Skip to main content

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 159))

Abstract

Cell-mediated immunity provides resistance to Epstein-Barr virus (EBV), as demonstrated by the occurrence of EBV-induced post-transplant lymphoproliferative disease (PTLPD) in immunosuppressed patients. T cell immunity is stimulated most effectively by dendritic cells (DCs). Although DCs are not direct targets for infection by EBV, we tested whether EBV antigens are cross-presented by human DCs and whether DCs are efficient at stimulation of EBV-specific CD8+ T cells. We show that DCs cross-presenting apoptotic or necrotic lymphoblastoid cell lines (LCLs) are able to expand CD8+ T cells that directly recognize HLA-matched LCLs by IFN-γ secretion and cytolytic activity. Part of this EBV-specific CDS8+ T cell response was specific for the EBV nuclear antigen EBNA3A and the latent membrane protein LMP2a. Both these antigens are expressed in PTLPD. In other EBV-associated malignancies such as Hodgkin’ s lymphoma, T cell lymphoma and nasopharyngeal carcinoma, LMP2a is maintained. Therefore, the cross-presenting ability of DCs might be explored in DC-mediated active immunization against EBV-associated malignancies. Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) for the induction of T cell immunity [1]. In their immature state they are highly efficient in antigen uptake, using several pathways, such as macropinocytosis [2], receptor-mediated endocytosis [3] and phagocytosis of apoptotic and necrotic cell fragments [4]. The exposure to the antigen/pathogen induces the immature DC to undergo phenotypic and functional changes that lead to maturation. This enables the DCs to process the antigen onto MHC molecules, to upregulate costimulatory molecules and to secrete T cell stimulatory cytokines [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  2. Sallusto R Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen in the major histocompatibility class II compartment. Downregulation by cytokines and bacterial products. J Exp Med 182:389–400

    Article  PubMed  CAS  Google Scholar 

  3. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375:151–155

    Article  PubMed  CAS  Google Scholar 

  4. Albert ML, Pearce SEA, Francisco LM, Sauter B, Roy R Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368

    Article  PubMed  CAS  Google Scholar 

  5. Inaba K, Turley S, Yamaide F, lyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman J, Steinman RM (1998) Efficient presentation of phagocytosed cellular fragments on the MHC class II products of dendritic cells. J Exp Med 188:2163–2173

    Article  PubMed  CAS  Google Scholar 

  6. Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283–1288

    Article  PubMed  CAS  Google Scholar 

  7. Bevan MJ (1977) Priming for a cytotoxic response to minor histocompatibility antigens: antigen specificity and failure to demonstrate a carrier effect. J Immunol 118:1370–1374

    PubMed  CAS  Google Scholar 

  8. Schirmbeck R, Melber K, Reimann J (1995) Hepatitis B virus small surface antigen particles are processed in a novel endosomal pathway for major histocompatibility complex class I-restricted epitope presentation. Eur J Immunol 25:1063–1070

    Article  PubMed  CAS  Google Scholar 

  9. Bachmann MF, Lutz MB, Layton GT, Harris SJ, Fehr T, Rescigno M, Ricciardi-Castagnoli P (1996) Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur J Immunol 26:1–7

    Article  Google Scholar 

  10. Sigal LJ, Crotty S, Andino R, Rock KL (1999) Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398:77–80

    Article  PubMed  CAS  Google Scholar 

  11. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    Article  PubMed  CAS  Google Scholar 

  12. Subklewe M, Tsang LM, Mahnke K, Steinman RM, Munz C (2001) Dendritic cells cross-present latency gene products from Epstein-Barr virus transformed B cells and expand tumor-reactive CD8+ killer T cells. J Exp Med 2001, 193(3 ):405–411

    Article  Google Scholar 

  13. Reddy A, Sapp M, Feldman M, Subklewe M, Bhardwaj N (1997) A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90:3640–3646

    PubMed  CAS  Google Scholar 

  14. Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen R Kurilla MG, Frappier L, Rickinson A (1998) Human CD8+ T cell responses to EBV EBNAl: HLA class I presentation of the [Gly-Ala]-containing protein requires exogenous processing. Immunity 7:791–802

    Article  Google Scholar 

  15. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kuriila MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    Article  PubMed  CAS  Google Scholar 

  16. Blake NHT, Shaka G, Croom-Carter D, Rickinson A (2000) The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNAl. J Immunol 165:7078–7087

    PubMed  CAS  Google Scholar 

  17. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J Exp Med 179:1109–1118

    Article  PubMed  CAS  Google Scholar 

  18. Bickham K, Münz C, Tsang ML, Larsson M, Fonteneau IF, Bhardwaj N, Steinman RM (2001) EBNA 1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Thl in function. J Clin Invest 107:121–130

    Article  PubMed  CAS  Google Scholar 

  19. Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNAl. J Exp Med 191:1649–1660

    Article  PubMed  CAS  Google Scholar 

  20. Subklewe M, Chahroudi A, Bickham K, Larsson M, Kurilla MG, Bhardwaj N, Steinman RM (1999) Presentation of Epstein-Barr virus latency antigens to CD8+, interferon-γ-secreting, T lymphocytes. Eur J Immunol 29:3995–4001

    Article  PubMed  CAS  Google Scholar 

  21. Kieff E (1996) Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2343–2396

    Google Scholar 

  22. Crotzer VL, Christian RE, Brooks JM, Shabanowitz J, Settlage RE, Marto JA, White FM, Rickinson AB, Hunt DR Engelhard VH (2000) Immunodo min ance among EBV-derived epitopes restricted by HLA-B27 does not correlate with epitope abundance in EBV-transformed B-lymphoblastoid cell lines. J Immunol 164:6120–6129

    PubMed  CAS  Google Scholar 

  23. Cardin RD, Brooks IW, Sarawar SR, Doherty PC (1996) Progressive loss of CD8+ T cell-mediated control of gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184:863–871

    Article  PubMed  CAS  Google Scholar 

  24. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188:2199–2204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Subklewe, M. (2002). Dendritic Cells for the Induction of EBV Immunity. In: Oertel, S.H., Riess, H. (eds) Immunosurveillance, Immunodeficiencies and Lymphoproliferations. Recent Results in Cancer Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56352-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56352-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62676-0

  • Online ISBN: 978-3-642-56352-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics