Skip to main content

Planare optische Schaltungen

  • Chapter
  • 519 Accesses

Zusammenfassung

Der Begriff „Integrierte Optik” wurde 1969 von Miller [1] eingeführt. Er stand seinerzeit als Synonym für die Vision einer planaren optischen Schaltungstechnik, mit der es eines Tages möglich werden sollte, optische Sendeund Empfangsbausteine und die für das Verteilen, Schalten und Filtern notwendigen passiven Komponenten monolithisch auf einem Chip zu integrieren.

Allgemeine Literatur

Marcuse, D.: Light Transmission Optics. Van Nostrand, NewYork, 1972 — Marcuse, D.: Theory of Dielectric Optical Waveguides. Academic Press,New York, 1974 — Unger, H. G.: Planar Optical Waveguides and Fibres. Clarendon, Oxford, 1977 — Tamir, T. editor. Guided-Wave Optoelectronics. Springer, Berlin, third edition, 1988 — Snyder, A. W. und Love, J.D.: OpticalWaveguide Theory. Chapman and Hall, London, 1983 — Haus, H.A.: Waves and Fields in Optoelectronics. Prentice Hall, Englewood Cliffs, 1984 — Hunsperger, R. G.: Integrated Optics: Theory and Technology. Springer, Berlin, 1984 — Yariv, A. und Yeh, P.:Optical Waves in Crystals. Wiley, NewYork, 1984 — Nishihara, H.;Haruna, M.und Suhara, T.: Optical Integrated Circuits.McGraw-Hill,NewYork, 1989 — Karthe, W. und Müller, R.: Integrierte Optik. Geest & Portig, Leipzig, 1991 — Vasallo, C: Optical Waveguide Concepts. Elsevier, Amsterdam, 1991 — Ebeling, K. J. editor: Integrierte Optoelektronik. Springer, Berlin,second edition, 1992 — März, R.: Integrated Optics: Designand Modeling. Artech House,Boston,1994 Ladouceur F. und Love, J. D.: Silica-Based Burried Channel Waveguides and Devices. Chapman and Hall, London, 1996 — Suhara T. und Nishihara, H.: Integrated optical components and devices using periodic structures. IEEE Journal of Quantum Electronics,22: 845–867,1986 — Coldren, L. A. und Corzine, S. W.:Diode Lasers and Photonic Integrated Circuits. Wiley, NewYork, 1995 — Adams ,M. J. editor: An Introduction to Optical Waveguides. Wiley, NewYork, 1981 — Lee, D. L., editor:Electromagnetic Principles of Integrated Optics. Wiley, NewYork, 1986 — Hutcheson, L. D., editor:Optical Circuits and Components, Design and Applications. Marcel Dekker, NewYork, 1987 — Guekos, G., editor: Photonic Devices. Springer, Berlin, 1999

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Miller, S.E.: Integrated optics:An introduction. Bell Systems Technology, 48: 2059–2068, 1969

    Google Scholar 

  2. Roß, L.: Integrated optical components in substrate glasses. Glastechnische Berichte, 62:285–297, 1989

    Google Scholar 

  3. Hornak, L.A. et al.: The impact of polymer integrated optics on silicon wafer area networks. Proc. SPIE, 1337:12–22,1990

    Google Scholar 

  4. Booth, R.L. et al.: PolyguideTM polymeric technology for optical inteconnect circuits and components. Proc.SPIE, 3005:238–250, 1997

    Google Scholar 

  5. März, R.: Integrated Optics: Design and Modeling. Artech House, Boston, 1994

    Google Scholar 

  6. Smit, M.K.: PHASAR-based WDM devices: Principles,design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2:236–250, 1996

    Google Scholar 

  7. Alferness, R.C.:Waveguide electro optic switch arrays. IEEE Journal on Selected Areas in Communications, 6:1117–1130, 1988

    Google Scholar 

  8. Ikegami, R.C. Kawaguchi, H.: Semiconductor devices in photonic switching. IEEE Journal on Selected Areas in Communications, 6: 1131–1140, 1988

    Google Scholar 

  9. Wenger, G. et al.: A completely packaged strictly nonblocking 8 x 8 optical matrix switch on InGaAsP/InP. IEEE Journal of Lightwave Technology, 14:2332–2337, 1996

    Google Scholar 

  10. Pöhlmann, T.; Neyer, A.; Voges, E.: Polarization independent Ti:LiNbO3 switches and filters. IEEE Journal of Quantum Electronics, 27:602–607, 1991

    Google Scholar 

  11. Heidrich, H.; Hoffmann, D.: Review on integrated-optics switch matrices in LiNbO3. The Transactions of the IEICE, E73, No.1:94–98, 1989?

    Google Scholar 

  12. Nagase, R. et al.: Silica-based 8 x 8 opt ical matrix switch module with hybrid integrated driving circuit and its system application. IEEE Journal of Lightwave Technology, 12: 1631–1639, 1994

    Google Scholar 

  13. Okuno, M. et al.: Silica-based thermo-optic switches, NTT Review, 7/5:57–63,1995

    Google Scholar 

  14. Moosburger, R. et al.: Digital optical switch based on’ oversized’ polymer rib waveguides. Electronics Letters, 32:544–545, 1996

    Google Scholar 

  15. Keil, N.: Optische Schalter aus Kunststoff-Schlüsselkomponenten in den Telekomnetzen der Zukunft. In A. Grütz, editor, Jahrbuch der Elektrotechnik, volume 16. VDI-Verlag, 1997

    Google Scholar 

  16. Wehrmann, F.et al.: Integrated optical, wavelength selective, acoustically tunable 2 x 2 switches (add-drop multiplexers) in LiNbO3. IEEE Journal on Selected Areas in Communications, 2:263–269, 1996

    Google Scholar 

  17. Joyner, C.H..; Zirngibl, M.; Centanni, J.C: An 8-channel digitally tunable transmitter with electro-absorption modulated output by selective-area epitaxy. IEEE Photonic Technology Letters, 7:1034–1036, 1995

    Google Scholar 

  18. Koch, T.L.; Koren, U.:Semiconductor photonic integrated circuit. IEEE Journal of Quantum Electronics, 27:641–653, 1991

    Google Scholar 

  19. Matz, R.: Photonic integrated circuits, technology and components. In S.A. Campell and J.J. Lewerenz, Editoren, Techniques and Industrial Applications, volume 2 of Semiconductor Micromachining. Wiley, New York, 1997

    Google Scholar 

  20. Kaiser, R. et al.: Monolithically integrated transceivers on InP: The development of a generic integration concept and its technological challenges. Proc. Conference on Indiumphosphid and Related Materials (IPRM), pages 431–434, 1998

    Google Scholar 

  21. Cremer, C. et al.: Grating spectrograph integrated with photodiode array in InGaAsP/InP. IEEE Photonic Technology Letters, 4:108–110,1992

    Google Scholar 

  22. Tong, F. et al.: A wavelength matching scheme for multiwavelength optical links and networks using grating demultiplexers. IEEE/Photonic Technology Letters, 7:688–690, 1995

    Google Scholar 

  23. Kaiser, R. et al.: Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications. Optical and Quantum Electronics, 28:565–573,1996

    Google Scholar 

  24. Lichtwellenleiter Verbindungselemente und passive Bauteile-Grundlegende Prüf-und Meßverfahren, Deutsche Normen der Reihen DIN EN 61300-2 und 61300-3 edition. (identisch mit EN 61300-2/-3 bzw. IEC 61300-2/-3)

    Google Scholar 

  25. Dagenais, M. et al.: Applications and challenges of the OEIC technology: A report of the 1989 Hilton Head workshop. IEEE Journal of Lightwave Technology, 8:846–862, 1989

    Google Scholar 

  26. Hashimoto, T. et al.: Multichip optical hybrid integration technique with planar lightwave circuit platform. IEEE Journal of Lightwave Technology, 16:1249–1257, 1998

    Google Scholar 

  27. Snyder, A.W,; Love, J.D: Optical Waveguide Theory. Chapman and Hall, London, 1983

    Google Scholar 

  28. Haruna, M.: Thermooptic waveguide devices. In: Y. Suernatsu, Editor, Optical Devices and Fibers. OHMSHA, 1985

    Google Scholar 

  29. Guekos, G.: Editor. Photonic Devices. Springer, Berlin, 1999

    Google Scholar 

  30. Schmidt, F.: An adaptive approach to the numerical solution of Fresnel’s wave equation. IEEE Journal of Lightwave Technology, 11:1425–1434, 1993

    Google Scholar 

  31. Cost 216 Working Goup I. Comparison of different modelling techniques for longitudinally invariant integrated optical waveguides. IEE Proceedings.I 136:273-280,1989

    Google Scholar 

  32. Nolting, H.-P.; Mürz, R.: Results of benchmark tests for different numerical BPM algorithms. IEEE Journal of Lightwave Technology, 13:216–224, 1995

    Google Scholar 

  33. Unger, H.G.: Planar Optical Waveguides and Fibres. Clarendon, Oxford, 1977

    Google Scholar 

  34. Marcuse, D.: Theory of Dielectric Optical Waveguides. Academic Press, NewYork, 1974

    Google Scholar 

  35. Lewin, L.: Theory of Waveguides. Newes-Butterworth, London, 1975

    Google Scholar 

  36. Chilwell, J.; Hodgekinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. Journal of the Optical Society of America, A1:742–753, 1984

    Google Scholar 

  37. Schlosser, W.O.; Unger, H.G.: Partially filled waveguides and surface waveguides of rectangular crosssection. In: L. Young, Editor, Advances in Microwaves, volume 1. Academic Press, New York, 1969

    Google Scholar 

  38. Marcatili, E.A.J.: Dielectric rectangular waveguide and directional coupler for integrated optics.Bell Systems Technology, 48:2071–2102, 1969

    Google Scholar 

  39. Hardy, A.; Streifer, W.: Coupled mode theory of parallel waveguides. IEEE Journal of Lightwave Technology, 3:1135–1146, 1985

    Google Scholar 

  40. Haus, H.A. et al.: Coupled-mode theory of optical waveguides. IEEE Journal of Lightwave Technology, 5:16–23, 1987

    Google Scholar 

  41. Weinert, C.: Three dimensional coupled mode method for simulation of coupler and filter structures. IEEE Journal of Lightwave Technology, 10:1218–1225, 1992

    Google Scholar 

  42. Feit, M.D.; Fleck Jr, J.A.: Light propagation in graded-index optical fibres. Applied Optics, 17:3990–3998, 1978

    Google Scholar 

  43. van Roey,J.: van der Donk, J.: Lagasse, P.E.: Beam prop agation: Analysis and assessment. Journal of the Optical Society of America, 71:803–810, 1981

    Google Scholar 

  44. Gerdes, J.; Pregla, R.: Beam-propagation algorithm based on the method of lines. Journal of the Optical Society of America, B8:389–394, 1991

    Google Scholar 

  45. Pregla, R.: MoL BPM-method of lines based beam propagation method. In: Methods for Modeling and Simulation of Optical Guided-Wave Devices. Elsevier, Amsterdam, 1995

    Google Scholar 

  46. Huang, W.P. et al.: The finite-difference vector beam propagation method: Analysis and assessment. IEEE Journal of Lightwave Technology, 10:295–305, 1992

    Google Scholar 

  47. Hadley, G.R.: Multistep method for wide angle beam propagation. Optics Letters, 17:1743–1745, 1992

    MathSciNet  Google Scholar 

  48. Yevick, D.; Hermansson, B.: Efficient beam propagation techniques. IEEE Journal of Quantum Electronics, 26:109–112, 1990

    Google Scholar 

  49. Yevick, D. et al.: Split-operator electric field reflection techniques. IEEE Photonic Technology Letters, 3:527–529, 1991

    Google Scholar 

  50. Koch, T.B. et al.: Computation of wave propagation in integrated optical devices using z-transient variational principle. IEEE Transactions on Magnetics, 27:3876–3879, 1991

    Google Scholar 

  51. Schmidt, F.; März, R.: On the reference wave vector of paraxial Helmholtz equations. IEEE Journal of Lightwave Technology, 14:2395, 1996

    Google Scholar 

  52. Hoekstra, H.J.W.M.; Krijnen, G.J.M.; Lambeck, P.V,: Efficient interface conditons for the FDBPM. IEEE Journal of Lightwave Technology, 10:1352–1355, 1992

    Google Scholar 

  53. Hadley, G.R.: Transparent boundary condition for the BPM. IEEE Journal of Quantum Electronics, 28:363–370, 1992

    Google Scholar 

  54. Baskakov, V.A.; Popov, A.V.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion, 14:123–128, 1991

    MathSciNet  Google Scholar 

  55. Schmidt, F.; Deuflhard, P.: Discrete transparent boundary conditions for Fresnel’s equation. Proc. Conference on Integrated Photonics Research (IPR), 94/3:45–47, 1994

    Google Scholar 

  56. Kaczmarski, P.; Lagasse, P.E.: Bidirectional beam propagation method. Electronics Letters, 24:675–676, 1988

    Google Scholar 

  57. Sztefka, G.; Nolting, H.-P.: Bidirectional eigenmode propagation for large refractive index steps. IEEE Photonic Technology Letters, 5:554–557, 1993

    Google Scholar 

  58. Glassner, A.S.Editor: An Introduction to Ray Tracing. Academic Press, London, 1989

    MATH  Google Scholar 

  59. Milton, A.F., Burns, W.K.: Mode coupling in optical waveguide horns. IEEE Journal of Quantum Electronics, 13:828–835, 1977

    Google Scholar 

  60. Sporleder, F.; Unger, H.-G. Editoren: Waveguide Tapers, Transitions and Couplers. Peregrinus, London, 1979

    Google Scholar 

  61. Zengerle, R. et al.: Low-loss fibre-chip coupling by buried laterally tapered InGaAsP/InP waveguide structure. Electronics Letters, 28:631–632, 1992

    Google Scholar 

  62. Wenger, G. et al.: Design and fabrication of monolithic optical spot size transformers (MOST’s) for highly efficient fiber-chip coupling. IEEE Journal of Lightwave Technology, 12:1782–1790, 1994

    Google Scholar 

  63. Schwander, T. et al.: Simple and low-loss fibre-to-chip coupling by integrated field-matching waveguide in InP. Electronics Letters, 29:326–328, 1993

    Google Scholar 

  64. Vasallo, C.: Optical Waveguide Concepts. Elsevier, Amsterdam, 1991

    Google Scholar 

  65. Pregla, R.; Ahlers, E.: Method of lines for analysis of arbitrarily curved waveguide bends. Electronics Letters, 30:1478–1479, 1994

    Google Scholar 

  66. Broberg, B.et al.: A novel integrated optics wavelength filter in InGaAsP-InP. IEEE Journal of Lightwave Technology, 4:196–203, 1986

    Google Scholar 

  67. Ulrich, R.: Image formation by phase coincidence in optical waveguides. Optics Communications, 13:259–264, 1975

    Google Scholar 

  68. Bryngdahl, O.: Image formation using self-imaging techniques. Journal of the Optical Society of merica, 63:416–419, 1973

    Google Scholar 

  69. Soldano, L.B.; Pennings, E.C.M.: Optical multi-mode interference devices based on self-imaging: Principles and applications. IEEE Journal of Lightwave Technology, 13:615–627, 1995

    Google Scholar 

  70. Bachmann, M.; Besse, P.A.; Melchior, H.: General self-imaging properties in N x N multimode inter ference couplers including phase relations. Applied Optics, 33:3905–3911, 1994

    Google Scholar 

  71. Bachmann, M.; Besse, P.A.; Melchior, H.: Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting. Applied Optics, 34:034, 1995

    Google Scholar 

  72. Bachmann, M. et al.: New 2 x 2 and 1 x 3 multimode interference couplers with free selection of power splitting ratios. IEEE Journal of Lightwave Technology, 14:2286–2293, 1996

    Google Scholar 

  73. Levy, D.S.; Scarmozzino, R.; Osgood Jr, R.M.:Length reduction of tapered N x N MMI devices. IEEE Photonic Technology Letters, 10:830–832, 1998

    Google Scholar 

  74. Pennings, E.C.M. et al.: Reflection properties of multimode interference devices. IEEE Photonic Technology Letters, 6:715–718, 1994

    Google Scholar 

  75. März, R.; Cremer, C: On the theory of planar spectrographs. IEEE Journal of Lightwave Technology, 10:2017–2022, 1992

    Google Scholar 

  76. Suhara, T.; Nishihara, H.: Integrated optical components and devices using periodic structures. IEEE Journal of Quantum Electronics, 22:845–867, 1986

    Google Scholar 

  77. Nishihara, H.; Haruna, M.; Suhara, T.: Optical Integrated Circuits. McGraw-Hill, NewYork, 1989

    Google Scholar 

  78. Petit, R. Editor: Electromagnetic Theory of Gratings. Springer, Berlin, 1980

    Google Scholar 

  79. Clemens, P.C. et al.: 8-channel optical demultiplexer realized as SiO2/Si flat-field spectrograph. IEEE Photonic Technology Letters, 6:1109–1111, 1994

    Google Scholar 

  80. Sun, Z.J.; McGreer, K.A.; Broughton, J.N.: Integrated concave grating WDM demultiplexer with 0.144 nm channel spacing. Electronics Letters, 33:1140–1142, 1997

    Google Scholar 

  81. Cremer, C. et al.: Monolithically integrated DWDM receiver. IEE Proceedings, 140:71–74, 1993

    Google Scholar 

  82. Liu, K.; Tong, F.; Bond, S. W.: Planar grating wavelength demultiplexer. Proc. SPIE, 2024:278–285, 1993

    Google Scholar 

  83. Dragone, C.: An N x N opt ical multiplexer using a planar arrangement of two star couplers. IEEE Photonic Technology Letters, 3:812–815, 1991

    Google Scholar 

  84. Takahashi, H.; Oda, K.; Toba, H.; Inoue, Y.: Transmission characteristics of arrayed waveguide N x N wavelength multiplexer. IEEE Journal of Lightwave Technology, 13:447–455, 1995

    Google Scholar 

  85. Teshima, M.; Koga, M.; Sato, K.-I.: Performance of multiwavelength simultaneous monitoring circuit employing arrayed-waveguide grating. IEEE Journal of Lightwave Technology, 14:2277–2285, 1996

    Google Scholar 

  86. Amersfoort, M.R. et al.: Phased-array wavelength demultiplexer with flattened wavelength response. Electronics Letters, 30:300–302, 1994

    Google Scholar 

  87. Amersfoort, M.R. et al.: Passband broadening of integrated arrayed waveguide filters using multimode interferenz couplers. Electronics Letters, 32:449–451, 1996

    Google Scholar 

  88. Okamoto, K.; Yamada, H.: Arrayed waveguide grating multiplexer with flat spectral response. Optics Letters, 20:43–45, 1995

    Google Scholar 

  89. Adar, R. et al.: Broad-band array multiplexers made with silica waveguides on silicon. IEEE Journal of Lightwave Technology, 11:212–219, 1993

    Google Scholar 

  90. März, R.; Nolting, H.P.: Spectral properties of asymmetrical optical directional couplers with periodic structures. Optical and Quantum Electronics, 19:273–287, 1987

    Google Scholar 

  91. Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Systems Technology, 48:2909–2947, 1969

    Google Scholar 

  92. Yariv, A.: Coupled mode theory of guided wave optics. IEEE Journal of Quantum Electronics, 9:919–933, 1973

    Google Scholar 

  93. Kogelnik, H.: Filter response of nonuniform almost-periodic structures. Bell Systems Technology, 55:632–637, 1976

    Google Scholar 

  94. Jacob, J.:A Goos-Hänchen effect for Bragg reflection. AEÜ, 39:69–72, 1985

    Google Scholar 

  95. Weller-Brophy, L.A.; Hall, D.G.: Local normal mode analysis of guided mode interactions with waveguide gratings. IEEE Journal of Lightwave Technology, 6:1069–1082, 1988

    Google Scholar 

  96. Wagatsuma, K.; Sakaki, H.; Saito, S.:Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters. IEEE Journal of Quantum Electronics, 15:632–637, 1979

    Google Scholar 

  97. Furuya, K.; Suematsu, Y.; Shigeo, S.: Integrated optical branching filter consisting of three-dimensional waveguide and its nonradiative condition. IEEE Transactions on Circuits and Systems, 26:1049–1054, 1979

    Google Scholar 

  98. Heise, G.; März, R.; Schienle, M.: Investigation of Bragg gratings on planar InGaAsP/lnP waveguides at normal and oblique incidence. IEEE Journal of Lightwave Technology, 7: 735–739, 1989

    Google Scholar 

  99. Maxwell, G.D. et al.: Photosensitivity in planar silica waveguides. International Journal of Optoelectronics, 9:289–293, 1994

    Google Scholar 

  100. Kashyap, R. et al.: Light-sensitive optical fibers and planar waveguides. British Telecom Technology Journal, 11:150–160, 1993

    Google Scholar 

  101. Coldren, L.A.; Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, NewYork, 1995

    Google Scholar 

  102. Korotky, S.K.: Three-space representation of phase-mismatch switching in coupled two-state optical systems. IEEE Journal of Quantum Electronics, 22:952–958, 1986

    Google Scholar 

  103. Walker, R.G. et al.: 1.3/1.5 μm Mach-Zehnder wavelength duplexers for integrated optoelectronic transceiver modules. IEE Proceedings,J 137:33–38, 1990

    Google Scholar 

  104. Kogelnik, H.; Schmidt, R.V.: Switched directional couplers with alternating Δβ. IEEE Journal of Quantum Electronics, 12:396–401, 1976

    Google Scholar 

  105. Bornholdt, C et al.: Meander coupler, a novel wavelength division multiplexer/demultiplexer. Applied Physics Letters, 57:2517–2519, 1990

    Google Scholar 

  106. Grawert, M.; Nolting, H.-P.: Syngrat, an electro-optically controlled tunable filter with a synthesized grating structure. Optical and Quantum Electronics, 27:887–896, 1995

    Google Scholar 

  107. Herrmann, H.; Rust, U; Schäfer, K.: Tapered acoustical directioal couplers for integrated acousto-optical mode converters with weighted coupling. IEEE Journal of Lightwave Technology, 13:364–374, 1995

    Google Scholar 

  108. Tian, F.; Herrmann, H.: Interchannel interference in multiwavelength operation of integrated acoustooptical filters and switches. IEEE Journal of Lightwave Technology, 13:1146–1154, 1995

    Google Scholar 

  109. Karthe, W.; Müller, R.: Integrierte Optik: Geest & Portig, Leipzig, 1991

    Google Scholar 

  110. Schüppert, B. et al.: Integrated optics in silicon and SiGe-heterostructures. IEEE Journal of Lightwave Technology, 14:2311–2323, 1996

    Google Scholar 

  111. Lilienhoff, H.J. et al.: Field-induced index profiles of multimode ion-exchanged strip waveguides. IEEE Journal of Quantum Electronics, 18:1877–1883, 1982

    Google Scholar 

  112. Ramaswami, R.V.; Srivastava, R.: Ion-exchanged glass waveguides: A review. IEEE Journal of Lightwave Technology, 6:984–1002, 1988

    Google Scholar 

  113. Bååk, T.: Silicon oxynitrid; a material for GRIN optics. Applied Optics, 21:1069–1072, 1982

    Google Scholar 

  114. Bossi, D.E.; Hammer, J.M.; Shaw, J.M.: Optical properties of silicon oxynitrid dielectric waveguides. Applied Optics, 26:609–611, 1987

    Google Scholar 

  115. Hammond, C.R.: Silica based binary glass systems-refractive index behaviour and composition in optical fibres. Optical and Quantum Electronics, 9:399–409, 1977

    Google Scholar 

  116. Hammond, C.R.: Silica-based binary glass systems: Wavelength dispersive properties and composition in optical fibres. Optical and Quantum Electronics, 10:163–170, 1978

    Google Scholar 

  117. Pearsell, T.P. Editor: GaInAsP Alloy Semiconductors. Wiley, New York, 1982

    Google Scholar 

  118. Glingener, C.; Schulz, D.; Voges, E.: Modeling of optical modulators on III-V semiconductors. IEEE Journal of Quantum Electronics. 31:101–112, 1995

    Google Scholar 

  119. Adachi, S.: Optical properties, of AlxGa1-xAs alloys. Physical Review B, 38:12345–12352, 1988

    Google Scholar 

  120. Adachi, S.: Optical properties of In1-xGaxAsyP1-y alloys. Physical Review B, 39:12612–12621, 1989

    Google Scholar 

  121. Jenkins, D.W.: Optical constants of AlxGa1-xAs. Journal of Applied Physics, 68:1848–1853, 1990

    Google Scholar 

  122. Räuber, A.: Chemistry and physica of lithium niobate. In: E. Kaldis, Editor, Current Topics in Material Science, Vol. 1. North-Holland, 1978

    Google Scholar 

  123. Weis, R.S.; Gaylord, T.K.: Lithium niobate: Summary of physical properties and crystal structure. Applied Physics, A37:191–203, 1985

    Google Scholar 

  124. Schlarb, U.; Betzler, K.: Refractive indices of lithium niobate as a function of temperature, wavelength and composition: A generalized fit. Physical Review B, 48:15613–15619, 1993

    Google Scholar 

  125. Yardley. J.T.: Design and characterization of organic waveguides for passive and active devices. In: F. Kajzar and J.D. Swalen, Editor, Organic Thin Films for Waveguiding Nonlinear Optics. Gordon and Breach, Amsterdam, 1996

    Google Scholar 

  126. Booth, B.L.: Polymers for integrated optical waveguides. In: C.P. Wong, Editor, Polymers for Electronic and Photonic Applications. Academic Press, Boston, 1993

    Google Scholar 

  127. Knoche, T.: Integriert-optische Komponenten in Polymeren. In: Informatik/Kommunikationstechnik, volume Reihe 10,Nr. 474 of Fortschritt-Berichte. VDI-Verlag, Düsseldorf, 1997

    Google Scholar 

  128. Flipse, M.C. et al.: Reliability assurance of polymer-based solid state optical switches. Proc. SPIE, 3278:8–62, 1998

    Google Scholar 

  129. Fischbeck, G. et al.: Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range. Electronics Letters, 33:518–519, 1997

    Google Scholar 

  130. Miller, R.D.: Poled polymers for X(2) applications. In: F. Kajzar and J.D. Swalen, Editor, Organic Thin Films for Waveguiding Nonlinear Optics. Gordon and Breach, Amsterdam, 1996

    Google Scholar 

  131. Kuzyk, M.C.: Polymers as third-order nonlinear-optical materials. In: C.P. Wong, Editor, Polymers for Electronic and Photonic Applications. Academic Press, Boston, 1993

    Google Scholar 

  132. van Tomme, E. et al.: Integrated optic devices based on nonlinear optical polymers. IEEE Journal of Quantum Electronics, 27:778–787, 1991

    Google Scholar 

  133. März, R.; Mahlein, H.F.; Acklin, B.: Yield and cost model for integrated optical chips. IEEE Journal of Lightwave Technology, 14:158–163, 1996

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

März, R. (2002). Planare optische Schaltungen. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics