Skip to main content

Optische Modulatoren und Schalter

  • Chapter
Optische Kommunikationstechnik
  • 516 Accesses

Zusammenfassung

Die Forderung nach höherer ßbertragungskapazität optischer ßbertragungssysteme, d.h. höherer Bandbreite gilt gleichermaßen für Komponenten wie Phasen- und Amplitudenmodulatoren. Ihre Funktion basiert auf verschiedenartigen Wechselwirkungen im Festkörper, die je nach Material unterschiedlich ausfallen. Die Effizienz der Effekte läßt sich in miniaturisierten Strukturen der integrierten Optik intensivieren, denn die elektrische Feldstärke steigt mit sinkendem Elektrodenabstand.

Allgemeine Literatur

A. Yariv, P.Yeh. Optical Waves in Crystals, Wiley, New York, 1984 — T. Tamir. Ed. Integrated Optics, Berlin, Springer, 1975 — R. G. Hunsperger. Integrated Optics: Theory and Technology, Springer Berlin, Heidelberg New York 1982 — S. L. Chuang, Physics of Optoelectronic Devices, Wiley, New York, 1995 — G. Bastard, Wave mechanics applied to semiconductor heterostructures, les editions de physique, 91944 Les Ulis Cedex, France — K.J. Ebeling, Integrierte Optoelektronik, Springer Verlag — A. Räuber, Chemistry and physics of lithium niobate in: Current Topics in Materials Scienc, North-Holland Publishing Company Amsterdam New York Oxford, 1978 — Möschwitzer, Lunze, Halbleiterelektronik, VEB Verlag Technik, Berlin, 1984 — Koichi Wakita, Semiconductor Optical Modulators, Kluwer Academic Publishers, Boston/Dordrecht/London 1998 — L. D. Hutcheson, Ed., Integrated Optical Circuits and Components, Marcel Dekker, Inc., NewYork and Basel 1998

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Kogelnik, H.: „Limitsin Integrated Optics“, Proc. of the IEEE, vol. 69, no. 2, 232–238 (1981)

    Google Scholar 

  2. Ghosh, G.: J.Am. Ceram.Soc., vol. 78, 218–220 (1995)

    Google Scholar 

  3. Ghosh, G.: „Handbook of Thermo-Optic Coefficients of Optical Materials with Applications“, Academic Press San Diego London Boston New York Sydney Tokyo Toronto 1998

    Google Scholar 

  4. Yariv, A.; Xeh, P.: Optical Waves in Crystals, Wiley, NewYork 1984

    Google Scholar 

  5. Kaminow, I.P. et al.: „Crystallographic and electrooptic properties of cleaved LiNbO3“, J.Appl.Phys., vol. 51, no. 8, 4379–4384 (1980)

    Google Scholar 

  6. Kaminow, I.P.: „Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3“, Phys.Rev., vol. 160, no. 3, 519–522 (1967)

    Google Scholar 

  7. Maldonado, Th.A.: „Electro-Optic Modulators“ in Handbook of Optics Volume II Devices, Measurements and Properties“, Chapter 13, Michael Bass Ed., McGraw-Hill

    Google Scholar 

  8. Bennett, B.R.; Sorel, R.A.; del Alamo, J.A.: „Carrier-induced change in refractive index of InP,GaAs, and InGaAsP“, IEEE J: Quant.Electr., vol. 26,no. 1, 113–122 (1990)

    Google Scholar 

  9. Kramers, H.A.: „La diffusion de la lumière par les atomes“, Atti del congresso internazionale dei fisici vol. 11-35, 545–557 (1927)

    Google Scholar 

  10. Kramers, H.A.:„Die Diserpsion and Absorption von Röntgenstrahlen“, Physik.Zeitschr.XXX, 522–523 (1929)

    Google Scholar 

  11. Kronig, De L.R.: „On the theory of dispersion of X-rays“, J. Opt. Soc. Am. and Rev. Sci.Instrum.,vol.12, no. 6, 547–557 (1926)

    Google Scholar 

  12. Wolff, P.A.: „Theory of the band structure of very degenerate semiconductors“, Phys. Rev., vol. 126, 405–412 (1962)

    Google Scholar 

  13. Henry, C.H.; Logan, R.A.; Bertness, K.A.: „Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers“,J.Appl. Phys., vol. 52, 4457–4461 (1981)

    Google Scholar 

  14. Franz, W.: „Einfluß eines elektrischen Feldesauf eine optischeAbsorptionskante“, Z. Naturforschg. 13a, 484–489 (1958)

    Google Scholar 

  15. Kowalsky, W.; Schlachetzki, A.; Fiedler, F.: Physica Status Solidi,vol.68a, 153 ff., 1981

    Google Scholar 

  16. Seraphin, B.O.; Bennett, H.E.: In: Semiconductors and Semimetals,vol.3 (Editors: R.K. Willardson and A.C. Beer), Academic Press, New York, London, 499–543 (1967)

    Google Scholar 

  17. Urbach, F.: „The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids“,Phys. Rev. 92, 1324 (1953)

    Google Scholar 

  18. Fiedler, F.; Schlachetzki, A.: „Optical Parameters of InP-based waveguides“, Solid-State Electronics, vol.30,no. 1, 73–83 (1987)

    Google Scholar 

  19. Weihofen, R. Weiser, G.: „Optical Study of Valence Bnd Splitting in Weakly Strained In1-xGaxAsyP1-y/InP Heterostructures“, Phys.Stat.Sol.(b), vol. 179, 563–577 (1993)

    Google Scholar 

  20. Mähnß, J: „Integriert-Opt ische Wellenleitermodulatoren in InGaAsP/InP Herstellung,Charakterisierung, Berechnung“,Fortschr.-Ber, VDI, Reihe 9,Nr. 117. Düsseldorf: VDI-Verlag (1991)

    Google Scholar 

  21. Campi, D. Villavecchia, C: „Excitonic Properties in Semiconductor Quantum Wells: Numerical Calculations and Scaling Behavior“,IEEE J.Quant.Electron., vol.28, no. 8, 1765–1772 (1992)

    Google Scholar 

  22. Lengyel, G.; Jelly K.W.; Engelmann, R.W.H.: „A Semi-Empirical Model for Electroabsorption in GaAs/AIGaAs Multiple Quantum Well Modulator Structures“,IEEE J. Quant. Electron., vol. 26, no. 2, 296–304 (1990)

    Google Scholar 

  23. Bastard, G.: Wave mechanics applied to semiconductor heterostructures, les editions de physique, 91944 Les V#x00FC;sCedex, France, Chapter VIII

    Google Scholar 

  24. Wood, Th: „Multiple quantum well(MQW) waveguide modulators“, IEEE J. Light-wave Techn., vol.6, no. 6, 743–757 (1988)

    Google Scholar 

  25. Reier, F.: private Mitteilung; Houghton, D.C., Davies, M.; Dion, M.: „Design criteria for structurally stable, highly strained multiple quantum well devices“, Appl. Phys. Lett., vol. 64,no. 4, 505–507 (1994)

    Google Scholar 

  26. Yamaguchi, T. et al.: „Quantum well with mass-dependent width for polarization-intensiveoptical modulation“, in Integrated Photonics Research (IPR’94) Technical Digest Series,vol. 3 (Optical Society of America, Washington, DC, 1994, 263–265

    Google Scholar 

  27. Yamaguchi, T. et al.: „Polansation-intepent waveguide modulator using a novel quantum well with mass-dependent width for polarization-intensitive optical modulation“, IEEE Photon. Techn. Lett. vol. 6, 1442–1444 (1994)

    Google Scholar 

  28. Bleuse, J.: Bastard, G.; Voisin, P.: „Electric-Field-Induced Localizationand Oscillatory Electro-optical Properties of Semiconductor Superlattices“, Phys.Rev. Lett., vol. 60,no. 3, 220–223 (1988)

    Google Scholar 

  29. Bleuse, J. et al.: „Blue shift of the absorption edge in AIGalnAs superlattices: Proposal for an original electro-optical modulator“, Appl. Phys.Lett., vol.53, no. 26, 2632–2634 (1988)

    Google Scholar 

  30. Bigan, E. et al.: „Optimization of Optical Waveguide Modulators Based on Wannier-Stark Localization: An Experimental Study“, IEEE J. Quant. Electron, vol.28, no. 1, 214–223 (1992)

    Google Scholar 

  31. Wegener, M. et al.: „Absorption and refraction spectroscopy of a tunable-electron-density quantum well and reservoir structure“, Phys. Rev.B., vol. 41, no. 5, 3097–3104 (1990)

    Google Scholar 

  32. Agrawal, N. et al.: „Electro-optic modulation by electron transfer in multiple InGaAsP/InP barrier, reservoir, and quantum well structures“, Appl. Phys. Lett., vol. 61, no. 3, 249–251 (1992)

    Google Scholar 

  33. Wang, J. et al.: „Speed response analysis of an electron-transfer multiple-quantum-well waveguide modulator“, J.Appl.Phys., vol. 73,no. 9, 4669–4679 (1993)

    Google Scholar 

  34. Agrawal, N.; Wegener, M.: „Ultrafast graded-gap electron transfer optical modulator structure“, Appl. Phys.Lett., vol. 65, no. 6, 685–687 (1994)

    Google Scholar 

  35. McCaughan, L; Murphy, E.: „Influence of temperature and initial titanium dimensions on fiber-to Ti: LiNbO3 waveguide insertion loss at λ= 1,3 μm“, IEEE J. Quant. Electron., vol. QE-19, no. 2, 131–135 (1983)

    Google Scholar 

  36. Saad, S.M.: „Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-33, no. 10, 894–899 (1985)

    Google Scholar 

  37. Chiang, K.S.: „Review of numerical and approximae methods for the modal analysis of general optical dielectric waveguides“, Optical and Quantum Electronics, vol. 26, S113–S134 (1994)

    Google Scholar 

  38. Chiang, K.S.: „Dual effective-index method for the analysis of rectangular dielectric waveguides“, Appl. Opt., vol. 25, no. 13, 2169–2174 (1986)

    Google Scholar 

  39. Bierwirth, K.; Schulz, N.; Arndt, F.: „Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures“, IEEE Trans. Microwave Theory Tech., vol. MTT-34, no. 11, 1104–1114 (1986)

    Google Scholar 

  40. Koshiba, M.; Hayata, K.; Suzuki, M.: „Finite-Element Formulation in Terms of the Electric-Field Vector for Electromagnetic Waveguide Problems“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT_33, no. 10, 900–905 (1985)

    Google Scholar 

  41. Pregla, R.; Pascher, W.: „The Method of Lines“, in T. Itoh (editor), Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, J. Wiley Publ., New York, 381–446 (1989)

    Google Scholar 

  42. Felt, M.D.; Fleck, J.A.: „Light propagation in graded-index optical fibers“, Appl. Opt., vol. 17,no. 24, 3990–3998 (1978)

    Google Scholar 

  43. Kogelnik, H.: Theory of dielectric waveguides in T. Tamir, Ed. Integrated Optics, Berlin, Springer, 1975

    Google Scholar 

  44. Alferness, R.C.: „Waveguide Electrooptic Modulators“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-30, no. 8, 1121–1137 (1982)

    Google Scholar 

  45. Marcuse, D.: „Optimal Electrode Designfor Integrated Optics Modulators“, IEEE J. Quant. Electron., vol. QE-18, no. 3, 393–398 (1982)

    Google Scholar 

  46. Ramer, O.G.: „Integrated Optic Electrooptic Modulators Electrode Analysis“, IEEE J. Quant. Electron., vol. QE-18, no. 3, 386–392 (1982)

    Google Scholar 

  47. Thylen, L.; Granestrand, P.: „Integrated Optic Electrooptic Device Electrode Analysis: The Influence of Buffer Layers“, J. Opt. Commun., vol. 7, 11–14 (1986)

    Google Scholar 

  48. Handbook of Microwave and optical components, vol. 1, Microwave passive and antenna components, Kai Chang Ed., John Wiley &Sons, NewYork Chichester Brisbane Toronto Singapore, S.25

    Google Scholar 

  49. Parsons, N.J.; O’Donnel, A.C.; Wong, K.K.: „Design of efficient and wideband travelling-wave modulators“, Proc. SPIE Integrated Optical Circuit Engineering III, vol. 651, 148–153 (1986)

    Google Scholar 

  50. Chen, F.S.: „Modulators for optical communications“,Proc. IEEE, vol. 58, no. 10, 1440–1456 (1970)

    Google Scholar 

  51. Sakamoto, S.R.; Spickermann, R.; Dagli, N.: „Narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators“, Electro.Lett., vol. 31, no. 14, 1183–1185 (1995)

    Google Scholar 

  52. Kubota, K.; Noda, J.; Mikami, O.: „Traveling wave optical modulator using a directional coupler LiNbO3 waveguide“, IEEE J. Quant. Electron., vol. QE-16, no. 7, 754–760 (1980)

    Google Scholar 

  53. Walker, R.G.: „High-speed III-IV semiconductor intensity modulators“, IEEE J. Quant. Electron., vol. 27, no. 3, 654–667 (1991)

    Google Scholar 

  54. Ctyroky, J. et al.: „3- Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers“, IEEE J. Quant.Electron., vol. QE-20, no. 4, 400–409 (1984)

    Google Scholar 

  55. Feit, M.D.; Fleck, J.A.; McCaughan, I.: „Comparison of calculated and measured performance of diffused channel-waveguide couples“, J. Opt.Soc.Am., vol. 73, no. 10, 1296–1304 (1983)

    Google Scholar 

  56. Komatsu, K. et al.: „Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/ Magnesium Double Diffusion Method“, J. Lightw. Techn., vol. LT-5, no. 9, 1239–1245 (1987)

    Google Scholar 

  57. Becker, P. et al.:„Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelength“, Appl. Phys. Lett., vol. 61, no. 11, 1257–1259 (1992)

    Google Scholar 

  58. Jackel, J.L.; Rice, C.E.; Veselka, J.J.: „Proton exchange for high-index waveguides in LiNbO3“, Appl.Phys. Lett., vol. 47, no. 7, 607–608 (1982)

    Google Scholar 

  59. Schmidt, R.V.; Cross, P.S.; Glass, A.M.: „Optically induced crosstalk in LiNbO3 waveguide switches“, J. Appl.Phys. vol. 51, no. 1, 90–93 (1980)

    Google Scholar 

  60. Yamada, S.; Minakata, M.: „DC drift phenomena in LiNbO3 optical waveguide devices“ Jap. J. Appl. Phys. vol. 20, no. 4, 733–737 (1981)

    Google Scholar 

  61. Gee, C.M. et al.: „Minimizing de drift in LiNbO3 waveguide devices“ Appl. Phys. Lett., vol. 47, no. 3, 211–213 (1985)

    Google Scholar 

  62. Sreenivas, K. et al.: „Preparation and characterization of rf sputtered indium tin oxide films“ J. Appl. Phys. vol. 57, no. 2, 384–392 (1985)

    Google Scholar 

  63. Hamberg, I.; Granqvist, C.G.: „„Evaporated Sn-doped In2O3films: Basic optical properties and applications to energy-efficient windows“ J. Appl. Phys. vol. 60, no. 11, R123–RI59 (1986)

    Google Scholar 

  64. Bulmer, C.H.; Burns, W.K.: „Pyroelectric effects in LiNbO3 channel waveguide devices“, Appl. Phys. Lett., vol. 48, no. 16, 1036–1038 (1986)

    Google Scholar 

  65. Ctyroky, J. et al.: „Integrated electrooptic modulators and switches in LiNbO3“, Kybernetika (Czechoslovakia), vol. 26, no. 3, 171–190 (1990)

    Google Scholar 

  66. Nagata, H.; Ichikawa, J: „Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators“, Opt. Eng., vol. 34, no. 11, 3284–3293 (1995)

    Google Scholar 

  67. Nagata, H.; Oikawa, S.; Yamada, M.: „Comments on fabrication for reducing thermal drift on LiNbO3 optical modulators“, Opt. Eng., vol. 36, no. 1, 283–286 (1997)

    Google Scholar 

  68. Kawachi, M.: „Silica waveguides on silicon and their application to integrated-optic components“, Optical and Quantum Electronics, vol. 22, 391–416 (1990)

    Google Scholar 

  69. Miya, T.: „Silica-Based Planar Lightwave Circuits: Passive and Thermally Active Devices“, IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, 38–45 (2000)

    Google Scholar 

  70. Okuno, M. et al.: „Silica-based thermo-optic switches“, NTT Review vol. 7, no. 5, 57–63 (1995)

    Google Scholar 

  71. Keil, N.; Yao, H.H.; Zawadzki, C: „Polymer waveguide optical switch with ‘-40 dB polarisation independent crosstalk“, Electron. Lett., vol. 32, no. 7, 655–657 (1996)

    Google Scholar 

  72. Hida, Y.; Onose, H.; Imamura, S.: „Polymer Waveguide thermooptic switch with low electric power consumption at 1,3 μm“, IEEE Phot. Techn, Lett., vol. 5, no. 7, 82–84 (1993)

    Google Scholar 

  73. Kitoh, T. et al.: „Novel Broad-Band Optical Switch Using Silica-Based Planar Lightwave Circuit“, IEEE Phot. Techn. Lett., vol. 4, no. 7, 735–737 (1992)

    Google Scholar 

  74. Lai, Q.; Hunziker, W.; Melchior, H.: „Low-Power Compact 2 x 2 Thermooptic Silica-on-Silicon Waveguide Switch with Fast Response“, IEEE Phot. Techn. Lett., vol. 10, no. 5, 681–683 (1998)

    Google Scholar 

  75. Yamada, Y. et al.: „Hybrid-Integrated 4 x 4 Optical Gate Matrix Switch Using Silica-Based Optical Waveguides and LD Array Chips“, IEEE J. Lightw. Techn., vol. 10, no. 3, 383–390 (1992)

    Google Scholar 

  76. Okuno, M. et al.: „8 x 8 Optical Matrix Switch Using Silica-Based Planar Lightwave Circuits“, IEICE Trans. Electron., vol. E76-C, no. 7, 1215–1223 (1993)

    Google Scholar 

  77. Goh, T. et al.: „Low-Loss and High Extinction-Ratio Silica-Based Strictly Nonblocking 16 x 16 Thermooptic Matrix Switch“, IEEE Phot. Techn. Lett., vol. 10, no. 6, 810–812 (1998)

    Google Scholar 

  78. Teng, C.C.; Mortazavi, M.A.; Boudoughian, G.K.: „Origin of the poling induced optical loss in a nonlinear optical polymeric waveguide“, Appl. Phys. Lett., vol. 66, no. 6, 667–669 (1995)

    Google Scholar 

  79. Oh, M.-C. et al.: „Electro-optic polymer modulators operating in both TE and TM modes incorporating a vertically tapered cladding“, IEEE Phot. Techn, Lett., vol. 9, no. 9, 1232–1234 (1997)

    Google Scholar 

  80. Keil, N.; Yao, H.H.; Zawadzki, C.:„Integrated optical switching devices for telecommunications made on plastics“, Plastics in Telecommunications VIII, London 14th-16th September, 11–17 (1988)

    Google Scholar 

  81. Fischbeck, G. et al.: „Design concept for singlemode polymer waveguides“, Electron. Lett., vol. 32, no. 3, 212–213 (1996)

    Google Scholar 

  82. Moosburger, R.; Petermann, K.: „4 x 4 Digital optical matrix switch using polymeric oversized rib waveguides“, IEEE Phot. Techn. Lett., vol. 10, no. 5, 684–686 (1998)

    Google Scholar 

  83. Roß, L.: „Integrated optical components in substrate glasses“, Glastech. Ber., vol. 62, no. 8, 285–297 (1989)

    Google Scholar 

  84. Noguchi, K.; Miyazawa, H.; Mitomi, O.: „75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure“, Electron. Lett. vol. 30, no. 12, 949–951 (1994)

    Google Scholar 

  85. Gopalakrishnan, G. et al.:„Performance and Modelling of Broadband LiNbO3 Travelling Wave Optical Intensity Modulators“, J. Lightw. Techn., vol. 12, no. 10, 1807–1819 (1994)

    Google Scholar 

  86. Mitomi, O.; Noguchi, K.; Miyazawa, H.: „Design of ultra-broad-band LiNbO3 optical modulators with ridge structure“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-43, no. 9, 2203–2207 (1995)

    Google Scholar 

  87. Lawetz, C. et al.: „Modulation Characteristics of semiconductor Mach-Zehnder Optical Modulators“, IEEE J. Lightw. Techn., vol. 15 no. 4, 697–703 (1997)

    Google Scholar 

  88. Findakly, T.; Chen, C: „Optical directional couplers with variable spacing“, Appl. Opt. vol. 17, no. 5, 769–773 (1978)

    Google Scholar 

  89. Burns, W.K.; Milton, A.F.: „An analytic solution for mode coupling in optical waveguide branches“, IEEE J. Quant. Electron., vol. QE-16, no. 4, 446–454, 1980

    Google Scholar 

  90. Granestrand, P. et al.: „Integrated optics 4 x 4 switch matrix with digital optical switches“, Electron. Lett., vol. 26, no. 1, 4–5 (1990)

    Google Scholar 

  91. Okayama, H.; Ushikubo, T.; Kawahara, M.: „Low drive voltage Y-branch digital optical switch“, Electron. Lett., vol. 27, no. 1, 24–26 (1991)

    Google Scholar 

  92. Silberberg, Y.; Perlmutter, P.; Baran, J.E: „Digital optical switch”“, Appl. Phys. Lett., vol. 51, no. 16, 1230–1232 (1987)

    Google Scholar 

  93. Burns, W.K.:„Shaping the digital switch“, IEEE Phot. Techn. Lett., vol. 4, no. 8, 861–863 (1992)

    Google Scholar 

  94. Moosburger, R. et al.: „Shaping the digital optical switch using evolution strategies and BPM“, IEEE Phot. Techn. Lett., vol. 9, no. 11, 1484–1186 (1997)

    Google Scholar 

  95. Keil, N.; Yao, H.H.; Zawadzki, C.: „Polymeric optical switches, Integrated Photonics Research, March 30-April 1, 1998, Technical Digest, 353–355

    Google Scholar 

  96. Syms, R.R.A.:„The digital directional coupler: improved design“, IEEE Phot. Techn. Lett. vol. 4, no. 10, 1135–1138 (1992)

    Google Scholar 

  97. Xie, S. et al.: „Carrier-injected GaI-nASP/InP duirectional coupler optical switch with both tapered velocity and tapered coupling“, IEEE Phot. Techn. Lett., vol. 4, no. 2, 166–169 (1992)

    Google Scholar 

  98. Shimomura, K.; Arai, K.:„Semiconductor waveguide optical switches and modulators“, Fiber and Integrated Optics, vol. 13, 65–100 (1992)

    Google Scholar 

  99. Shimomura, K. et al.: „2 V drive-voltage switching operation in 1,55 μn GaInAS/InP MQW structure“, Electron. Lett. vol. 28, no. 10, 955–957 (1992)

    Google Scholar 

  100. Heidrich, H.; Hoffmann, D.:„Review on integrated-optics switch matrices on LiNbO3“, Trans. IEICE, vol. E73, no. 1, 94–98 (1990)

    Google Scholar 

  101. Linke, R.A.:„Modulation induced transient chirping in single frequency lasers“, IEEE J. Quant. Electron., vol. QE-21, no. 6, 593–597 (1985)

    Google Scholar 

  102. Wakita, K.; Kotaka, I.: „Multiple-quantum-well optical modulators and their monolithic integration with DFB lasers for optical-fiber communications“, Microwave-and-Optical-Technology-Letters (USA), vol. 7,no. 3, p. 120–128, 20 Feb. 1994

    Google Scholar 

  103. Mitomi, O.; Wakita, K.; Kotaka, I.:„Chirping characteristics of electroabsorption-type optical-intensity modulator“, IEEE Phot. Techn. Lett. vol. 6, no. 2, 205–207 (1994)

    Google Scholar 

  104. Kawano, K. et al.: „Polarisation-insensitive travelling wave electrode electroabsorption (TW-EA) modulator with bandwidth over 50 GHz and driving voltage less than 2V“, Electron. Lett. vol. 33, no. 18, 1580–1581 (1997)

    Google Scholar 

  105. Koyama, F.; Iga, K.: „Frequency chirping in external modulators“, IEEE J. Lightw. Techn., vol. 6, no. 1, 87–92 (1988)

    Google Scholar 

  106. Devaux, F.; Sorel, Y.; Kerdiles, J.P.:„Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitters“, J. Lightw. Techn., vol. 11, no. 12, 1937–1940 (1993)

    Google Scholar 

  107. Marcuse, D.:„DFB laser with attached external intensity modulator“, IEEE J. Quant. Electron., vol. 26, no. 2, 262–269 (1990)

    Google Scholar 

  108. Jerrard, H.C.: „Transmission of light through birefringent and optically active media: the Poincare’sphere“, J. Opt. Soc. Am., vol. 44, no. 5, 634–640 (1954)

    MathSciNet  Google Scholar 

  109. Maldonado, T.A.; Gaylord, T.K.: „Electrooptic effect calculations: simplified procedure for arbitrary cases“, Appl. Opt., vol. 27, no. 24, 5051–5066 (1988)

    Google Scholar 

  110. Alferness, R.C.: „Efficient waveguide electro-optic TE ~ TM mode converter/wavelength filter“, Appl. Phys. Lett., vol. 36, no. 7, 513–515 (1980)

    Google Scholar 

  111. Schlak, M. et al.:„Tunable TE/TM-Mode converter on (001)-InP-substrate“, PhotoTechn. Lett. vol. 3, no. 1, 15.16 (1991)

    Google Scholar 

  112. Jaeger; N.A.P. et al.:„Velocity-matched electrodes for compound semiconductor travelling wave electrooptic modulators: Experimental results“, IEEE Microwave Guided Wave Lett., vol. 6, 82–84, Feb. 1996

    Google Scholar 

  113. Rahmatian, F. et al.:„An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes“, IEEE Photon. Techn. Lett., vol. 10, no. 5, 675–677 (1998)

    Google Scholar 

  114. Thaniyavarn, S.:„Wavelength independent, optical damage immune Z-propagation LiNbO3 waveguide polarization converter“, Appl. Phys. Lett., vol. 47, no. 7, 674–677 (1985)

    Google Scholar 

  115. Thaniyavarn, S.: „Wavelength independent, optical-damage-immune LiNbO3 waveguide TE-TM converter“, Opt. Lett., vol. 11, no. 1, 39–41 (1986)

    Google Scholar 

  116. Haruna, M.; Shimada, J.: Nishihara, H.:„An efficient TE-TM mode converter using a z-propagation LiNbO3 waveguide“, The transactions of the IECE of Japan, vol. E69, no. 4, 418–419 (1986)

    Google Scholar 

  117. Heidrich, H. et al.: „Passive Mode Converter with a periodically tilted InP/GaInAs P rib waveguide“, IEEE Photon. Techn. Lett., vol. 4, no. 1, 34–36 (1992)

    Google Scholar 

  118. Shani, Y. et al.:„Polarisation rotation in asymmetric loaded rib waveguides“, Appl. Phys. Lett. Vol. 59, no. 11, 1278–1280 (1991)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, D. (2002). Optische Modulatoren und Schalter. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics