Skip to main content

Roles of SCF and VHL Ubiquitin Ligases in Regulation of Cell Growth

  • Chapter
Protein Degradation in Health and Disease

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 29))

Abstract

Over the past few years, a growing body of evidence has brought to light critical roles for ubiquitin-dependent protein degradation in controlling the cellular levels of a large variety of proteins such as cyclins, cyclin-dependent kinase inhibitors, oncogenes, and tumor suppressors, which play integral roles in regulation of cell growth. Ubiquitin-dependent protein degradation is a complex, multistep process that proceeds with the tagging of target proteins with a poly-ubiquitin chain and culminates with the processive, ubiquitin- dependent degradation of tagged proteins by the 26S proteasome (Hershko et al. 1983; Hochstrasser 1995, 1996; Hershko and Ciechanover 1998). In the first step, the C-terminus of ubiquitin is covalently linked through a thioester bond to the active site cysteine residue of an El ubiquitin-activating enzyme. Ubiquitin is then transferred from the El via a thioester linkage to an active site cysteine residue in one of a number of E2 ubiquitin-conjugating enzymes. Ubiquitin is then either (1) conjugated directly via an isopeptide bond to the 8-amino group of a lysine in the target protein, (2) conjugated via an isopeptide bond to another ubiquitin moiety on the target protein as part of synthesis of the poly-ubiquitin tag, or (3) transferred from the E2 via a thioester bond to an active site cysteine residue in one of a growing family of E3 ubiquitin ligases, which then conjugate ubiquitin to specific target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) ß-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  PubMed  CAS  Google Scholar 

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    Article  PubMed  CAS  Google Scholar 

  • Burnatowska-Hledin MA, Spielman WS, Smith WL, Shi P, Meyer JM, Dewitt DL (1995) Expression cloning of an AVP-activated, calcium-mobilizing receptor from rabbit kidney medulla. Am J Physiol Cell 268:F1198–F1210

    CAS  Google Scholar 

  • Burnatowska-Hledin M, Zhao P, Capps B, Poel A, Parmelee K, Mungall C, Sharangpani A, Listenberger L (2000) VACM-1, a cullin gene family member, regulates cellular signaling. Am J Physiol Cell 279:C266–C273

    CAS  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of I.?B.? by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862

    Article  PubMed  CAS  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    Article  PubMed  CAS  Google Scholar 

  • Dealy MJ, Nguyen KV, Lo J, Gstaiger M, Krek W, Elson D, Arbeit J, Kipreos ET, Johnson RS (1999) Loss of Cull results in early embryonic lethality and dysregulation of cyclin E. Nat Genet 23:245–248

    Article  PubMed  CAS  Google Scholar 

  • del Pozo JC, Estelle M (1999) The Arabidopsis cullin AtCULl is modified by the ubiquitin-related protein RUB1. Proc Nati Acad Sci USA 96:15342–15347

    Article  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/RING H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    Article  PubMed  CAS  Google Scholar 

  • Donovan JD, Toyn JH, Johnson AL, Johnston LH (1994) P40SDB25, a putative CDK inhibitor, has a role in the M/G1 transition in Saccharomyces cerevisiae. Genes Dev 8:1640–1653

    Article  PubMed  CAS  Google Scholar 

  • Drury LS, Perkins G, Diffley JFX (1997) The Cdc4/Cdc34/Cdc53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16:5966–5976

    Article  PubMed  CAS  Google Scholar 

  • Duan DR, Pause A, Burgess WH, Aso T, Chen DYT, Garrett KP, Conaway RC, Conaway JW, Linehan WM, Klausner RD (1995) Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951

    Article  PubMed  CAS  Google Scholar 

  • Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skplp, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Zhong W, Punkosdy G, Gu S, Zhou L, Seabolt EK, Kipreos ET (1999) CUL-2 is required for the Gl-to S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol 1:486–492

    Article  PubMed  CAS  Google Scholar 

  • Franklin JL, Johnson EM Jr (1998) Control of nuronal size homeostasis by trophic factor-mediated coupling of protein degradation to protein synthesis. J Cell Biol 142:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13:2242–2257

    Article  PubMed  CAS  Google Scholar 

  • Galan J-M, Peter M (1999) Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Nati Acad Sci USA 96:9124–9129

    Article  CAS  Google Scholar 

  • Gmachl M, Gieffers C, Podtelejnikov AV, Mann M, Peters JM (2000) The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc Nati Acad Sci USA 97:8973–8978

    Article  CAS  Google Scholar 

  • Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, Lubensky I, Duan DR, Florence C, Pozzatti R, Walther MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks JD, Isaacs WB, Lerman MI, Zbar B, Linehan WM (1994) Mutations of the VHL tumor suppressor gene in renal carcinoma. Nat Genet 7:85–90

    Article  PubMed  CAS  Google Scholar 

  • Gnarra JR, Duan DR, Weng Y, Humphrey JS, Chen DY, Lee S, Pause A, Dudley CF, Latif F, Kuzmin I, Schmidt L, Duh FM, Stackhouse T, Chen F, Kishida T, Wei MH, Lerman MI, Zbar B, Klausner RD, Linehan WM (1996a) Molecular cloning of the von Hippel-Lindau tumor suppressor gene and its role in renal carcinoma. Biochim Biophys Acta 1242:201–210

    PubMed  Google Scholar 

  • Gnarra JR, Zhou S, Merrill MJ, Wagner JR, Krumm A, Papavassiliou E, Oldfield EH, Klausner RD, 00 Linehan WM (1996b) Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Nati Acad Sci USA 93: 10589–10594

    Google Scholar 

  • Gong L, Yeh ET (1999) Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem 274:12036–12042

    Article  PubMed  CAS  Google Scholar 

  • Gorospe M, Egan JM, Zbar B, Lerman M, Geil L, Kuzmin I, Holbrook NJ (1999) Protective function of the von Hippel-Lindau protein against impaired protein processing in renal carcinoma cells. Mol Cell Biol 19:1289–1300

    PubMed  CAS  Google Scholar 

  • Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, Hattori K, Higashi H, Nakano H, Okumura K, Onoe K, Good RA (1999) Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc Nati Acad Sci USA 96:859–863

    Article  Google Scholar 

  • Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M (1997) Phosphorylation-and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Farlp in budding yeast. Genes Dev 11:3046–3060

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258: 8206–8214

    PubMed  CAS  Google Scholar 

  • Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Nati Acad Sci USA 95:114–119

    Article  CAS  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1998) There’s the Rub: a novel ubiquitin-like modification linked to cell cycle regulation. Genes Dev 12:901–907

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Osaka F, Chiba T, Miyamoto C, Okabayaski K, Shimbara N, Kato S, Tanaka K (1999) Cova-lent modifications of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor lalpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Nati Acad Sci USA 95:7987–7992

    Article  CAS  Google Scholar 

  • Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA (1996) Negative regulation of hypoxiainducible genes by the von Hippel-Lindau protein. Proc Nati Acad Sci USA 93:10595–10599

    Article  CAS  Google Scholar 

  • Joazeiro CAP, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552

    Article  PubMed  CAS  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin ligase. Science 286:309–312

    Article  PubMed  CAS  Google Scholar 

  • Jones N (1990) Structure and function of transcription factors. Semin Cancer Biol 1:5–17

    PubMed  CAS  Google Scholar 

  • Kaiser P, Sia RAL, Bardes EGS, Lew DJ, Reed SI (1998) Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swel. Genes Dev 12:2587–2597

    Article  PubMed  CAS  Google Scholar 

  • Kaiser P, Flick K, Wittenberg C, Reed SI (2000) Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin WG, Conaway RC, Conaway JW (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12:3872–3881

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG, Elledge SJ, Conaway RC, Harper JW, Conaway JW (1999a) Rbxl, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW (1999b) The Rbxl subunit of SCF and VHL E3 ubiquitin ligase activates Rubl modification of cullins Cdc53 and Cul2. Genes Dev 13:2928–2933

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Sato S, Iwai K, Czyzyk-Krezeska MF, Conaway RC, Conaway JW (2000) Activation of HIFl.A ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Nati Acad Sci USA 97:10430–10435

    Article  CAS  Google Scholar 

  • Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ (1994) Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kipl) of cyclin-dependent kinase 4 activation. Cell 79:487–496

    Article  PubMed  CAS  Google Scholar 

  • Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG (1995) Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269:1444–1446

    Article  PubMed  CAS  Google Scholar 

  • Kipreos ET, Lander LE, Wing JP, He WH, Hedgecock EM (1996) cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85:829–839

    Article  PubMed  CAS  Google Scholar 

  • Kishida T, Stackhouse TM, Chen F, Lerman MI, Zbar B (1995) Cellular proteins that bind the von Hippel-Lindau disease gene product: mapping of binding domains and the effect of missense mutations. Cancer Res 20:4544–4548

    Google Scholar 

  • Kitagawa M, Hatakeyama M, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K (1999) An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 18:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Knebelmann B, Ananth S, Cohen HT, Sukhatme VP (1998) Transforming growth factor alpha is a target for the von Hippel-Lindau tumor suppressor. Cancer Res 58:226–231

    PubMed  CAS  Google Scholar 

  • Kominami K, Toda T (1997) Fission yeast WD-repeat protein popl regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum1 and the S-phase initiator Cdc18. Genes Dev 11:1548–1560

    Article  PubMed  CAS  Google Scholar 

  • Kominami K, Ochotorena I, Toda T (2000) Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero-and homo-complexes. Genes Cells 3:721–735

    Article  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H, Sanjay TW (1997) Constitutive transcriptional activation by a beta-catenin-Tef complex in APC-/-colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  • Lammer D, Mathias N, Laplaza JM, Jiang W, Liu Y, Callis J, Goebl M, Estelle M (1998) Modification of yeast Cdc53p by the ubiquitin-related protein rublp affects function of the SCFCdc4 complex. Genes Dev 12:914–926

    Article  PubMed  CAS  Google Scholar 

  • Leverson JD, Joazeiro CA, Page AM, Huang HK, Hieter P, Hunter T (2000) The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol Biol Cell 11:2315–2325

    PubMed  CAS  Google Scholar 

  • Li H, Ko HP, Whitlock JP (1996) Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of ARNT and HIFI alpha. J Biol Chem 271:21262–21267

    Article  PubMed  CAS  Google Scholar 

  • Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17:2208–2214

    Article  PubMed  CAS  Google Scholar 

  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Nati Acad Sci USA 96: 11364–11369

    Article  CAS  Google Scholar 

  • Marti A, Wirbelauer C, Scheffner M, Krek W (1999) Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1:14–19

    Article  PubMed  CAS  Google Scholar 

  • Mathias, N, Johnson, S, Byers, B, Goebl, M (1999) The abundance of cell cycle regulatory protein Cdc4p is controlled by interactions between its F box and Skplp. Mol Cell Biol 19:1759–1767

    PubMed  CAS  Google Scholar 

  • Maxwell PH, Wiggener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  • Meimoun A, Holtzman T, Weissman Z, McBride HJ, Stillman DJ, Fink GR, Kornitzer D (2000) Degradation of the transcription factor Gcn4 requires thekinase Pho85 and the SCFCDC4 ubiquitin-ligase complex. Mol Biol Cell 11:915–927

    PubMed  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K, Hatakeyama S (2000) Targeted disruption of Skp2 results in accumulation of cyclin E and p27 (Kipl), polyploidy and centrosome overduplication. EMBO J 19:2069–2081

    Article  PubMed  CAS  Google Scholar 

  • Nugroho TT, Mendenhall MD (1994) An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 14:3320–3328

    PubMed  CAS  Google Scholar 

  • Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG, Iliopoulos O (1998) The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1:959–968

    Article  PubMed  CAS  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nature Cell Biol 2:423–427

    Article  PubMed  CAS  Google Scholar 

  • Ohta T, Michel JJ, Schottelius AJ, Xiong Y (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3:535–541

    Article  PubMed  CAS  Google Scholar 

  • Osaka F, Kawasaki H, Saeki M, Chiba T, Kawashima S, Tanaka K, Kato S (1998) A new NEDD8-ligating system for cullin-4A. Genes Dev 12:2263–2268

    Article  PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Sa D, Kuras L, Thomas D, Craig KL, Tyers M (1998a) Cdc53 is a scaffold protein for multiple Cdc34/Skpl/F-box protein complex that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12:692–705

    Article  PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Tyers M (1998b) Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 14:236–243

    Article  PubMed  CAS  Google Scholar 

  • Pause A, Lee S, Lonergan KM, Klausner RD (1998) The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Nati Acad Sci USA 95:993–998

    Article  CAS  Google Scholar 

  • Podust VN, Brownell JE, Gladysheva TB, Luo RS, Wang C, Coggins MB, Pierce JW, Lightcap ES, Chau V (2000) A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc Nati Acad Sci USA 97:4579–4584

    Article  CAS  Google Scholar 

  • Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  • Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ (2000) Nedd8 modification of cul-1 activates SCFßTRCP-dependent ubiquitination of I.κB.α. Mol Cell Biol 20:2326–2333

    Article  PubMed  CAS  Google Scholar 

  • Salceda S, Caro J (1997) Hypoxia-inducible factor 1 alpha (HIF-1 alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J Biol Chem 272:22642–22647

    Article  PubMed  CAS  Google Scholar 

  • Schwob E, Boehm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the Gl to S transition in S. cerevisiae. Cell 79:233–244

    Article  PubMed  CAS  Google Scholar 

  • Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina SA, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ (1999) Cdc53/cullin and the essential hrtl RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme cdc34. Genes Dev 13:1614–1626

    Article  PubMed  CAS  Google Scholar 

  • Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D (1996) Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 56:2299–2301

    PubMed  CAS  Google Scholar 

  • Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13:2375–2387

    Article  PubMed  CAS  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    Article  PubMed  CAS  Google Scholar 

  • Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW, Sanjay TW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–665

    Article  PubMed  CAS  Google Scholar 

  • Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of I.αB.α by the F-box protein Slimb/ß-TrCP. Genes Dev 13:284–294

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Kaelin WG, Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461

    Article  PubMed  CAS  Google Scholar 

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W (1999) p45SKP2 promotes p27Kipl degradation and induces S phase in quiescent cells. Nat Cell Biol 1:207–214

    Article  PubMed  CAS  Google Scholar 

  • Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skpl and HOS to catalyze the ubiquitination of I.κB.α. Mol Cell 3:527–533

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor 1-alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19: 4298–4309

    Article  PubMed  CAS  Google Scholar 

  • Tyers M, Jorgenson P (2000) Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev 10:54–64

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Yeh ETH, Kamitami T (1999) Identification of NEDD8-conjugation site in human cullin-2. BBRC 257:100–105

    PubMed  CAS  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular oxygen tension. Proc Nati Acad Sci USA 92: 5510–5514

    Article  CAS  Google Scholar 

  • Wang S, Nath N, Minden A, Chellappan S (1999) Regulation of Rb and E2F by signal transduc-tion cascades: divergent effects of JNK1 and p38 kinases. EMBO J 18:1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCFßTRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in I.κB.α and ß-catenin and stimulates I.κBO.α ubiquitination in vitro. Genes Dev 13:270–283

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Chen A, Pan ZQ (2000a) Conjugation of Nedd8 to CULI enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J Biol Chem 275:32317–32324

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Fuchs SY, Chen A, Tan P, Gomez C, Ronai Z, Pan ZQ (2000b) The SCF(HOS/ß-TRCP)-ROCl E3 ubiquitin ligase utilizes two distinct domains within CULI for substrate targeting and ubiquitin ligation. Mol Cell Biol 20:1382–1393

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Varshavsky A (1999) The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J 18:6832–6844

    Article  PubMed  CAS  Google Scholar 

  • Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y (1998) Identification of the receptor component of the I.κB.α-ubiquitin ligase. Nature 396:590–594

    Article  PubMed  CAS  Google Scholar 

  • Zachariae W, Shevchenko A, Andrews PD, Ciosk R, Galova M, Stark MJR, Mann M, Nasmyth K, Sanjay TW (1998) Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279:1216–1219

    Article  PubMed  CAS  Google Scholar 

  • Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ, Moritz RL, Cary D, Richardson R, Hausmann G, Kile BJ, Kent SB, Alexander WS, Metcalf D, Hilton DJ, Nicola NA, Baca M (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to Elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 96:2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Howley PM (1998) Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell 2:571–580

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamura, T., Conaway, J.W., Conaway, R.C. (2002). Roles of SCF and VHL Ubiquitin Ligases in Regulation of Cell Growth. In: Reboud-Ravaux, M. (eds) Protein Degradation in Health and Disease. Progress in Molecular and Subcellular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56373-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56373-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62714-9

  • Online ISBN: 978-3-642-56373-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics