Skip to main content

Protein Degradation in Human Disease

  • Chapter
Protein Degradation in Health and Disease

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 29))

Abstract

Intracellular degradation of proteins constitutes a vital regulatory switch in a variety of central cellular processes. Additionally, it provides an essential mechanism in protein turnover for amino acid regeneration. Several mechanisms of protein degradation are known, but the majority of regulatory proteins are degraded through the ubiquitin-proteasome pathway. This pathway has thus been implicated in the control of apoptosis, cell cycle progression, immune response, development, transcriptional regulation, signal transduction, and receptor down-regulation. The complex nature of this, and other proteolysis mechanisms, and their critical roles in cellular processes underlies the existence of many aberrations related to several pathogenic diseases, both acquired and inherited. In this chapter, two major mechanisms of protein degradation, the ubiquitin proteasome system and the lysosome, will be discussed in relation to diseases resulting from mutations in a particular step of the pathways, and from mutations in proteins that induce their stabilization or degradation (summarized in Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accili D, Kadowaki T, Kadowaki H, Mosthaf L, Ullrich A, Taylor SI (1992) Immunoglobulin heavy chain-binding protein binds to misfolded mutant insulin receptors with mutations in the extracellular domain. J Biol Chem 267:586–590

    PubMed  CAS  Google Scholar 

  • Angelman H (1965) Puppet children: a report of three cases. Dev Med Child Neurol 7:681–688

    Article  Google Scholar 

  • Bass J, Turck C, Rouard M, Steiner DF (2000) Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors. Proc Nati Acad Sci USA 97:11905–11909

    Article  CAS  Google Scholar 

  • Bauskin AR, Zhang HP, Fairlie WD, He XY, Russell PK, Moore AG, Brown DA, Stanley KK, Breit SN (2000) The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-beta super-family member, acts as a quality control determinant for correctly folded MIC-1. EMBO J 19:2212–2220

    Article  PubMed  CAS  Google Scholar 

  • Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274:33855–33858

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abetal-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Braulke T (1996) Biology of the lysosome. In: Lloyd JB, Mason RW (eds) Subcellular biochemistry, vol 27. Plenum, New York, pp 15–40.

    Google Scholar 

  • Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272: 9086–9092

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    Article  PubMed  CAS  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    Article  PubMed  CAS  Google Scholar 

  • Cole NB, Ellenberg J, Song J, DiEuliis D, Lippincott-Schwartz J (1998) Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol 140:1–15

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Mallory MJ, Smith JB, Strich R (1997) Stress and developmental regulation of the yeast C-type cyclin Ume3p (Srb11p/Ssn8p). EMBO J 16:4665–4675

    Article  PubMed  CAS  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein mis-folding in SCA1. Nat Genet 19:148–154

    Article  PubMed  CAS  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  PubMed  CAS  Google Scholar 

  • DebBurman SK, Raymond GJ, Caughey B, Lindquist S (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Nati Acad Sci USA 94:13938–13943

    Article  CAS  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/RING H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    Article  PubMed  CAS  Google Scholar 

  • Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713

    Article  PubMed  CAS  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou JH, Masiarz F, Kan YW, Goldfine ID et al. (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40:747–758

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Freemont PS (2000) RING for destruction.? Curr Biol 10:R84–R87

    Article  PubMed  CAS  Google Scholar 

  • Gasset M, Baldwin MA, Lloyd DH, Gabriel JM, Holtzman DM, Cohen F, Fletterick R, Prusiner SB, Sanjay TW (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Nati Acad Sci USA 89:10940–10944

    Article  CAS  Google Scholar 

  • Gaut JR, Hendershot LM (1993) The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5:589–595

    Article  PubMed  CAS  Google Scholar 

  • Gieselmann V (1995) Lysosomal storage diseases. Biochim Biophys Acta 1270:103–136

    Article  PubMed  Google Scholar 

  • Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D, Sanjay TW (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  PubMed  CAS  Google Scholar 

  • Harris DA (1999) Cellular biology of prion diseases. Clin Microbiol Rev 12:429–444

    PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  • Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8:3905–3910

    PubMed  CAS  Google Scholar 

  • Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    Article  PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728

    Article  PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21: 96–102

    PubMed  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Nati Acad Sci USA 92:2563–2567

    Article  CAS  Google Scholar 

  • Imamura T, Haruta T, Takata Y, Usui I, Iwata M, Ishihara H, Ishiki M, Ishibashi O, Ueno E, Sasaoka T, Kobayashi M (1998) Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. J Biol Chem 273:11183–11188

    Article  PubMed  CAS  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Gu Y, Zanusso G, Sy M, Kumar A, Cohen M, Gambetti P, Singh N (2000) The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J Biol Chem 275:38699–38704

    Article  PubMed  CAS  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552

    Article  PubMed  CAS  Google Scholar 

  • Johnson PR, Swanson R, Rakhilina L, Hochstrasser M (1998) Degradation signal masking by heterodimerization of MATalpha2 and MATal blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94:217–227

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki H, Kadowaki T, Cama A, Marcus-Samuels B, Rovira A, Bevins CL, Taylor SI (1990) Muta-genesis of lysine 460 in the human insulin receptor. Effects upon receptor recycling and cooperative interactions among binding sites. J Biol Chem 265:21285–21296

    PubMed  CAS  Google Scholar 

  • Kamp W, Berk MB, Visser CJ, Nottet HS (2000) Mechanisms of HIV-1 to escape from the host immune surveillance. Eur J Clin Invest 30:740–746

    Article  PubMed  CAS  Google Scholar 

  • Kerkau T, Bacik I, Bennink JR, Yewdell JW, Hunig T, Schimpl A, Schubert U (1997) The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 185: 1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat Neurosci 2:176–185

    Article  PubMed  Google Scholar 

  • Kim TW, Pettingell WH, Hallmark OG, Moir RD, Wasco W, Tanzi RE (1997) Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J Biol Chem 272:11006–11010

    Article  PubMed  CAS  Google Scholar 

  • Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman’s syndrome. Nat Genet 15:70–73

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkin-sonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  • Kornitzer D, Raboy B, Kulka RG, Fink GR (1994) Regulated degradation of the transcription factor Gcn4. EMBO J 13:6021–6030

    PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  • Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Nati Acad Sci USA 97:9902–9906

    Article  CAS  Google Scholar 

  • Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, Heard JM, Schwartz O (1998) Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8:483–495

    Article  PubMed  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18:30–38

    PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH, Sanjay TW (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    Article  PubMed  CAS  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    Article  PubMed  CAS  Google Scholar 

  • Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/ proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Nati Acad Sci USA 94:12616–12621

    Article  CAS  Google Scholar 

  • Liddle G, Bledsoe T, Coppage WS Jr (1963) A familial renal disorder simulating primary aldos-teronism but with negligible aldosterone secretion. Trans Assoc Am Phys 76:199–213

    CAS  Google Scholar 

  • Lloyd JB, Mason RW (1996) Biology of the lysosome. Plenum Press, New York

    Book  Google Scholar 

  • Loda M, Cukor B, Tarn SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3:231–234

    Article  PubMed  CAS  Google Scholar 

  • Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574

    Article  PubMed  CAS  Google Scholar 

  • Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340 1970–198.

    Article  PubMed  CAS  Google Scholar 

  • Masucci MG, Ernberg I (1994) Epstein-Barr virus: adaptation to a life within the immune system. Trends Microbiol 2:125–130

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Mäher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Hattori N, Matsumine H (1998) Neurochemical and neurogenetic correlates of Parkinson’s disease. J Neurochem 71:893–902

    Article  PubMed  CAS  Google Scholar 

  • Pagano M (1997) Cell cycle regulation by the ubiquitin pathway. FASEB J 11:1067–1075

    PubMed  CAS  Google Scholar 

  • Payne AS, Kelly EJ, Gitlin JD (1998) Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation Proc Nati Acad Sci USA 95:10854–10859

    Article  CAS  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Nati Acad Sci USA 91:5355–5358

    Article  CAS  Google Scholar 

  • Plemper RK, Wolf DH (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 24:266–270

    Article  PubMed  CAS  Google Scholar 

  • Plemper RK, Boehmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    Article  PubMed  CAS  Google Scholar 

  • Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253

    Article  PubMed  CAS  Google Scholar 

  • Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21:479–505

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245–251

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Nati Acad Sci USA 95:13363–13383

    Article  CAS  Google Scholar 

  • Prusiner SB, Scott MR, DeArmond SJ, Cohen FE (1998) Prion protein biology. Cell 93:337–348

    Article  PubMed  CAS  Google Scholar 

  • Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, alpha 1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271:22791–22795

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  PubMed  CAS  Google Scholar 

  • Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17:4909–4919

    Article  PubMed  CAS  Google Scholar 

  • Sawa T, Imamura T, Haruta T, Sasaoka T, Ishiki M, Takata Y, Takada Y, Morioka H, Ishihara H, Usui I, Kobayashi M (1996) Hsp70 family molecular chaperones and mutant insulin receptor: differential binding specificities of BiP and Hsp70/Hsc70 determines accumulation or degradation of insulin receptor. Biochem Biophys Res Commun 218:449–453

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg GD (1995) Genetic dissection of Alzheimer’s disease, a heterogeneous disorder. Proc Nati Acad Sci USA 92:8552–8559

    Article  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  PubMed  CAS  Google Scholar 

  • Schirmer EC, Lindquist S (1997) Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc Nati Acad Sci USA 94:13932–13937

    Article  CAS  Google Scholar 

  • Schwartz O, Maréchal V, Le Gall S, Lemonnier F, Heard JM (1996) Endocytosis of major histo-compatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2:338–342

    Article  PubMed  CAS  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  • Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389:971–974

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325–6336

    Article  PubMed  CAS  Google Scholar 

  • Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leigh IM, Matlashewski G, Banks L (1998) Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393:229–234

    Article  PubMed  CAS  Google Scholar 

  • Stott K, Blackburn JM, Butler PJ, Perutz M (1995) Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc Nati Acad Sci USA 92:6509–6513

    Article  CAS  Google Scholar 

  • Tanzi RE, Kovacs DM, Kim TW, Moir RD, Guenette SY, Wasco W (1996) The gene defects responsible for familial Alzheimer’s disease. Neurobiol Dis 3:159–168

    Article  PubMed  CAS  Google Scholar 

  • Taylor SI (1992) Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 41:1473–1490

    Article  PubMed  CAS  Google Scholar 

  • Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78:787–798

    Article  PubMed  CAS  Google Scholar 

  • Tyers M, Jorgensen P (2000) Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev 10:54–64

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RDJ, Salehi A, Martens GJM, Grosveld FG, Peter J, Burbach H, Hoi EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247

    Article  PubMed  Google Scholar 

  • Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Nati Acad Sci USA 93:12142–12149

    Article  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  PubMed  CAS  Google Scholar 

  • Weissmann C (1999) Molecular genetics of transmissible spongiform encephalopathies. J Biol Chem 274:3–6

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Gambetti P (1998) Chaperoning brain diseases. Nature 392:23–24

    Article  PubMed  CAS  Google Scholar 

  • Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Nati Acad Sci USA 93:13797–13801

    Article  CAS  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    Article  PubMed  CAS  Google Scholar 

  • Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66:7193–7200

    PubMed  CAS  Google Scholar 

  • Winchester B, Vellodi A, Young E (2000) The molecular basis of lysosomal storage diseases and their treatment. Biochem Soc Trans 28:150–154

    PubMed  CAS  Google Scholar 

  • Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH (1994) A lag in intra-cellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Nati Acad Sci USA 91:9014–9018

    Article  CAS  Google Scholar 

  • Yaglom J, Linskens MH, Sadis S, Rubin DM, Futcher B, Finley D (1995) p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol 15:731–741

    PubMed  CAS  Google Scholar 

  • Yost CS, Lopez CD, Prusiner SB, Myers RM, Lingappa VR (1990) Non-hydrophobic extracyto-plasmic determinant of stop transfer in the prion protein. Nature 343:669–672

    Article  PubMed  CAS  Google Scholar 

  • Zanusso G, Petersen RB, Jin T, Jing Y, Kanoush R, Ferrari S, Gambetti P, Singh N (1999) Protea-somal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem 274:23396–23404

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Rich A (1997) Direct conversion of an oligopeptide from a beta-sheet to an alpha-helix: a model for amyloid formation. Proc Nati Acad Sci USA 94:23–28

    Article  CAS  Google Scholar 

  • Zhou M, Wu X, Ginsberg HN (1996) Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J Biol Chem 271:24769–24775

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plemper, R.K., Hammond, A.L. (2002). Protein Degradation in Human Disease. In: Reboud-Ravaux, M. (eds) Protein Degradation in Health and Disease. Progress in Molecular and Subcellular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56373-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56373-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62714-9

  • Online ISBN: 978-3-642-56373-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics