bit rates up to 40 Gbit/s, Electron. Lett., vol 29, pp 1323–1224, 1993CrossRefGoogle Scholar
  94. [94]
    Ludwig, R.; Ehrhardt, A.; Pieper, W.; Jahn, E.; Agrawal, N.; Ehrke, H.J.; Küller J.; Weber, H.G.: 40 Gbit/s demultiplexing experiment with 10 GHz all-optical clock recovery using a modelocked semiconductor laser, Electron. Lett.,vol 32, pp 327–339, 1996CrossRefGoogle Scholar
  95. [95]
    Ludwig, R.; Diez, S.; Ehrhardt, A.; Küller, L.; Pieper, W.; Weber, H.G.: A tunable femtosecond modelocked semiconductor laser for applications in OTDM systems, IEICE Trans. Electron., vol E81-C, pp 140–145, 1998Google Scholar
  96. [96]
    Sartorius, R; Bornholdt, C; Brox, O.; Ehrke, H.J.; Hoffmann, D.; Ludwig, R.; Möhrle, M.: All-optical clock recovery module based on self-pulsating DFB laser, Electron. Lett., vol 34, p 1664, 1998CrossRefGoogle Scholar
  97. [97]
    Kawanishi, S.; Saruwatari, M.: 10 GHz timing extraction from randomly modulated optical pulses using phase-locked loop with traveling-wave laser-diode optical amplifier using optical gain modulator, Electron. Lett., vol 28, pp 510–511, 1992CrossRefGoogle Scholar
  98. [98]
    Kamatani, O.; Kawanishi, S.; Saruwatari, M.: Prescaled 6.3 GHz clock recovery from 50 Gbit/s TDM optical signal with 50 GHz phase lock loop using four-wave-mixing in a traveling-wave laser diode optical amplifier, Electron. Lett., vol 30, pp 807–809, 1994CrossRefGoogle Scholar
  99. [99]
    Kamatani, O.; Kawanishi, S.: Prescaled timing extraction from 400 Gbit/s optical signal using a phase lock loop based on four-wave mixing in a laser diode amplifier, IEEE Photon. Technol. Lett., vol 8, pp 1094–1096, 1996CrossRefGoogle Scholar
  100. [100]
    Kawanishi, S.; Takara, H.; Morioka, T.; Kamatani, O.; Saruwatari, M.: 200 Gbit/s,100km time-division multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing, Electron. Lett., vol 31, pp 816–817, 1995CrossRefGoogle Scholar
  101. [101]
    Jinno, M.; Abe, M.: All-optical regenerator based on nonlinear fiber Sagnac interferometer, Electron. Lett., vol 28, pp 1350–1352, 1992CrossRefGoogle Scholar
  102. [102]
    Jinno, M.: All-optical signal regularizing/regeneration using a non-linear fiber Sagnac interferometer switch with signal-clock walk-off, IEEE J. of Lightwave Technol., vol 12,pp 1648–1659, 1994CrossRefGoogle Scholar
  103. [103]
    Lucek, J.K.: Smith, K.: All-optical signal regenerator, Opt. Lett., vol 18, pp 1226–1228, 1993CrossRefGoogle Scholar
  104. [104]
    Pender, W.A.; Widdowson, T.; Ellis, A.D.: Error-free operation of a 40 Gbit/s all-optical regenerator, Electron. Lett., vol 32, pp 567–569, 1996CrossRefGoogle Scholar
  105. [105]
    Pieper, W.; Weich, K.; Ludwig, R.; Patzak, E.; Weber, H.G.: All-optical polarization and wavelength independent 3R signal regenerator, Electron. Lett., vol 32, pp 1316–1318, 1996CrossRefGoogle Scholar
  106. [106]
    Bigo, S.; Leclerc, O.; Desurvire, E.: All-optical fiber signal processing and regeneration for solition communications, IEEE J. of Selected Topics in Quantum Electron., vol 3, pp 1208–1223, 1997CrossRefGoogle Scholar
  107. [107]
    Shen, Y.: The Principles of Nonlinear Optics, John Wiley & Sons,Inc., New York, USA (1984)Google Scholar
  108. [108]
    Watanabe, S.; Chikama, T.; Ishikawa, G.; Terahara, T.; Kuwahara, H.: Compensation of Pulse Shape Distortion Due to Chromatic Dispersion and Kerr Effect by Optical Phase Conjugation, IEEE Photon. Technol. Lett., vol 5, pp 1241–1243, 1993CrossRefGoogle Scholar
  109. [109]
    Pieper, W.; Kurtzke, C; Schnabel, R.; Breuer, D.; Ludwig, R.; Petermann, K.; Weber, H.G.: Nonlinearity insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier, Electron. Lett., vol 30, pp 724–726, 1994CrossRefGoogle Scholar
  110. [110]
    Zhang, X.; Ebskamp, F.; Jørgensen, R: Long-Distance Transmission Over Standard Fiber by Use of Mid-Way Phase Conjugation, IEEE Photon. Technol. Lett., vol 7, pp 819–821, 1995CrossRefGoogle Scholar
  111. [111]
    Feiste, U; Ludwig, R.; Dietrich, E.; Diez, S.; Ehrke, H.J.; Razic, Dz.; Weber, H.G.: 40Gbit/s transmission over 434km standard fibre using polarization independent mid-span spectral inversion, Electron. Lett., vol 34, pp 2044–2045, 1998CrossRefGoogle Scholar
  112. [112]
    Feiste, U; Ludwig, R.; Schmidt, C; Dietrich, E.; Diez, S.; Ehrke, H.J.; Patzak, E.; Weber, H.G.; Merker, T.: 80 Gbit/s Transmission over 106-km Standard-Fiber Using Optical Phase Conjugation in a Sagnac Interferometer, IEEE Photon. Technol. Lett., vol 11, pp 1063–1065, 1999CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. G. Weber

There are no affiliations available

Personalised recommendations