Advertisement

Planare optische Schaltungen

  • R. März

Zusammenfassung

Der Begriff „Integrierte Optik” wurde 1969 von Miller [1] eingeführt. Er stand seinerzeit als Synonym für die Vision einer planaren optischen Schaltungstechnik, mit der es eines Tages möglich werden sollte, optische Sendeund Empfangsbausteine und die für das Verteilen, Schalten und Filtern notwendigen passiven Komponenten monolithisch auf einem Chip zu integrieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Miller, S.E.: Integrated optics:An introduction. Bell Systems Technology, 48: 2059–2068, 1969Google Scholar
  2. [2]
    Roß, L.: Integrated optical components in substrate glasses. Glastechnische Berichte, 62:285–297, 1989Google Scholar
  3. [3]
    Hornak, L.A. et al.: The impact of polymer integrated optics on silicon wafer area networks. Proc. SPIE, 1337:12–22,1990Google Scholar
  4. [4]
    Booth, R.L. et al.: PolyguideTM polymeric technology for optical inteconnect circuits and components. Proc.SPIE, 3005:238–250, 1997Google Scholar
  5. [5]
    März, R.: Integrated Optics: Design and Modeling. Artech House, Boston, 1994Google Scholar
  6. [6]
    Smit, M.K.: PHASAR-based WDM devices: Principles,design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2:236–250, 1996Google Scholar
  7. [7]
    Alferness, R.C.:Waveguide electro optic switch arrays. IEEE Journal on Selected Areas in Communications, 6:1117–1130, 1988Google Scholar
  8. [8]
    Ikegami, R.C. Kawaguchi, H.: Semiconductor devices in photonic switching. IEEE Journal on Selected Areas in Communications, 6: 1131–1140, 1988Google Scholar
  9. [9]
    Wenger, G. et al.: A completely packaged strictly nonblocking 8 x 8 optical matrix switch on InGaAsP/InP. IEEE Journal of Lightwave Technology, 14:2332–2337, 1996Google Scholar
  10. [10]
    Pöhlmann, T.; Neyer, A.; Voges, E.: Polarization independent Ti:LiNbO3 switches and filters. IEEE Journal of Quantum Electronics, 27:602–607, 1991Google Scholar
  11. [11]
    Heidrich, H.; Hoffmann, D.: Review on integrated-optics switch matrices in LiNbO3. The Transactions of the IEICE, E73, No.1:94–98, 1989?Google Scholar
  12. [12]
    Nagase, R. et al.: Silica-based 8 x 8 opt ical matrix switch module with hybrid integrated driving circuit and its system application. IEEE Journal of Lightwave Technology, 12: 1631–1639, 1994Google Scholar
  13. [13]
    Okuno, M. et al.: Silica-based thermo-optic switches, NTT Review, 7/5:57–63,1995Google Scholar
  14. [14]
    Moosburger, R. et al.: Digital optical switch based on’ oversized’ polymer rib waveguides. Electronics Letters, 32:544–545, 1996Google Scholar
  15. [15]
    Keil, N.: Optische Schalter aus Kunststoff-Schlüsselkomponenten in den Telekomnetzen der Zukunft. In A. Grütz, editor, Jahrbuch der Elektrotechnik, volume 16. VDI-Verlag, 1997Google Scholar
  16. [16]
    Wehrmann, F.et al.: Integrated optical, wavelength selective, acoustically tunable 2 x 2 switches (add-drop multiplexers) in LiNbO3. IEEE Journal on Selected Areas in Communications, 2:263–269, 1996Google Scholar
  17. [17]
    Joyner, C.H..; Zirngibl, M.; Centanni, J.C: An 8-channel digitally tunable transmitter with electro-absorption modulated output by selective-area epitaxy. IEEE Photonic Technology Letters, 7:1034–1036, 1995Google Scholar
  18. [18]
    Koch, T.L.; Koren, U.:Semiconductor photonic integrated circuit. IEEE Journal of Quantum Electronics, 27:641–653, 1991Google Scholar
  19. [19]
    Matz, R.: Photonic integrated circuits, technology and components. In S.A. Campell and J.J. Lewerenz, Editoren, Techniques and Industrial Applications, volume 2 of Semiconductor Micromachining. Wiley, New York, 1997Google Scholar
  20. [20]
    Kaiser, R. et al.: Monolithically integrated transceivers on InP: The development of a generic integration concept and its technological challenges. Proc. Conference on Indiumphosphid and Related Materials (IPRM), pages 431–434, 1998Google Scholar
  21. [21]
    Cremer, C. et al.: Grating spectrograph integrated with photodiode array in InGaAsP/InP. IEEE Photonic Technology Letters, 4:108–110,1992Google Scholar
  22. [22]
    Tong, F. et al.: A wavelength matching scheme for multiwavelength optical links and networks using grating demultiplexers. IEEE/Photonic Technology Letters, 7:688–690, 1995Google Scholar
  23. [23]
    Kaiser, R. et al.: Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications. Optical and Quantum Electronics, 28:565–573,1996Google Scholar
  24. [24]
    Lichtwellenleiter Verbindungselemente und passive Bauteile-Grundlegende Prüf-und Meßverfahren, Deutsche Normen der Reihen DIN EN 61300-2 und 61300-3 edition. (identisch mit EN 61300-2/-3 bzw. IEC 61300-2/-3)Google Scholar
  25. [25]
    Dagenais, M. et al.: Applications and challenges of the OEIC technology: A report of the 1989 Hilton Head workshop. IEEE Journal of Lightwave Technology, 8:846–862, 1989Google Scholar
  26. [26]
    Hashimoto, T. et al.: Multichip optical hybrid integration technique with planar lightwave circuit platform. IEEE Journal of Lightwave Technology, 16:1249–1257, 1998Google Scholar
  27. [27]
    Snyder, A.W,; Love, J.D: Optical Waveguide Theory. Chapman and Hall, London, 1983Google Scholar
  28. [28]
    Haruna, M.: Thermooptic waveguide devices. In: Y. Suernatsu, Editor, Optical Devices and Fibers. OHMSHA, 1985Google Scholar
  29. [29]
    Guekos, G.: Editor. Photonic Devices. Springer, Berlin, 1999Google Scholar
  30. [30]
    Schmidt, F.: An adaptive approach to the numerical solution of Fresnel’s wave equation. IEEE Journal of Lightwave Technology, 11:1425–1434, 1993Google Scholar
  31. [31]
    Cost 216 Working Goup I. Comparison of different modelling techniques for longitudinally invariant integrated optical waveguides. IEE Proceedings.I 136:273-280,1989Google Scholar
  32. [32]
    Nolting, H.-P.; Mürz, R.: Results of benchmark tests for different numerical BPM algorithms. IEEE Journal of Lightwave Technology, 13:216–224, 1995Google Scholar
  33. [33]
    Unger, H.G.: Planar Optical Waveguides and Fibres. Clarendon, Oxford, 1977Google Scholar
  34. [34]
    Marcuse, D.: Theory of Dielectric Optical Waveguides. Academic Press, NewYork, 1974Google Scholar
  35. [35]
    Lewin, L.: Theory of Waveguides. Newes-Butterworth, London, 1975Google Scholar
  36. [36]
    Chilwell, J.; Hodgekinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. Journal of the Optical Society of America, A1:742–753, 1984Google Scholar
  37. [37]
    Schlosser, W.O.; Unger, H.G.: Partially filled waveguides and surface waveguides of rectangular crosssection. In: L. Young, Editor, Advances in Microwaves, volume 1. Academic Press, New York, 1969Google Scholar
  38. [38]
    Marcatili, E.A.J.: Dielectric rectangular waveguide and directional coupler for integrated optics.Bell Systems Technology, 48:2071–2102, 1969Google Scholar
  39. [39]
    Hardy, A.; Streifer, W.: Coupled mode theory of parallel waveguides. IEEE Journal of Lightwave Technology, 3:1135–1146, 1985Google Scholar
  40. [40]
    Haus, H.A. et al.: Coupled-mode theory of optical waveguides. IEEE Journal of Lightwave Technology, 5:16–23, 1987Google Scholar
  41. [41]
    Weinert, C.: Three dimensional coupled mode method for simulation of coupler and filter structures. IEEE Journal of Lightwave Technology, 10:1218–1225, 1992Google Scholar
  42. [42]
    Feit, M.D.; Fleck Jr, J.A.: Light propagation in graded-index optical fibres. Applied Optics, 17:3990–3998, 1978Google Scholar
  43. [43]
    van Roey,J.: van der Donk, J.: Lagasse, P.E.: Beam prop agation: Analysis and assessment. Journal of the Optical Society of America, 71:803–810, 1981Google Scholar
  44. [44]
    Gerdes, J.; Pregla, R.: Beam-propagation algorithm based on the method of lines. Journal of the Optical Society of America, B8:389–394, 1991Google Scholar
  45. [45]
    Pregla, R.: MoL BPM-method of lines based beam propagation method. In: Methods for Modeling and Simulation of Optical Guided-Wave Devices. Elsevier, Amsterdam, 1995Google Scholar
  46. [46]
    Huang, W.P. et al.: The finite-difference vector beam propagation method: Analysis and assessment. IEEE Journal of Lightwave Technology, 10:295–305, 1992Google Scholar
  47. [47]
    Hadley, G.R.: Multistep method for wide angle beam propagation. Optics Letters, 17:1743–1745, 1992MathSciNetGoogle Scholar
  48. [48]
    Yevick, D.; Hermansson, B.: Efficient beam propagation techniques. IEEE Journal of Quantum Electronics, 26:109–112, 1990Google Scholar
  49. [49]
    Yevick, D. et al.: Split-operator electric field reflection techniques. IEEE Photonic Technology Letters, 3:527–529, 1991Google Scholar
  50. [50]
    Koch, T.B. et al.: Computation of wave propagation in integrated optical devices using z-transient variational principle. IEEE Transactions on Magnetics, 27:3876–3879, 1991Google Scholar
  51. [51]
    Schmidt, F.; März, R.: On the reference wave vector of paraxial Helmholtz equations. IEEE Journal of Lightwave Technology, 14:2395, 1996Google Scholar
  52. [52]
    Hoekstra, H.J.W.M.; Krijnen, G.J.M.; Lambeck, P.V,: Efficient interface conditons for the FDBPM. IEEE Journal of Lightwave Technology, 10:1352–1355, 1992Google Scholar
  53. [53]
    Hadley, G.R.: Transparent boundary condition for the BPM. IEEE Journal of Quantum Electronics, 28:363–370, 1992Google Scholar
  54. [54]
    Baskakov, V.A.; Popov, A.V.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion, 14:123–128, 1991MathSciNetGoogle Scholar
  55. [55]
    Schmidt, F.; Deuflhard, P.: Discrete transparent boundary conditions for Fresnel’s equation. Proc. Conference on Integrated Photonics Research (IPR), 94/3:45–47, 1994Google Scholar
  56. [56]
    Kaczmarski, P.; Lagasse, P.E.: Bidirectional beam propagation method. Electronics Letters, 24:675–676, 1988Google Scholar
  57. [57]
    Sztefka, G.; Nolting, H.-P.: Bidirectional eigenmode propagation for large refractive index steps. IEEE Photonic Technology Letters, 5:554–557, 1993Google Scholar
  58. [58]
    Glassner, A.S.Editor: An Introduction to Ray Tracing. Academic Press, London, 1989zbMATHGoogle Scholar
  59. [59]
    Milton, A.F., Burns, W.K.: Mode coupling in optical waveguide horns. IEEE Journal of Quantum Electronics, 13:828–835, 1977Google Scholar
  60. [60]
    Sporleder, F.; Unger, H.-G. Editoren: Waveguide Tapers, Transitions and Couplers. Peregrinus, London, 1979Google Scholar
  61. [61]
    Zengerle, R. et al.: Low-loss fibre-chip coupling by buried laterally tapered InGaAsP/InP waveguide structure. Electronics Letters, 28:631–632, 1992Google Scholar
  62. [62]
    Wenger, G. et al.: Design and fabrication of monolithic optical spot size transformers (MOST’s) for highly efficient fiber-chip coupling. IEEE Journal of Lightwave Technology, 12:1782–1790, 1994Google Scholar
  63. [63]
    Schwander, T. et al.: Simple and low-loss fibre-to-chip coupling by integrated field-matching waveguide in InP. Electronics Letters, 29:326–328, 1993Google Scholar
  64. [64]
    Vasallo, C.: Optical Waveguide Concepts. Elsevier, Amsterdam, 1991Google Scholar
  65. [65]
    Pregla, R.; Ahlers, E.: Method of lines for analysis of arbitrarily curved waveguide bends. Electronics Letters, 30:1478–1479, 1994Google Scholar
  66. [66]
    Broberg, B.et al.: A novel integrated optics wavelength filter in InGaAsP-InP. IEEE Journal of Lightwave Technology, 4:196–203, 1986Google Scholar
  67. [67]
    Ulrich, R.: Image formation by phase coincidence in optical waveguides. Optics Communications, 13:259–264, 1975Google Scholar
  68. [68]
    Bryngdahl, O.: Image formation using self-imaging techniques. Journal of the Optical Society of merica, 63:416–419, 1973Google Scholar
  69. [69]
    Soldano, L.B.; Pennings, E.C.M.: Optical multi-mode interference devices based on self-imaging: Principles and applications. IEEE Journal of Lightwave Technology, 13:615–627, 1995Google Scholar
  70. [70]
    Bachmann, M.; Besse, P.A.; Melchior, H.: General self-imaging properties in N x N multimode inter ference couplers including phase relations. Applied Optics, 33:3905–3911, 1994Google Scholar
  71. [71]
    Bachmann, M.; Besse, P.A.; Melchior, H.: Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting. Applied Optics, 34:034, 1995Google Scholar
  72. [72]
    Bachmann, M. et al.: New 2 x 2 and 1 x 3 multimode interference couplers with free selection of power splitting ratios. IEEE Journal of Lightwave Technology, 14:2286–2293, 1996Google Scholar
  73. [73]
    Levy, D.S.; Scarmozzino, R.; Osgood Jr, R.M.:Length reduction of tapered N x N MMI devices. IEEE Photonic Technology Letters, 10:830–832, 1998Google Scholar
  74. [74]
    Pennings, E.C.M. et al.: Reflection properties of multimode interference devices. IEEE Photonic Technology Letters, 6:715–718, 1994Google Scholar
  75. [75]
    März, R.; Cremer, C: On the theory of planar spectrographs. IEEE Journal of Lightwave Technology, 10:2017–2022, 1992Google Scholar
  76. [76]
    Suhara, T.; Nishihara, H.: Integrated optical components and devices using periodic structures. IEEE Journal of Quantum Electronics, 22:845–867, 1986Google Scholar
  77. [77]
    Nishihara, H.; Haruna, M.; Suhara, T.: Optical Integrated Circuits. McGraw-Hill, NewYork, 1989Google Scholar
  78. [78]
    Petit, R. Editor: Electromagnetic Theory of Gratings. Springer, Berlin, 1980Google Scholar
  79. [79]
    Clemens, P.C. et al.: 8-channel optical demultiplexer realized as SiO2/Si flat-field spectrograph. IEEE Photonic Technology Letters, 6:1109–1111, 1994Google Scholar
  80. [80]
    Sun, Z.J.; McGreer, K.A.; Broughton, J.N.: Integrated concave grating WDM demultiplexer with 0.144 nm channel spacing. Electronics Letters, 33:1140–1142, 1997Google Scholar
  81. [81]
    Cremer, C. et al.: Monolithically integrated DWDM receiver. IEE Proceedings, 140:71–74, 1993Google Scholar
  82. [82]
    Liu, K.; Tong, F.; Bond, S. W.: Planar grating wavelength demultiplexer. Proc. SPIE, 2024:278–285, 1993Google Scholar
  83. [83]
    Dragone, C.: An N x N opt ical multiplexer using a planar arrangement of two star couplers. IEEE Photonic Technology Letters, 3:812–815, 1991Google Scholar
  84. [84]
    Takahashi, H.; Oda, K.; Toba, H.; Inoue, Y.: Transmission characteristics of arrayed waveguide N x N wavelength multiplexer. IEEE Journal of Lightwave Technology, 13:447–455, 1995Google Scholar
  85. [85]
    Teshima, M.; Koga, M.; Sato, K.-I.: Performance of multiwavelength simultaneous monitoring circuit employing arrayed-waveguide grating. IEEE Journal of Lightwave Technology, 14:2277–2285, 1996Google Scholar
  86. [86]
    Amersfoort, M.R. et al.: Phased-array wavelength demultiplexer with flattened wavelength response. Electronics Letters, 30:300–302, 1994Google Scholar
  87. [87]
    Amersfoort, M.R. et al.: Passband broadening of integrated arrayed waveguide filters using multimode interferenz couplers. Electronics Letters, 32:449–451, 1996Google Scholar
  88. [88]
    Okamoto, K.; Yamada, H.: Arrayed waveguide grating multiplexer with flat spectral response. Optics Letters, 20:43–45, 1995Google Scholar
  89. [89]
    Adar, R. et al.: Broad-band array multiplexers made with silica waveguides on silicon. IEEE Journal of Lightwave Technology, 11:212–219, 1993Google Scholar
  90. [90]
    März, R.; Nolting, H.P.: Spectral properties of asymmetrical optical directional couplers with periodic structures. Optical and Quantum Electronics, 19:273–287, 1987Google Scholar
  91. [91]
    Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Systems Technology, 48:2909–2947, 1969Google Scholar
  92. [92]
    Yariv, A.: Coupled mode theory of guided wave optics. IEEE Journal of Quantum Electronics, 9:919–933, 1973Google Scholar
  93. [93]
    Kogelnik, H.: Filter response of nonuniform almost-periodic structures. Bell Systems Technology, 55:632–637, 1976Google Scholar
  94. [94]
    Jacob, J.:A Goos-Hänchen effect for Bragg reflection. AEÜ, 39:69–72, 1985Google Scholar
  95. [95]
    Weller-Brophy, L.A.; Hall, D.G.: Local normal mode analysis of guided mode interactions with waveguide gratings. IEEE Journal of Lightwave Technology, 6:1069–1082, 1988Google Scholar
  96. [96]
    Wagatsuma, K.; Sakaki, H.; Saito, S.:Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters. IEEE Journal of Quantum Electronics, 15:632–637, 1979Google Scholar
  97. [97]
    Furuya, K.; Suematsu, Y.; Shigeo, S.: Integrated optical branching filter consisting of three-dimensional waveguide and its nonradiative condition. IEEE Transactions on Circuits and Systems, 26:1049–1054, 1979Google Scholar
  98. [98]
    Heise, G.; März, R.; Schienle, M.: Investigation of Bragg gratings on planar InGaAsP/lnP waveguides at normal and oblique incidence. IEEE Journal of Lightwave Technology, 7: 735–739, 1989Google Scholar
  99. [99]
    Maxwell, G.D. et al.: Photosensitivity in planar silica waveguides. International Journal of Optoelectronics, 9:289–293, 1994Google Scholar
  100. [100]
    Kashyap, R. et al.: Light-sensitive optical fibers and planar waveguides. British Telecom Technology Journal, 11:150–160, 1993Google Scholar
  101. [101]
    Coldren, L.A.; Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, NewYork, 1995Google Scholar
  102. [102]
    Korotky, S.K.: Three-space representation of phase-mismatch switching in coupled two-state optical systems. IEEE Journal of Quantum Electronics, 22:952–958, 1986Google Scholar
  103. [103]
    Walker, R.G. et al.: 1.3/1.5 μm Mach-Zehnder wavelength duplexers for integrated optoelectronic transceiver modules. IEE Proceedings,J 137:33–38, 1990Google Scholar
  104. [104]
    Kogelnik, H.; Schmidt, R.V.: Switched directional couplers with alternating Δβ. IEEE Journal of Quantum Electronics, 12:396–401, 1976Google Scholar
  105. [105]
    Bornholdt, C et al.: Meander coupler, a novel wavelength division multiplexer/demultiplexer. Applied Physics Letters, 57:2517–2519, 1990Google Scholar
  106. [106]
    Grawert, M.; Nolting, H.-P.: Syngrat, an electro-optically controlled tunable filter with a synthesized grating structure. Optical and Quantum Electronics, 27:887–896, 1995Google Scholar
  107. [107]
    Herrmann, H.; Rust, U; Schäfer, K.: Tapered acoustical directioal couplers for integrated acousto-optical mode converters with weighted coupling. IEEE Journal of Lightwave Technology, 13:364–374, 1995Google Scholar
  108. [108]
    Tian, F.; Herrmann, H.: Interchannel interference in multiwavelength operation of integrated acoustooptical filters and switches. IEEE Journal of Lightwave Technology, 13:1146–1154, 1995Google Scholar
  109. [109]
    Karthe, W.; Müller, R.: Integrierte Optik: Geest & Portig, Leipzig, 1991Google Scholar
  110. [110]
    Schüppert, B. et al.: Integrated optics in silicon and SiGe-heterostructures. IEEE Journal of Lightwave Technology, 14:2311–2323, 1996Google Scholar
  111. [111]
    Lilienhoff, H.J. et al.: Field-induced index profiles of multimode ion-exchanged strip waveguides. IEEE Journal of Quantum Electronics, 18:1877–1883, 1982Google Scholar
  112. [112]
    Ramaswami, R.V.; Srivastava, R.: Ion-exchanged glass waveguides: A review. IEEE Journal of Lightwave Technology, 6:984–1002, 1988Google Scholar
  113. [113]
    Bååk, T.: Silicon oxynitrid; a material for GRIN optics. Applied Optics, 21:1069–1072, 1982Google Scholar
  114. [114]
    Bossi, D.E.; Hammer, J.M.; Shaw, J.M.: Optical properties of silicon oxynitrid dielectric waveguides. Applied Optics, 26:609–611, 1987Google Scholar
  115. [115]
    Hammond, C.R.: Silica based binary glass systems-refractive index behaviour and composition in optical fibres. Optical and Quantum Electronics, 9:399–409, 1977Google Scholar
  116. [116]
    Hammond, C.R.: Silica-based binary glass systems: Wavelength dispersive properties and composition in optical fibres. Optical and Quantum Electronics, 10:163–170, 1978Google Scholar
  117. [117]
    Pearsell, T.P. Editor: GaInAsP Alloy Semiconductors. Wiley, New York, 1982Google Scholar
  118. [118]
    Glingener, C.; Schulz, D.; Voges, E.: Modeling of optical modulators on III-V semiconductors. IEEE Journal of Quantum Electronics. 31:101–112, 1995Google Scholar
  119. [119]
    Adachi, S.: Optical properties, of AlxGa1-xAs alloys. Physical Review B, 38:12345–12352, 1988Google Scholar
  120. [120]
    Adachi, S.: Optical properties of In1-xGaxAsyP1-y alloys. Physical Review B, 39:12612–12621, 1989Google Scholar
  121. [121]
    Jenkins, D.W.: Optical constants of AlxGa1-xAs. Journal of Applied Physics, 68:1848–1853, 1990Google Scholar
  122. [122]
    Räuber, A.: Chemistry and physica of lithium niobate. In: E. Kaldis, Editor, Current Topics in Material Science, Vol. 1. North-Holland, 1978Google Scholar
  123. [123]
    Weis, R.S.; Gaylord, T.K.: Lithium niobate: Summary of physical properties and crystal structure. Applied Physics, A37:191–203, 1985Google Scholar
  124. [124]
    Schlarb, U.; Betzler, K.: Refractive indices of lithium niobate as a function of temperature, wavelength and composition: A generalized fit. Physical Review B, 48:15613–15619, 1993Google Scholar
  125. [125]
    Yardley. J.T.: Design and characterization of organic waveguides for passive and active devices. In: F. Kajzar and J.D. Swalen, Editor, Organic Thin Films for Waveguiding Nonlinear Optics. Gordon and Breach, Amsterdam, 1996Google Scholar
  126. [126]
    Booth, B.L.: Polymers for integrated optical waveguides. In: C.P. Wong, Editor, Polymers for Electronic and Photonic Applications. Academic Press, Boston, 1993Google Scholar
  127. [127]
    Knoche, T.: Integriert-optische Komponenten in Polymeren. In: Informatik/Kommunikationstechnik, volume Reihe 10,Nr. 474 of Fortschritt-Berichte. VDI-Verlag, Düsseldorf, 1997Google Scholar
  128. [128]
    Flipse, M.C. et al.: Reliability assurance of polymer-based solid state optical switches. Proc. SPIE, 3278:8–62, 1998Google Scholar
  129. [129]
    Fischbeck, G. et al.: Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range. Electronics Letters, 33:518–519, 1997Google Scholar
  130. [130]
    Miller, R.D.: Poled polymers for X(2) applications. In: F. Kajzar and J.D. Swalen, Editor, Organic Thin Films for Waveguiding Nonlinear Optics. Gordon and Breach, Amsterdam, 1996Google Scholar
  131. [131]
    Kuzyk, M.C.: Polymers as third-order nonlinear-optical materials. In: C.P. Wong, Editor, Polymers for Electronic and Photonic Applications. Academic Press, Boston, 1993Google Scholar
  132. [132]
    van Tomme, E. et al.: Integrated optic devices based on nonlinear optical polymers. IEEE Journal of Quantum Electronics, 27:778–787, 1991Google Scholar
  133. [133]
    März, R.; Mahlein, H.F.; Acklin, B.: Yield and cost model for integrated optical chips. IEEE Journal of Lightwave Technology, 14:158–163, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • R. März

There are no affiliations available

Personalised recommendations